
Termination Analysis with Types is More
Accurate

Vitaly Lagoon1, Fred Mesnard2, and Peter J. Stuckey1

1 Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

{lagoon,pjs}@cs.mu.oz.au

2 IREMIA
Université de La Réunion, France

fred@univ-reunion.fr

Abstract. In this paper we show how we can use size and ground-
ness analyses lifted to regular and (polymorphic) Hindley/Milner typed
programs to determine more accurate termination of (type correct) pro-
grams. Type information for programs may be either inferred automat-
ically or declared by the programmer. The analysis of the typed logic
programs is able to completely reuse a framework for termination analy-
sis of untyped logic programs by using abstract compilation of the type
abstraction. We show that our typed termination analysis is uniformly
more accurate than untyped termination analysis for regularly typed pro-
grams, and demonstrate how it is able to prove termination of programs
which the untyped analysis can not.

1 Introduction

Logic programming languages are increasingly typed languages. While Mycroft
and O’Keefe [22] showed how to include Hindley/Milner types in logic programs,
Prolog has never really made use of types. But new logic programming languages
such as Gödel [16], Mercury [24] and HAL [13] include strong types as an impor-
tant part of the language. On the other hand new techniques for inferring types
of Prolog programs [10, 12] are increasingly in use. In this paper we investigate
the impact of types on universal left termination analysis of logic programs.

The following example shows why termination analysis of typed programs
can give better accuracy than untyped analysis. We use Mercury [24] syntax for
type definitions and declarations.

:- type list(T) ---> [] ; [T|list(T)].
:- type erk ---> a ; b(erk) ; c.
:- pred g(list(erk)).
g(W) :- X = [[a],[R]], Y = [[S,c],[]],

append(X,Y,Z), Z = [U|V], append(U,U,W).
:- pred append(list(T),list(T),list(T)).
append(A, B, C) :- A = [], B = C.
append(A, B, C) :- A = [D|E], C = [D|F], append(E,B,F).

The goal g(W) cannot be proven to universally terminate if we use the term size
norm (because the term size of X is unknown), nor will it terminate if we use
the list size norm (because the list size of U is unknown). On the other hand, the
typed termination analysis we present proves that g(W) is always terminating.
Typed termination analysis can determine that the list skeleton of U is fixed,
and hence the goal terminates. Note that this relies on polymorphic size analysis.

Our approach maps the original program to a type separated program where
each subtype is considered separately. Each variable is split into size compo-
nents for each type. For example X is split into three variables XLL (which
corresponds to the type list(list(erk))), XL (list(erk)) and XE (erk).

Each primitive constraint is mapped to its size effect on each subtype sepa-
rately. The size of a term for a subtype is the number of subterms of that term
that match that type. For example the term t =[[a],[R]] has 3 subterms, t,
[[R]], and [], matching type list(list(erk)), and four matching list(erk),
while the number of erk subterms is one more than those in R.

Each call is mapped to calls where a variable is replaced by its (typed) com-
ponents. Difficulties arise for polymorphic calls where the call has a more specific
type than the predicate called. This is overcome by calling the predicate once for
each subtype that maps to the type parameter. The code below is the (simplified)
type separated program for the program above. Note how call append(X,Y,Z)
maps to two calls to the typed append, one where type parameter T is matched
to list(erk) and one where it is matched to erk.

g(WE,WL) :- XLL = 3, XL = 4, XE = 1 + RE, YLL = 3, YL = 4, YE = SE + 1,
append(XLL,XL,YLL,YL,ZLL,ZL), append(XLL,XE,XLL,YE,ZLL,ZE),
ZLL = 1 + VLL, ZL = UL + VL, ZE = UE + VE,
append(UL,UE,UL,UE,WL,WE).

append(AL,AT,BL,BT,CL,CT) :- AL = 1, AT = 0, BL = CL, BT = CT.
append(AL,AT,BL,BT,CL,CT) :- AL = 1 + EL, AT = D + ET,

CL = 1 + FL, CT = D + FT, append(EL,ET,BL,BT,FL,FT).

We can perform typed size analysis for the original program using this program.
Similarly typed rigidity analysis simply interprets + as ∧ and constants as true.
Surprisingly the untyped termination analysis of this program gives the correct
termination information for the original program, and more accurate information
than same untyped analysis on the original program.

The contributions of this paper are:

– We provide a correct termination analysis for regular and polymorphic Hind-
ley/Milner typed programs.

– We show that for regular typed programs the results are uniformly more
accurate than the untyped analysis (assuming no widening is required).

– We give an implementation of typed termination analysis and experiments
showing the accuracy benefits.

Due to space considerations the proofs for theorems on typed analysis are omit-
ted, they can be found in [18].

2

Types have long been advocated as a means to improve logic programming
termination analysis, e.g. [4, 19]. De Schreye et al., e.g. [9], were among the first
to study the use of inferred typed norms in their works on automatic termination
analysis. They pointed out that measuring the same term differently with respect
to types complicates the analysis. Another solution to this problem is proposed
in [14], by copying each parameter for each norm in each predicate, where norms
are either given by the user or based on inferred regular types. In contrast to our
proposal, these works did not address the issues related to polymorphic types.
Ironically, termination analyses for Mercury (e.g. [25]) are currently untyped.

The closest work to ours is that of Bruynooghe et al. [7, 26, 5]. The typed
termination analysis framework of [26] is similar to the approach defined herein,
but the size and rigidity relations for a procedure are considered separated for
subtype. This makes the analysis information uniformly less accurate than the
approach herein, it also means that the approach is not guaranteed to be more
accurate than an untyped analysis even for regular typed programs (the same
counterexample as in Example 8). The approach of [26] cannot be applied to all
polymorphically typed programs (e.g. the call in Example 7), while the extension
in [5] to arbitrary polymorphically typed programs can give incorrect analysis
results (e.g. for Example 8) although this can be corrected (see [6]). There are
no experiments reported in [7, 26, 5].

The next section recalls types for logic programming. Section 3 presents the
typed analysis with correctness and accuracy results. Section 4 describes our
experiments and concludes.

2 Preliminaries

In the following we assume a familiarity with the standard definitions and nota-
tion for (constraint) logic programs as described in [17], and with the framework
of abstract interpretation [8]. In particular, we assume familiarity with semantics
TP ↑ ω and SP ↑ ω defined by the least fixpoints of the immediate consequence
operator TP and the non-ground consequence operation SP . We assume terms
are made up using tree constructors with arities from a set Σtree and (Herbrand)
variables Vtree.

We assume the rules of the program are in canonical form. That is, pro-
cedure calls and rule heads are normalized such that parameters are distinct
variables, and unifications are broken into sequences of simple constraints of the
form x = y or x = f(y1, . . . , yn) where x, y1, . . . , yn are distinct variables. In
addition, the heads of each rule for predicate p/n are required to be identical
atoms p(xp1, . . . , xpn), and every variable not appearing in the head of a rule is
required to appear in exactly one rule. It is straightforward to convert any logic
program to an equivalent program in this form.

2.1 Typed Logic Programs

The techniques of abstract compilation of typed analyses presented in this work
are applied to typed logic programs. A typed logic program is a logic program

3

where each program variable x is associated with its respective type description
type(x). We shall be interested in two forms of typed programs: regular typed
programs, where type(x) is a (monomorphic) deterministic regular type, and
Hindley/Milner typed programs where type(x) is a (polymorphic) Hindley/Milner
type. The types can be either prescribed by the programmer or inferred by some
type inference algorithm (e.g. [21, 11]).

Both kinds of types are defined using the same language of types. We adopt
the Mercury syntax of type definitions [21].

Type expressions (or types) τ ∈ Type are constructed using type constructors
Σtype and type parameters Vtype. Each type constructor g/n ∈ Σtype must have
a unique definition.

Definition 1. A type definition for g/n ∈ Σtype is of the form

:- type g(ν1, . . . , νn) ---> f1(τ1
1 , . . . , τ1

m1
) ; · · · ; fk(τk

1 , . . . , τk
mk

).

where ν1, . . . , νn are distinct type parameters (in Vtype), {f1/m1, . . . , fk/mk} ⊆
Σtree are distinct tree constructor/arity pairs, and τ1

1 , . . . , τk
mk

are type expres-
sions in Type involving at most parameters ν1, . . . , νn.

Note that we allow the same tree constructor to appear in multiple type
definitions (unlike strict Hindley/Milner types).

Example 1. Example type definitions are given below:

:- type list(T) ---> [] ; [T|list(T)].3

:- type nest(T) ---> e(T) ; n(list(nest(T))).
:- type list2(T) ---> [] ; [T|list2(T)].

Note how [] is overloaded as part of list and list2.

Type definitions define deterministic regular tree grammars in an obvious
way. Formally, a grammar G(τ) corresponding to the type τ is a tuple G(τ) =
〈τ, N(τ),∆(τ)〉, where τ is the start symbol, and N(τ) and ∆(τ) are respectively
the sets of non-terminals and productions.

If τ ∈ Vtype is a type parameter, then N(τ) = {τ} and ∆(τ) = ∅. Otherwise
τ = σ(g(ν1, . . . , νn)) for some type substitution σ on {ν1 . . . , νn} and the type
definition for g/n is :

:- type g(ν1, . . . , νn) ---> f1(τ1
1 , . . . , τ1

m1
) ; · · · ; fk(τk

1 , . . . , τk
mk

).

The sets N(τ) and ∆(τ) are defined respectively as the least sets satisfying:

N(τ) = τ ∪
⋃

i=1...k
j=1...mi

N(σ(τ i
j))

∆(τ) =

τ→ σ(f1(τ1
1 , . . . , τ1

m1
))

...
τ→ σ(fk(τk

1 , . . . , τk
mk

))

∪

⋃

i=1...k
j=1...mi

∆(σ(τ i
j))

3 We write the list constructor [|] in the usual Prolog notation.

4

We assume that type definitions are such that the grammar for any type is fi-
nite, thus disallowing definitions like :- type g(T) ---> a ; b(g(list(T))).
This is a common restriction, although see [23] for the use of such types.

Example 2. The productions for the grammar of list2(nest(erk)) are

list2(nest(erk)) → [] ; [nest(erk) | list2(nest(erk))]
nest(erk) → e(erk) ; n(list(nest(erk)))
list(nest(erk)) → [] ; [nest(erk) | list(nest(erk))]
erk → a ; b(erk) ; c

while for list(U) they are list(U) → [] ; [U | list(U)]

For a canonical program P we can lift type to act on predicates p/n since
the unique head of rules for p/n defines its unique type. If p(xp1, . . . , xpn) is
the head of rules for p/n in P , then type(p/n) = p(type(xp1), . . . , type(xpn)).
We sometimes use Mercury syntax to illustrate predicate types, for example for
append in the introduction.

A basic assumption for this paper is that the programs we analyze are well-
typed. In practice this means that type-correctness of a program must be verified
by a type checker before the typed analysis can be performed. A ground term t
is well-typed for ground type τ if t ∈ L(τ), that is the term is in the language
of the grammar of type τ . A non-ground term t is well-typed for τ if there is a
grounding substitution θ such that θ(t) is well-typed for τ . An atom p(t1, . . . , tn)
is well-typed if there is a substitution θ such that each θ(ti) is well-typed for type
type(xpi) for 1 ≤ i ≤ n.

We assume the program is well-typed in one of two senses. Either type(x) is
always a regular type, and every atom occurring in a derivation for a well-typed
atom is well-typed. Or type(x) is always a Hindley/Milner type and the program
is Hindley/Milner type correct [22].

We will be interested in discovering sizes and rigidities of terms for each
possible subtype. Define the multiset of nodes of term t of type τ which match
a particular subtype τ ′ ∈ N(τ), written as {{t : τ}}τ ′ .

{{f(t1, . . . , tn) : τ}}τ = {f} + {{t1 : τ1}}τ + · · · + {{tn : τn}}τ

where τ → f(τ1, . . . , τn) ∈ ∆(τ)
{{f(t1, . . . , tn) : τ}}τ ′ = {{t1 : τ1}}τ ′ + · · · + {{tn : τn}}τ ′

where τ ,= τ ′, τ → f(τ1, . . . , τn) ∈ ∆(τ)
{{v : τ}}τ ′ = {v} where v ∈ Vtree

{{t : τ}}τ ′ = ∅ otherwise

where + denotes multiset union. We can compute size (number of matching
non-variable nodes) and rigidity (there exist no matching variable nodes) for
subtypes from these multiset expressions.

size(t : τ, τ ′) = |{{t : τ}}τ ′ − Vtree|
rigid(t : τ, τ ′) = ({{t : τ}}τ ′ ∩ Vtree = ∅)

5

Example 3. For this and later examples we use shorthands l for list, n for nest,
l2 for list2 and e for erk. Consider the term t ≡ [n([X |Y]), Z], the table shows
the multisets of nodes, and size and rigidities for each subtype when t is of type
l2(n(e)).

τ {{t : l2(n(e))}}τ size(t : l2(n(e)), τ) rigid(t : l2(n(e)), τ)
l2(n(e)) {[|], [|], []} 3 true
l(n(e)) {[|], Y, Z} 1 false
n(e) {n, Y, Z} 1 false
e {X, Y, Z} 0 false

We shall extend our notion of type expressions by introducing two new type
construction mechanisms: type intersection, and (named) renaming. These will
not be available to the programmer, but used to construct intermediate types
for the translation process.

The first is for building the intersections of two types. The type expression
〈τ1 ∩ τ2〉 defines the intersection of types τ1 and τ2, a type with grammar as
follows. ∆(〈τ1 ∩ τ2〉) contains rules

〈τ1 ∩ τ2〉 → f(〈τ11 ∩ τ21〉 , . . . , 〈τ1n ∩ τ2n〉) where τ1 → f(τ11, . . . , τ1n) ∈ ∆(τ1)
τ2 → f(τ21, . . . , τ2n) ∈ ∆(τ2)

together with rules from ∆(〈τ1i ∩ τ2i〉), 1 ≤ i ≤ n. N(〈τ1 ∩ τ2〉) is given by
the types 〈τ ′1 ∩ τ ′2〉 where τ ′1 ∈ N(τ1) and τ ′2 ∈ N(τ2) that occur anywhere in
∆(〈τ1 ∩ τ2〉) (not just on the left hand side). The start symbol is 〈τ1 ∩ τ2〉.

The renamed type expression name.τ where name ∈ Vtree ∪ {copyi | i ≥
1} and τ is a type expression, builds a new type which is identical to τ but
with different non-terminals. The type name.τ is defined by the grammar as
〈name.τ, {name.τ ′ | τ ′ ∈ N(τ)},∆〉 where

∆ = {name.τ → f(name.τ1, . . . name.τn) | τ → f(τ1, . . . τn) ∈ ∆(τ)}.

3 Typed Termination Analysis

We assume the reader is familiar with the untyped termination analysis approach
of [20] on how to compute classes of queries for which universal left termination
of a pure untyped logic program is guaranteed.

Our approach to typed termination analysis simply maps the typed logic
program to an untyped CLP(N) program which represents the size relationships
of the original program. We call this the type separated program. The untyped
analysis of this program gives us the termination results for the original typed
program.

3.1 The Type Separated Program

The type separated program type(P) arising from a type program P and a correct
typing type is defined as follows. Each rule is mapped to a rule, by mapping each
of the literals of the rule to a sequence of literals.

6

Variables Each variable v ∈ Vtree with type type(v) is mapped to a set of typed
variables of the form v.τ where τ is a type. Define v : τ to be the sequence of
variables v.τ ′, τ ′ ∈ N(τ) in lexicographic order. The order will be important in
order to map calls correctly.

Heads Each head atom p(xp1, . . . , xpn) is directly translated to an atom
p(xp1 : type(xp1), . . . , xpn : type(xpn)). For example, the head atom q(Z) where
type(Z) = n(e) is mapped to the fact q(Z.e, Z.l(n(e)), Z.n(e)).

Primitive constraints The primitive constraint v1 = v2 is mapped to a conjunc-
tion of constraints defined as follows. First we build the named instances of the
types for v1 and v2. Let τ1 = v1.type(v1) and τ2 = v2.type(v2)

Consider N(〈τ1 ∩ τ2〉) as edges in a bipartite graph with nodes N(τ1) and
N(τ2). Then we can separate these nodes into connected components. For each
connected component U we create an equation

Σ{x | x ∈ U ∩ N(τ1)} = Σ{y | y ∈ U ∩ N(τ2)}

The intuition is that for the unification to succeed v1 and v2 must take a value
in the intersection type. And each node in v1 of type τ ′1 can only appear in v2

as type τ ′2 if 〈τ ′1 ∩ τ ′2〉 ∈ N(〈τ1 ∩ τ2〉). Hence the size equation must hold.

Example 4. Consider X = Y where type(X) = l(n(e)) and type(Y) = l2(n(e)).
Then N(〈X.type(X) ∩ Y.type(Y)〉) contains {〈X.l2(n(e)) ∩ Y.l(n(e))〉, 〈X.n(e)∩
Y.n(e)〉, 〈X.e ∩ Y.e〉, 〈X.l(n(e)) ∩ Y.l(n(e))〉}. The connected components are
{X.l(n(e)), X.l2(n(e)), Y.l(n(e))}, {X.n(e), Y.n(e)} and {X.e, Y.e}. The result-
ing equations are

X.l2(n(e) + X.l(n(e)) = Y.l(n(e)), X.n(e) = Y.n(e), X.e = Y.e

The sum of sizes of the two kinds of list nodes in X must equal the size of the
single kind in Y .

Treatment of the equation v0 = f(v1, . . . , vn) is similar. First we create the
type τ2 for the right hand side defined by 〈1, {1} ∪∪ n

i=1N(vi.type(vi)),∆〉 where
∆ = {1 → f(v1.type(v1), . . . , vn.type(vn))} ∪∪ n

i=1∆(vi.type(vi)). The remainder
is as for the equation v1 = v2, where τ1 = v1.type(v1). Note the (ab)use of 1 as a
type name so that the same equation creation as above holds. The 1 represents
the size contribution of the functor f .

Example 5. Consider the equation A = [D|E], where type(A) = type(E) = l(T)
and type(D) = T . The new type τ2 consists of rules 1 → [D.T |E.l(T)], E.l(T) →
[], and E.l(T) → [E.T |E.l(T)]. The grammar intersection of τ2 and A.l(T) gives
pairs {〈A.l(T) ∩ 1〉, 〈A.T ∩ D.T 〉, 〈A.l(T) ∩ E.l(T)〉, 〈A.T ∩ E.T 〉}. The con-
nected components are {A.l(T), 1, E.l(T)} and {A.T, D.T, E.T}. The resulting
equations are A.l(T) = 1 + E.l(T) and A.T = D.T + E.T .

The equation A = [] leads to connected components of the intersection gram-
mar as {A.l(T), 1} and {A.T}. The resulting equations are A.l(T) = 1, A.T = 0.

7

Monomorphic calls For a procedure with monomorphic type we translate a body
atom p(v1, . . . , vn) as follows. Let type(p/n) = p(τ1, . . . , τn). Construct new vari-
ables v′1, . . . , v

′
n where type(v′i) = τi. We translate the call by the translation

of each vi = v′i followed by the call p(v′1 : τ1, . . . , v′n : τn). This maintains the
invariant that each p atom has arguments arising from the exact type declared
for p/n.

Note if type(vi) = τi already we can omit the equations resulting from vi = v′i
and use vi : τi instead of v′i : τi

Example 6. Consider the atom p(X) where type(X) = l(n(e)) and type(p/1) =
p(l2(n(e))), then we create new variable Y of type l2(n(e)) and build the equa-
tions resulting from X = Y as defined in Example 4 above and the atom
p(Y.e, Y.l(n(e)), Y.l2(n(e)), Y.n(e)).

Polymorphic calls Handling of polymorphic calls is more complex. The main
complexity arises since we must create a new variable whose type grammar is an
instance of the grammar of the polymorphically typed call. We then will use a
call to the polymorphic code for each subtype which matches the type parameter
arguments.

Given the program is Hindley/Milner type correct we know that for body
atom p(v1, . . . , vn), we have that type(p/n) = p(τ1, . . . , τn) and there exists type
substitution σ such that type(vi) = σ(τi), 1 ≤ i ≤ n. Let νj ∈ Vtype, 1 ≤ j ≤ m
be the type parameters in type(p/n). For each type parameter νj we create a
new type Sj = copyj .σ(νj)). Define σ′ = {νj 1→ Sj | 1 ≤ j ≤ m}. We create
new variables v′i where type(v′i) = σ′(τi). And add the equations resulting from
vi = v′i.

The final step is to add calls to the type separated predicate p. For each
combination of S′

j ∈ N(Sj) for all 1 ≤ j ≤ m we add the call

p(v′1 : τ1, . . . , v′n : τn)

except that the type variable νj is replaced by copyj .σ(νj) in all variable names
except where it appears as νj (e.g. v′i.νj) where it is replaced by S′

j . Note the
construction of the vectors of variables is completed before the type name sub-
stitution, to ensure that the lexicographic order agrees with the definition of p
in the type separated program.

Example 7. Consider a call p(X) where type(X) = l(n(e)) and type(p/1) =
p(l(T)). Then σ = {T 1→ n(e)}. We create a type copy1.n(e). Let Y be a new
variable where type(Y) = l(copy1.n(e)). We then create the equations resulting
from X = Y (which are analogous to those from Example 4). The unsubstituted
call is p(Y.l(T), Y.T). We create a copy for each τ ′ ∈ N(copy1.n(e)). The resulting
translation is the last 4 lines of the program shown in Figure 1 (where copy1 is
written as c for brevity).

The copying of types avoids confusing Y.l(copy1.n(e)) which represents the
list nodes in the outer skeleton of the list Y , with Y.copy1.l(n(e)) which represents
the list nodes appearing inside nests in Y .

8

q(Z.e,Z.l(n(e)),Z.n(e)) :- Z.n(e)=1+X.n(e), Z.l(n(e))=X.l(n(e)), Z.e=X.e,
X.l(n(e)=Y.l(c.n(e))+Y.c.l(n(e)), X.n(e)=Y.c.n(e), X.e=Y.c.e,
p(Y.l(c.n(e)), Y.c.l(n(e))),
p(Y.l(c.n(e)), Y.c.n(e)),
p(Y.l(c.n(e)), Y.c.e).

Fig. 1. Type separated rule for q(Z) :- Z = n(X), p(X).

The type separated program just translates each rule in P into the corre-
sponding rule in type(P). The translation of the rule q(Z) :- Z = n(X), p(X)
where type(Z) = n(e) and type(X) = l(n(e)) and type(p/1) = l(T) is shown in
Figure 1.

Note that the type separated program can be significantly larger than the
original program, but only by a factor equal to the largest number of non-
terminals in a type multiplied by the largest number of type parameters appear-
ing in a single predicate type.

3.2 Typed Analysis

The key theorems of this paper are that the untyped analyses of the type sepa-
rated program are correct with respect to the typed original program. The size
analysis computes an approximation of the answer semantics of type(P) using
the abstract domain Size [15].

Theorem 1. ([18] Theorem 23) Analysis using Size of the type separated pro-
gram type(P) is correct with respect to type correct program P .

Let postNp (xp1type, . . . , xpntype) ⇐⇒ C be the result of the size analysis of
type(P), then for any well-typed atom p(t1, . . . , tn) ∈ TP ↑ ω we have that
{xpi.τ 1→ size(ti : type(xpi), τ) | 1 ≤ i ≤ n, τ ∈ N(type(xpi))} is a solution
of C.

Rigidity analysis translates the + of the type separated program as ∧ and
replaces all the numbers by true, it then computes an approximation of this
CLP(B) program using the abstract domain Pos [2].

Theorem 2. ([18] Theorem 17) Rigidity analysis using Pos of the type separated
program type(P) is correct with respect to type correct program P .

Let postBp (xp1type, . . . , xpntype) ⇐⇒ C be the result of the rigidity analysis
of type(P), then for any well-typed atom p(t1, . . . , tn) ∈ SP ↑ ω we have that
{xpi.τ 1→ rigid(ti : type(xpi), τ) | 1 ≤ i ≤ n, τ ∈ N(type(xpi))} is a solution of
C.

3.3 Accuracy of Typed Analysis

The typed analysis is generally much more accurate than the untyped analysis.
We can show that for regular typed programs the typed analysis is uniformly
more accurate than the untyped analysis.

9

Theorem 3. ([18] Theorem 18)
For any regular typed program P , let postBp (xp1type, . . . , xpntype) ⇐⇒ Ctype be the
result of the Pos rigidity analysis of type(P), and postBp (xp1, . . . xpn) ⇐⇒ C be
the result of the untyped Pos rigidity (groundness) analysis of P . Then

(Ctype ∧
n∧

i=1

xpi ↔ (∧τ∈N(type(xpi))xpi.τ)) → C

The same result holds for typed term size analysis, provided no widening
operation is used. Since the widening operation for Size is non-monotonic more
accurate information from the typed analysis is not guaranteed to lead to more
accurate results after widening.

Theorem 4. ([18] Theorem 24)
For any regular typed program P , let postNp (xp1type, . . . , xpntype) ⇐⇒ Ctype be the
result of the Size analysis of type(P) assuming no widening operations were used,
and postNp (xp1, . . . xpn) ⇐⇒ C be the result of the untyped Size analysis of P .
Then

(Ctype ∧
n∧

i=1

xpi = (Στ∈N(type(xpi))xpi.τ)) → C

The accuracy results do not extend to polymorphic analysis, even for rigidity
analysis.

Example 8. Consider the following simple program with two possible type dec-
larations for p, the first polymorphic and the second monomorphic.

:- type pair(U,V) ---> U-V.
:- type foo ---> d ; e ; f.
:- pred p(list(T),list(T)).
:- pred p(list(pair(erk,foo)),list(pair(erk,foo)).
p(A,B) :- A = [].
p(A,B) :- B = [].

The rigidity analysis of the predicate p/2 obtains the respective answers (for
brevity we use lpef for list(pair(erk , foo)), pef for pair(erk , foo))

(A.list(T) ∧ A.T) ∨ (B.list(T) ∧ B.T)
(A.lpef ∧ A.pef ∧ A.erk ∧ A.foo) ∨ (B.lpef ∧ B.pef ∧ B.erk ∧ B.foo)

The analysis of a call to polymorphically typed p where T = pef gives 3 copies
of the answer for p conjoined. This is the answer

((A.lpef ∧ A.pef) ∨ (B.lpef ∧ B.pef)) ∧ ((A.lpef ∧ A.erk) ∨ (B.lpef ∧ B.erk)) ∧
((A.lpef ∧ A.foo) ∨ (B.lpef ∧ B.foo)

This is less accurate than the answer using the monomorphic type, and in fact
less accurate than the untyped groundness analysis result A ∨ B when mapped
back to these variables.

10

If the original program P does not have any (type) polymorphic recursive
procedures, we can monomorphise the program and analyze this program. Of
course then we make no reuse of the analysis of polymorphic code, and the
monomorphisation could cause an exponential increase in code size.

In practice the widening operation and the possible inaccuracy resulting from
the handling of polymorphic calls do not seem to occur for real programs. In the
empirical results in Section 4 the (polymorphic) typed analysis is never less
accurate than the untyped analysis.

We conjecture that the typed size analysis is also uniformly more accurate
than (untyped) list size analysis for regular typed programs (when widening is
not used). The proof techniques of [18] do not apply to this case, but the type
separated program contains all the constraints in the CLP(N) program used for
list size analysis.

3.4 Level Mappings

We need to show that the type separated program is also correct for the compu-
tation of level mappings. This is obvious for monomorphic programs since the
size analysis is correct. For polymorphic programs we need to justify the level
mappings for each instance used. The result follows from the following theo-
rem that shows that the level mapping never depends on arguments which have
parameter types.

Theorem 5. If there exists a level mapping for a polymorphically typed predicate
p, then there exists a level mapping with zero coefficients for the arguments which
have type τ ∈ Vtype.

Proof. (Sketch) It is easy to show that the size constraints C arising in the type
separated program for an argument of parameter type ν ∈ Vtype are such, if θ is
a solution of C then θ′ = {v.ν 1→ 0 | ν ∈ Vtype} ∪{ v.τ 1→ θ(v.τ) | τ ,∈ Vtype} is
also a solution of C′. This is because no function symbols can appear in positions
relating to the parameter type. Suppose ā is a level mapping for some binary
clause p(x1, . . . , xk):-C, p(y1, . . . , yk), Then ā · θ(x̄) > ā · θ(ȳ) for every solution
θ of C. But since θ′ is also a solution we have that ā′ is also a correct level
mapping, where a′

i = ai except for arguments i of parameter type where a′
i = 0.

Bruynooghe et al [5] prove a weaker version of this theorem that shows that
if there is a level mapping for a monomorphic instance of a polymorphic typed
procedure, then there is a level mapping for the polymorphic typed procedure.

The above result also means that the direct termination analysis on the type
separated program will not remove possible termination proofs. In the set of
binary unfoldings corresponding to the program the first instance of a recursive
predicate will compute the appropriate level mapping, and later instances can
safely use the same level mapping since they do not differ on arguments whose
type is not a type parameter.

11

3.5 Termination Conditions

The final result is that the termination conditions computed from the type sep-
arated program are correct for the original typed program.

Theorem 6. The typed termination conditions computed from type(P) are cor-
rect.

Let φp be a termination condition for p(xp1type, . . . , xpntype) in type(P). Then
if p(t1, . . . , tn) is an atom such that {xpi.τ 1→ rigid(ti : typexpi, τ) | 1 ≤ i ≤
n, τ ∈ N(type(xpi))} is a solution of φp, then this goal terminates.

Proof. (Sketch) Since the analysis results are correct, and the duplication of calls
for polymorphic calls does not change the termination problem, the termination
conditions computed are correct.

4 Experiments and Conclusion

We implemented the translation to the type separated program as a source to
source transformation for Prolog programs with Mercury style type definitions
and declarations. We then passed the resulting CLP(N) programs to the untyped
termination analyzer of [20]. The typed termination results are simply read from
the results of the untyped analysis of type(P).

In the first experiment we considered (pure Prolog + arithmetic) programs
from the first 10 chapters of the book [1], avoiding some almost repeats. We
rewrote question in order to avoid the 90 anonymous variables in one clause
(which made the untyped and typed analysis run out of memory). We manually
added polymorphic Hindley/Milner types to these programs and checked well-
typedness. We analyzed left termination of the resulting type separated programs
for the first predicate in each program, except query, where we used the query
?- map(L), color map(L,[r,g,b]) from page 138 of the text.

Table 1 compares the typed analysis, and untyped analysis using term size
and list size. For each procedure we show the termination condition for each anal-
ysis, and give a or = to show when the typed termination is more or equally
accurate compared to the untyped analysis. The termination conditions use no-
tation || ||ls, || ||ts, and || ||bt to represent list size, term size, and binary tree
size (number of nodes) metrics respectively. For the predicate color map(X,Y),
Y is a list of colors and X is a list of regions. A region is a tuple of three elements:
a country, a color, and a list of neighbors. The metric ||X ||24 requires that X is
a finite list of regions, each having a finite list of neighbors.

The total analysis time for all programs in Table 1 for the two untyped
analyses took 0.5 seconds each. The total typed analysis took 5.0 seconds. We
ran the cTI termination analyzer, written in SICStus Prolog 3.10.1 using the
PPL library [3], a timeout of 3 seconds for each strongly connected component,
allowing 4 iterations before widening on an Intel 686, 2.4 GHz, 512 Mb, Linux
2.4.

12

Table 1. Some programs from Apt’s book.

Page# Query type-size term-size list-size

114 sunny true true = true =
115 neighbour(X,Y) true true = true =
118 num(X) ||X||ts ||X||ts = false
120 sum(X,Y,Z) ||Y ||ts ∨ ||Z||ts ||Y ||ts ∨ ||Z||ts = false
122 mult(X,Y,Z) ||X||ts ∧ ||Y ||ts ||X||ts ∧ ||Y ||ts = false
122 less(X,Y) ||X||ts ∨ ||Y ||ts ||X||ts ∨ ||Y ||ts = false
124 list(X) ||X||ls ||X||ts ||X||ls =
125 len(X,Y) ||X||ls ∨ ||Y ||ts ||X||ts ∨ ||Y ||ts ||X||ls
126 member(X,Y) ||Y ||ls ||Y ||ts ||Y ||ls =
127 subset(X,Y) ||X||ls ∧ ||Y ||ls ||X||ts ∧ ||Y ||ts ||X||ls ∧ ||Y ||ls =
127 app(X,Y,Z) ||X||ls ∨ ||Z||ls ||X||ts ∨ ||Z||ts ||X||ls ∨ ||Z||ls =
129 select(X,Y,Z) ||X||ls ∨ ||Z||ls ||X||ts ∨ ||Z||ts ||X||ls ∨ ||Z||ls =
130 perm(X,Y) ||X||ls ||X||ts ||X||ls =
131 perm1(X,Y) ||X||ls ||X||ts ||X||ls =
131 prefix(X,Y) ||X||ls ∨ ||Y ||ls ||X||ts ∨ ||Y ||ts ||X||ls ∨ ||Y ||ls =
132 suffix(X,Y) ||Y ||ls ||Y ||ts ||Y ||ls =
132 sublist(X,Y) ||Y ||ls ||Y ||ts ||Y ||ls =
133 reverse(X,Y) ||X||ls ||X||ts ||X||ls =
133 reverse1(X,Y) ||X||ls ||X||ts ||X||ls =
135 palindrome(X) ||X||ls ||X||ts ||X||ls =
136 question(X) true ||X||ts true =
137 color map(X,Y) ||X||24 ∧ ||Y ||ls ||X||ts ∧ ||Y ||ts false
138 query true false false
139 bin tree(X) ||X||bt ||X||ts false
139 tree member(X,Y) ||Y ||bt ||Y ||ts false
140 in order(X,Y) ||X||bt ||X||ts false
140 front(X,Y) ||X||bt ||X||ts false
238 max(X,Y,Z) true true = true =
240 ordered(X) ||X||ls ||X||ts ||X||ls =
241 ss(X,Y) ||X||ls ||X||ts ||X||ls =
241 qs(X,Y) ||X||ls ||X||ts ||X||ls =
242 ms(X,Y) ||X||ls false ||X||ls =
247 search tree(X) ||X||bt ||X||ts false
247 in(X,Y) ||Y ||bt ||Y ||ts false
248 minimum(X,Y) ||X||bt ||X||ts false
249 insert(X,Y,Z) ||Y ||bt ∨ ||Z||bt ||Y ||ts ∨ ||Z||ts false
249 delete(X,Y,Z) ||Y ||bt ∨ ||Z||bt ||Y ||ts ∨ ||Z||ts false
253 len1(X,Y) ||X||ls ||X||ts ||X||ls =

13

Table 2. Some logic programs from the literature.

Ref. Query type-size term-size list-size reg-size

[19] flatten ||X||lls∨ ||X||ts∨ ||X||lls∨
length(X,Y,Z) (||X||ls ∧ ||Y ||ls)∨ (||Y ||ts∧ ||X||ls∧ (||X||ls ∧ ||Y ||ts)∨

(||Y ||ls ∧ ||Z||ts) ||Z||ts) ||Y ||ls (||Y ||ls ∧ ||Z||ts)
[26] flatten(X,Y) ||X||lls∨ ||X||ls∧ ||X||lls∨

(||X||ls ∧ ||Y ||ls) ||X||ts ||Y ||ls (||X||ls ∧ ||Y ||ls)
[14] p(X) ||X||ts false false false
[14] factor(X,Y) ||X||ts false false false
[14] t(X) ||X||ts false false false
Sect. 1 g(X) true false ||X||ls ||X||ts

The current implementation is fairly naive, as the type separated program
introduces many new variables which perform no useful role, and could be elimi-
nated. We believe a slightly specialized termination analyzer for typed programs
could remove a significant part of this overhead.

In Table 2, our second experiment, we selected six programs from the lit-
erature, including our first example of Section 1. First, we manually added
polymorphic Hindley/Milner types and checked well-typedness. The termina-
tion condition ||X ||lls is true when X denotes a finite list of elements, each of
which is also a finite list. The accuracy of the typed analysis is striking, although
it should be noted that the last four examples were synthesized for this purpose.

Next, we applied bottom-up inference of regular types [11] to the untyped
programs. To construct the type separated program we used the inferred regular
types. The results are shown in the last column of Table 2. In some cases we
significantly improve the termination conditions for an untyped program without
needing any user-added type information. Total analysis times for this set of
examples are 0.5 seconds for each of the typed analyses, and 0.1 seconds for each
of the untyped analyses.

In summary, typed termination analysis seems in practice to be uniformly
more accurate than the untyped analysis, and even a naive implementation is
reasonably efficient. There are many further questions to pursue. One promising
direction is a hybrid analyzer that first uses untyped analysis and refines to
typed analysis where untyped analysis is not able to prove termination.

References

1. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
2. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of Boolean

functions for dependency analysis. Science of Computer Programming, 31(1):3–45,
1998.

3. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. SAS, LNCS 2477:213–229, 2002.

14

4. A. Bossi, N. Cocco, and M. Fabris. Typed norms. ESOP, LNCS 582:73–92, 1992.
5. M. Bruynooghe, M. Codish, S. Genaim, and W. Vanhoof. Reuse of results in ter-

mination analysis of typed logic programs. SAS, LNCS 2477:477–492, 2002.
6. M. Bruynooghe, M. Codish, S. Genaim, and W. Vanhoof. A note on the reuse of

results in termination analysis of typed logic programs. Forthcoming TR, Dpt CS,
K.U. Leuven, 2003.

7. M. Bruynooghe, W. Vanhoof, and M. Codish. Pos(T) : Analyzing dependencies in
typed logic programs. PSI, LNCS 2244:406–420, 2001.

8. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL,
238–252, 1977.

9. S. Decorte, D. De Schreye, and M. Fabris. Exploiting the power of typed norms
in automatic inference of interargument relations. TR 246, Dpt CS, , K.U.Leuven,
1997.

10. F. Fages and E. Coquery. Typing constraint logic programs. Theory and Practice
of Logic Programming, 1(6):751–777, 2001.

11. J. Gallagher and A. de Waal. Fast and precise regular approximations of logic
programs. ICLP, pages 599–613. MIT Press, 1994.

12. J. Gallagher and G. Puebla. Abstract interpretation over non-deterministic finite
tree automata for set-based analysis of logic programs. SAS, LNCS 2257:243–261,
2002.

13. M. Garćıa de la Banda, B. Demoen, K. Marriott, and P.J. Stuckey. To the Gates
of HAL: A HAL tutorial. LNCS, 2441:47–66, 2002.

14. S. Genaim, M. Codish, J. Gallagher, and V. Lagoon. Combining norms to prove
termination. VMCAI, LNCS 2294:126–138, 2002.

15. N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. PhD thesis, USM de Grenoble, France, 1979.

16. P. Hill and J. Lloyd. The Gödel Language. MIT Press, 1994.
17. J. Jaffar, M. Maher, K. Marriott, and P.J. Stuckey. The semantics of constraint

logic programs. Journal of Logic Programming, 37(1–3):1–46, 1998.
18. V. Lagoon and P. J. Stuckey. Polymorphic analysis of typed logic

programs. TR, Dpt CSSE, University of Melbourne, Australia, 2003.
www.cs.mu.oz.au/~pjs/papers/poly-tr.ps

19. J. Martin, A. King, and P. Soper. Typed norms for typed logic programs. LOPSTR,
LNCS 1207:224–238, 1996.

20. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. SAS, LNCS 2126:93–110, 2001.

21. R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, 1978.

22. A. Mycroft and R. A. O’Keefe. A Polymorphic Type System for Prolog. Artificial
Intelligence, 23:295–307, 1984.

23. C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.
24. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,

an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1–3):17–64, 1996.

25. C. Speirs, Z. Somogyi, and H. Søndergaard. Termination analysis for Mercury.
SAS, LNCS 1302:160–171, 1997.

26. W. Vanhoof and M. Bruynooghe. When size does matter. LOPSTR, LNCS
2372:129–147, 2002.

15

