Implementing cTI: a constraint-based left-termination inference tool for LP

S. Hoarau
IREMIA
Université de La Réunion, FRANCE
Email: seb@univ-reunion.fr

F. Mesnard
IREMIA
Université de La Réunion, FRANCE
Email: fred@univ-reunion.fr

U. Neumerkel
Institut für Computersprachen
Technische Universität Wien, AUSTRIA
Email: ulrich@complang.tuwien.ac.at

Abstract
We present the implementation of cTI, a system for bottom-up termination inference. Termination inference is a generalization of termination analysis/checking. The architecture of cTI is presented and some optimizations and performance results for medium-sized programs are discussed.

1 Introduction
Termination is a crucial aspect of program verification. For logic programs, the problem is of particular importance because there is a priori no syntactic restriction on queries. Termination has been the subject of many works in the last fifteen years in the logic programming community [31,2,26]. The research efforts can be divided in two groups (a survey is given in [17]). The first group characterizes termination (e.g. [1]) with undecidable criteria. The second weakens those criteria to obtain computable sufficient conditions (e.g. [32]). Our approach belongs to the latter stream. Our main innovation compared to other works of termination analysis (e.g. [32,21,14,7,13]) is to provide a framework where we can infer sufficient universal termination conditions from

Electronic Notes in Theoretical Computer Science
the text of any Prolog program. Inference means that we adopt a bottom-up approach to termination. There is no need to define a class of queries of interest. All other works we are aware of require to add such a class. Moreover, such classes can be easily simulated within our framework.

Currently the only requirement we impose on programs is that they must not create infinite rational terms. Hence we only consider NSTO programs [16,15] that can be safely executed with any standard complying system or an execution with occurs check. Our system, called cTI, has been realized with SICStus Prolog and can be used at http://www.complang.tuwien.ac.at/cti.

CIT is also integrated in the LP environment GUPU [25]. A formal justification of the algorithms underlying CIT can be found in [23] while [5] is a more conceptual paper, describing applications of termination inference and works in progress. In this paper, we present some insights, optimizations, and run times for three main algorithms that lie at the heart of CIT.

2 An Overview of CIT

Syntactic informations are often too weak to reason about non-trivial programs. Some semantics informations is required. For this reason our analyzer uses three main constraint structures [20]: Herbrand terms (CLP(H)) for the initial program P, non-negative integers (CLP(N)) and booleans (CLP(B)) for approximating P. The correspondence between these structures relies on approximations [23], which are a simple form [18] of abstract interpretation [9,10]. We present our method to infer termination conditions by using the predicates app/3, app3/4, and nrev/3.

\[
\begin{align*}
\text{app}([], Xs, Xs). & \quad \text{nrev}([], []). & \quad \text{app}3(Xs, Ys, Zs, Us) \leftarrow \\
\text{app}(Xs, Ys, Zs). & \quad \text{nrev}([X|Xs], Ys) \leftarrow \text{app}(Xs, Ys, Vs), \\
& \quad \text{nrev}(Xs, Zs). & \quad \text{app}(Vs, Zs, Us), \\
& \quad \text{app}(Zs, [X], Ys). & \\
\end{align*}
\]

(i) The initial Prolog program P is mapped to P^m, a program in CLP(N) using an approximation based on a symbolic norm. In our example, we use the term-size norm:

\[
||t\|_{\text{Term-Size}} = \begin{cases}
1 + \sum_{i=1}^{n} ||t_i||_{\text{Term-Size}} & \text{if } t = f(t_1, \ldots, t_n), n > 0 \\
0 & \text{if } t \text{ is a constant} \\
t & \text{if } t \text{ is a variable}
\end{cases}
\]

E.g., $||f(0, 0)||_{\text{Term-Size}} = 1$. All non-monotonic elements of the program are approximated by monotone constructs. E.g., Prolog's unsound negation $\neg X$ is approximated by X_{true}. It is maintained that if a goal in P^m is terminating, then also the corresponding goals in P terminate.

\[
\begin{align*}
\text{app}^m(0, Xs, Xs). & \quad \text{nrev}^m(0, 0). & \quad \text{app}3^m/4 \\
\text{app}^m(1+X+Xs, Ys, 1+X+Zs) & \quad \text{nrev}^m(1+X+Xs, Ys) \leftarrow \text{same as} \\
& \quad \text{nrev}^m(Xs, Zs), & \quad \text{app}3^m/4 \\
\text{app}^m(Xs, Ys, Zs). & \quad \text{app}^m(Zs, 1+X, Ys). & \\
\end{align*}
\]

2
(ii) In \(N\) we compute a model of all predicates. The model describes with a finite conjunction of linear equalities and inequalities the relations between the arguments of a goal (inter-argument relations IR) that hold for every solution. The actual computation is performed with CLP(Q). In our example we are able to determine the least model. In general, however, only a less precise model is determined. For recursive predicates, the actual source of potential non-termination, we compute linear strictly decreasing level mappings (see section 4) called \(\mu^N\). For instance, the meaning of \(\mu^N_{\text{app}}\) is: for each recursive call to app/3, the first and the third argument decrease.

(least) models

\[
\begin{align*}
\text{IR}^N_{\text{app}}(x, y, z) & \equiv z = x + y \\
\text{IR}^N_{\text{app}}(x, y) & \equiv x = y \\
\text{IR}^N_{\text{app}}(x, y, z, u) & \equiv u = x + y + z
\end{align*}
\]

level mappings

\[
\begin{align*}
\mu^N_{\text{app}}(x, y, z) & \equiv x \\
\mu^N_{\text{app}}(x, y) & \equiv z \\
\mu^N_{\text{app}}(x, y, z) & \equiv x
\end{align*}
\]

(iii) \(P^N\) is mapped to \(P^B\), a program in CLP(B). Here 1 means that an argument is bound w.r.t. the considered norm. Note that the obtained program no longer maintains the same termination property. Its sole purpose is to determine the actual dependencies of boundedness within the program. The simplified structure permits us to compute always the least model. In a single boolean term all previously computed linear level mappings are represented.

\[
\begin{align*}
\text{app}_B(1, Xs, Xs),
\text{app}_B(1 \land X \land Xs, Ys, 1 \land X \land Zs) & \leftarrow \\
\text{app}_B(Xs, Ys, Zs) & \leftarrow \\
\text{nrev}_B(1, 1),
\text{nrev}_B(1 \land X \land Xs, Ys) & \leftarrow \\
\text{nrev}_B(Xs, Zs),
\text{app}_B(Zs, 1 \land X, Ys) & \leftarrow
\end{align*}
\]

leat models

\[
\begin{align*}
\text{IR}^B_{\text{app}}(x, y, z) & \equiv (x \land y) \iff z \\
\text{IR}^B_{\text{app}}(x, y) & \equiv x \iff y \\
\text{IR}^B_{\text{app}}(x, y, z, u) & \equiv (x \land y \land z) \iff u
\end{align*}
\]

level mappings

\[
\begin{align*}
\mu^B_{\text{app}}(x, y, z) & \equiv x \lor z \\
\mu^B_{\text{app}}(x, y) & \equiv x
\end{align*}
\]

The meaning of the boolean model is: when any call \(\text{app}(X,Y,Z)\) terminates successfully, then \(Z\) is finite iff \(X\) and \(Y\) are finite and, for \(\text{nrev}/2\), when any proof of a call \(\text{nrev}(X,Y)\) terminates, \(X\) is finite iff \(Y\) is finite w.r.t. the used norm. Now, if we know (i.e., using level-mappings) that a call to \(\text{app}/3\) terminates, then there is a finite number of successes and we may ensure the third argument is \textit{bound} iff the two first arguments are \textit{bound} w.r.t. the norm.

(iv) Finally, using all previously determined informations, \(P^B\) is translated into a system of boolean formulae (see theorem 2.1) that ensures the propagation of the decreasing conditions of the level mappings through the
call graph. The resolution of this system (computation of its greatest fix-
point by means of a boolean \(\mu \)-solver [8]) gives, for each predicate symbol,
a boolean term called a termination condition.

\[
\begin{align*}
\text{Pre}_{\text{app}}(x, y, z) &\equiv x \lor z \\
\text{Pre}_{\text{reps}}(x, y) &\equiv x \\
\text{Pre}_{\text{app3}}(x, y, z, u) &\equiv (x \land y) \lor (x \land u)
\end{align*}
\]

So any call \(\leftarrow C, \text{app}(X, Y, Z) \), where \(C \) is a \(\text{CLP}(\mathcal{H}) \) constraint, left-terminates if \(X \) or \(Z \) are ground in \(C \) etc. The main result on which \(c\text{TI} \) is based on
is the following Theorem 2.1, which ensures correctness of the left-termination
condition.

Theorem 2.1 ([22]) Let \(P \) be a program, \(p \) and \(q \) be two predicate symbols
of \(P \). Assume that \(p \) is defined by \(m_p \) rules \(r_k : p(\bar{x}) \leftarrow c_k, \ p_{k,1}(\bar{x}_{k,1}), \ldots, \ p_{k,n_k}(\bar{x}_{k,n_k}) \) and for each \(q \not\in p \) and appearing in the rules defining \(p \), a left-
termination condition \(\text{Pre}_q \) has been computed. If the set of boolean terms
\(\{\text{Pre}_p\}_{p \in \mathcal{P}} \) verifies:

\[
\forall p \in \mathcal{P} \left\{ \begin{array}{l}
\text{Pre}_p(\bar{x}) \rightarrow B \ \mu^B_p(\bar{x}), \\
\left[\forall 1 \leq k \leq m_p, \ \forall 1 \leq j \leq n_k, \\
(\text{Pre}_p(\bar{x}) \land c^B_k \land \bigwedge_{i=1}^{j-1} \text{Post}_{p_{k,j}}(\bar{x}_{k,i})) \rightarrow B \ \text{Pre}_{p_{k,j}}(\bar{x}_{k,j}) \right]
\end{array} \right.
\]

then \(\{\text{Pre}_p\}_{p \in \mathcal{P}} \) is a left-termination condition for \(p \).

Running cTI

Table 2 (page 5) presents timings of \(c\text{TI} \) using some standard benchmarks\(^1\).

We have chosen twelve medium-sized well-known logic programs. Most of
them are taken from [4] except \text{credit}, \text{plan} and \text{minissaexp}. Table 1 gives the
following measures:

- \#facts and \#rules: the number of facts (unit clauses) and rules (non-unit
 clauses) in the program;
- \#cycles: the number of strongly connected components (sccs, i.e. cycles of
 mutually recursive predicate symbols) in the call graph;
- length: the number of predicate symbols in the longest cycle in the call
 graph;
- \#vars: the average arity of the predicate symbols of the longest cycle in
 the call graph.

The columns of Table 2 indicate the time for TNA analysis (section 5), the
ratio of TNA arguments found in the program, the time for computing a model

\(^1\) collected by Naomi Lindenstrauss, http://www.cs.huji.ac.il/~naomil and also available at http://www.complang.tuwien.ac.at/cti/bench.
Informations about analyzed programs.

<table>
<thead>
<tr>
<th>Program</th>
<th>#facts</th>
<th>#rules</th>
<th>#cycles</th>
<th>length</th>
<th>#vars</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>101</td>
<td>99</td>
<td>44</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BID</td>
<td>24</td>
<td>26</td>
<td>20</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>BOYER</td>
<td>63</td>
<td>78</td>
<td>25</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>BROWSE</td>
<td>4</td>
<td>29</td>
<td>15</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CREDIT</td>
<td>33</td>
<td>24</td>
<td>24</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MINISSAEXP</td>
<td>37</td>
<td>223</td>
<td>100</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>PEEPHOLE</td>
<td>72</td>
<td>80</td>
<td>11</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PLAN</td>
<td>12</td>
<td>17</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>QPLAN</td>
<td>63</td>
<td>87</td>
<td>38</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>RDTOK</td>
<td>7</td>
<td>57</td>
<td>12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>READ</td>
<td>15</td>
<td>75</td>
<td>17</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>WARPLAN</td>
<td>43</td>
<td>68</td>
<td>33</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

IR\textsubscript{N} (section 3), determining of the level mappings \(\mu\) (section 4), computing the least model IR\textsubscript{L} (section 3), inferring the left termination condition TC\textsubscript{1} (see [8]) and the total runtime. The timings given are average execution times over ten iterations.

Table 2

<table>
<thead>
<tr>
<th>program</th>
<th>times in [ms]</th>
<th>TNA</th>
<th>res.TNA</th>
<th>IR\textsubscript{N}</th>
<th>(\mu)</th>
<th>IR\textsubscript{L}</th>
<th>TC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>113</td>
<td>8%</td>
<td>8790</td>
<td>14183</td>
<td>4936</td>
<td>1270</td>
<td>29292</td>
<td></td>
</tr>
<tr>
<td>BID</td>
<td>30</td>
<td>31%</td>
<td>1476</td>
<td>1190</td>
<td>333</td>
<td>206</td>
<td>3235</td>
<td></td>
</tr>
<tr>
<td>BOYER</td>
<td>83</td>
<td>14%</td>
<td>9683</td>
<td>1606</td>
<td>820</td>
<td>290</td>
<td>12482</td>
<td></td>
</tr>
<tr>
<td>BROWSE</td>
<td>33</td>
<td>2%</td>
<td>1673</td>
<td>3340</td>
<td>450</td>
<td>190</td>
<td>5686</td>
<td></td>
</tr>
<tr>
<td>CREDIT</td>
<td>30</td>
<td>41%</td>
<td>1113</td>
<td>700</td>
<td>323</td>
<td>146</td>
<td>2312</td>
<td></td>
</tr>
<tr>
<td>MINISSAEXP</td>
<td>230</td>
<td>19%</td>
<td>12043</td>
<td>19570</td>
<td>3383</td>
<td>1253</td>
<td>36479</td>
<td></td>
</tr>
<tr>
<td>PEEPHOLE</td>
<td>76</td>
<td>13%</td>
<td>5723</td>
<td>24593</td>
<td>1920</td>
<td>680</td>
<td>32992</td>
<td></td>
</tr>
<tr>
<td>PLAN</td>
<td>20</td>
<td>24%</td>
<td>2043</td>
<td>1090</td>
<td>336</td>
<td>233</td>
<td>3722</td>
<td></td>
</tr>
<tr>
<td>QPLAN</td>
<td>116</td>
<td>21%</td>
<td>8026</td>
<td>16953</td>
<td>4566</td>
<td>1733</td>
<td>31394</td>
<td></td>
</tr>
<tr>
<td>RDTOK</td>
<td>80</td>
<td>19%</td>
<td>3430</td>
<td>3730</td>
<td>903</td>
<td>490</td>
<td>8633</td>
<td></td>
</tr>
<tr>
<td>READ</td>
<td>120</td>
<td>10%</td>
<td>5886</td>
<td>20826</td>
<td>1773</td>
<td>25106</td>
<td>53711</td>
<td></td>
</tr>
<tr>
<td>WARPLAN</td>
<td>63</td>
<td>14%</td>
<td>4736</td>
<td>6796</td>
<td>1153</td>
<td>293</td>
<td>13041</td>
<td></td>
</tr>
</tbody>
</table>

| mean % of the total | 0% | - | 28% | 49% | 9% | 14% |

3 Fixpoint Computations

As explained in section 2, cTI determines models of two versions of the initial program: \(PN\), the CLP(N) version, and \(PB\), the CLP(B) version. For this purpose, we developed an abstract immediate consequence operator \(U_P\). This
operator is quite similar to the well-known T_P. Proofs can be found in [18]
(in french).

3.1 The algorithm

The key of our abstract computation is the notion of rational interpretation
for a predicate symbol p:

Definition 3.1 Let P be a program and p be a predicate symbol of P. We call a rational interpretation of p an equivalence of the form: $p(\hat{x}) \leftrightarrow c$ where c, a disjunction of conjunctions of atomic constraints, is a finite formula s.t. $\text{vars}(c) \subseteq \hat{x}$. We extend this notion to P: a rational interpretation of P is a set I containing exactly one interpretation for each predicate symbol p of P.

We write \mathcal{I} the set of all rational interpretations. We want to compute a rational interpretation which is a model of P.

Definition 3.2 U_P is a function on \mathcal{I} defined for any rational interpretation I of a program P by:

$$U_P(I) = \{p(\hat{x}) \leftrightarrow c \mid c \equiv \bigvee_{d \in P} \left(\exists _2(c_0 \land \bigwedge_{1 \leq i \leq n} c_i) \right),$$

$$c' \equiv p(\hat{x}) \leftrightarrow c_{0} \land p_{1}(\hat{x}_{1}), \ldots, p_{n}(\hat{x}_{n}) \text{ and}$$

$$\forall i \in [1; n], p_{i}(\hat{x}_{i}) \leftrightarrow c_{i} \in I\}$$

We define the successive powers of U_P as usual.

Proposition 3.3 U_P is monotone and continuous.

Now let us establish a link between the meaning of a program P and the U_P operator. First, we give a ground semantics of a rational interpretation:

Definition 3.4 Let I be a rational interpretation, we define the semantics of I by: $[I] = \{p(d) \mid p(\hat{x}) \leftrightarrow c \in I, d \in D_\chi, \models_\chi c(d)\}$ where D_χ is the domain of computation.

Proposition 3.5 For all $n \in \mathbb{N}$, we have $T_P \uparrow n \subseteq [U_P \uparrow n]$.

Figure 1 presents an algorithm for the U_P operator.

A corollary of propositions 3.3 and 3.5 states that the least fixpoint of T_P
is included the least fixpoint of U_P.

3.2 Widenings

In general, $\text{lfp}(U_P)$ is not reachable in finite time. With a widening operator (\triangledown) [10] convergence of the U_P operator can be enforced. In cTL, we use widening for the computations in \mathbb{N}, whereas the boolean model is finitely reachable. Widening has a major impact on precision and speed of the computation. (We realized a generic fixpoint calculator for both CLP(\mathbb{Q}) and CLP(\mathbb{B}) [6,19,24]).
function $\text{Up}(P, I) : J$

Require: P is a program, I is a rational interpretation of P.

Ensure: J is a rational interpretation of P.

1: $J \leftarrow \emptyset$
2: for all clause $(p(\bar{x}) \leftarrow c \land p_1(\bar{x}_1), \ldots, p_n(\bar{x}_n)) \in P$ do
3: for $i \leftarrow 1$ to n do
4: let $p_i(\bar{x}_i) \leftarrow c_i \in I$
5: end for
6: let $p(\bar{x}) \leftarrow d \in J$
7: $c \leftarrow \bigvee (d, \Pi_p(c_1 \land \ldots \land c_n))$
8: $J \leftarrow \text{update}(J, p(\bar{x}) \leftarrow c)$
9: end for
10: return J

Fig. 1. An abstract T_i-like operator.

A simple widening (\triangledown_1) on a system of linear inequalities is due to Cousot and Cousot [10]. Here is an equivalent definition [27]:

Definition 3.6 Let S_1 and S_2 be two sets of linear inequalities defining two polyhedra in \mathbb{R}^n. Then:

$$S_1 \triangledown_1 S_2 = \{ \beta \in S_1 \mid S_2 \Rightarrow \beta \}$$

Cousot and Cousot in [11] propose an improved version of \triangledown_1, namely \triangledown_2 which has been simplified for the sake of efficiency in [28]:

Definition 3.7 Let S_1 and S_2 be two sets of linear inequalities defining two polyhedra in \mathbb{R}^n. Then:

$$S_1 \triangledown_2 S_2 = \{ \beta \in S_1 \mid S_2 \Rightarrow \beta \} \bigcup \{ \gamma \in S_2 \mid S_1 \Rightarrow \gamma \land \exists \beta \in S_1((S_1 - \{ \beta \}) \cup \{ \gamma \}) \Rightarrow \beta \}$$

Comparisons of the impact of \triangledown_1 and \triangledown_2 on the accuracy of cTI are currently investigated. Figure 2 presents an algorithm for successive iterations of U_P until it reaches a fixpoint.

3.3 Optimization

The generic fixpoint computation engine is used for both \mathbf{N} and \mathbf{B}. Making it as efficient as possible is therefore quite important. Currently all unit clauses defining the predicate symbols of the analyzed scc are taken into account in a first pass. Non-unit clauses are processed thereafter. Table 3 shows the impact of this optimization comparing cTI 0.19 and the optimized version 0.22. Note that we also replace the union operator of line 7 of the algorithm presented
function iterelUp(P, max) : I_n

Require: P is a CLP program, max is a non-negative integer.

Ensure: I_n is a model of P, s.t. lfp(Up) ⊆ I_n and Up(P, I_n) = I_n.

1: n ← 0;
2: I_n ← {};
3: repeat
4: I ← Up(P, I_n);
5: n ← n + 1;
6: if n ≤ max then
7: I_n ← I;
8: else
9: I_n ← I_{n-1} \setminus I;
10: end if
11: until I_n \subseteq I_{n-1}
12: return I_n;

Fig. 2. An algorithm to reach a super set of lfp(Up).

in Fig. 1 by a convex hull (in both versions), which can be easily encoded in
CLP(Q) using a technique proposed in [12] (see also [3]).

Table 3
Comparison between cT1 0.19 and cT1 0.22.

<table>
<thead>
<tr>
<th>Programs</th>
<th>IRN</th>
<th>IRB</th>
<th>gain</th>
<th>IRN</th>
<th>IRB</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programs</td>
<td>0.19</td>
<td>0.22</td>
<td>gain</td>
<td>0.19</td>
<td>0.22</td>
<td>gain</td>
</tr>
<tr>
<td>ANN</td>
<td>8850</td>
<td>6340</td>
<td>28%</td>
<td>4900</td>
<td>4900</td>
<td>0%</td>
</tr>
<tr>
<td>BID</td>
<td>1470</td>
<td>950</td>
<td>35%</td>
<td>330</td>
<td>330</td>
<td>0%</td>
</tr>
<tr>
<td>BOYER</td>
<td>9640</td>
<td>8140</td>
<td>16%</td>
<td>820</td>
<td>820</td>
<td>0%</td>
</tr>
<tr>
<td>BROWSE</td>
<td>1700</td>
<td>1170</td>
<td>31%</td>
<td>450</td>
<td>450</td>
<td>2%</td>
</tr>
<tr>
<td>CREDIT</td>
<td>1110</td>
<td>800</td>
<td>28%</td>
<td>320</td>
<td>330</td>
<td>3%</td>
</tr>
<tr>
<td>MINSSAEXP</td>
<td>12040</td>
<td>8210</td>
<td>32%</td>
<td>3330</td>
<td>3390</td>
<td>2%</td>
</tr>
<tr>
<td>PEEPHOLE</td>
<td>5710</td>
<td>3360</td>
<td>41%</td>
<td>1910</td>
<td>1910</td>
<td>0%</td>
</tr>
<tr>
<td>PLAN</td>
<td>2030</td>
<td>980</td>
<td>52%</td>
<td>340</td>
<td>340</td>
<td>0%</td>
</tr>
<tr>
<td>QPLAN</td>
<td>8000</td>
<td>5880</td>
<td>27%</td>
<td>4670</td>
<td>4550</td>
<td>3%</td>
</tr>
<tr>
<td>RDTOK</td>
<td>3420</td>
<td>1990</td>
<td>42%</td>
<td>890</td>
<td>900</td>
<td>1%</td>
</tr>
<tr>
<td>READ</td>
<td>6360</td>
<td>4690</td>
<td>26%</td>
<td>2270</td>
<td>1790</td>
<td>21%</td>
</tr>
<tr>
<td>WARPLAN</td>
<td>4750</td>
<td>3270</td>
<td>31%</td>
<td>1160</td>
<td>1150</td>
<td>1%</td>
</tr>
<tr>
<td>average</td>
<td>-</td>
<td>-</td>
<td>32%</td>
<td>-</td>
<td>-</td>
<td>1%</td>
</tr>
<tr>
<td>max.</td>
<td>-</td>
<td>-</td>
<td>52%</td>
<td>-</td>
<td>-</td>
<td>21%</td>
</tr>
</tbody>
</table>
4 Computing level-mappings

Level mappings are a key concept of many approaches to termination. They map ground atoms to natural numbers. K. Sohn and A. Van Gelder developed in 1991 an algorithm (SVG in short, see [30]) based on linear programming which ensures the existence of linear level mappings. We present an extension of this algorithm for the automatic generation of level mappings. Since this method, despite its power, does not seem to be very well-known in the context of termination analysis, we recall it after some preliminaries. Our extension to SVG is presented thereafter.

4.1 Preliminaries

We consider pure CLP(N) programs, with three predefined symbols for constraints: =, ≥, and ≤ with their usual meaning. Those programs are abstractions of (constraint) logic programs using (fixed or inferred) norms. We assume that clauses are written in flat form: \(p_0(x_0) \leftarrow c_0, p_1(x_1), \ldots, c_{\ell-1}, p_{\ell}(x_{\ell}), c_\ell \), with \(i \neq j \rightarrow x_i \cap x_j = \emptyset \). In order to simplify this presentation, we disallow mutually recursive predicates. Within cTI itself, there is no such restriction. Note that we frequently switch to CLP(Q+) as some problems in this structure are computationally cheaper (e.g., satisfiability), trading precision for speed. From now on, we write CLP for CLP(N) or CLP(Q+). Section 3 shows how we can compute a model \(M \) for a CLP program \(P \), where each predicate \(p(x) \) is defined as a (finite) conjunction of CLP constraints. We use this model to simplify the program \(P \).

Definition 4.1 Let \(M_P \) be a model of the CLP program \(P \). The definition of a predicate \(p \) is simplified wrt \(M \) when, for the clauses defining \(p/n \), we add to the right of each predicate \(q(x) \) its meaning \(c_q(x) \) relative to \(M_P \). Moreover, those predicates \(q/m \neq p/n \) which appear in the bodies are replaced by true (e.g., the dummy constraint \(0 = 0 \)). Hence we end up with a finite set of CLP clauses of the form: \(p(x_0) \leftarrow c_0, p(x_1), \ldots, c_{\ell-1}, p(x_{\ell}), c_\ell \). The simplified program is denoted \(P_M^{\text{simpl}} \).

We are interested in the automatic discovery of linear level mappings.

Definition 4.2 Let \(p/n \) be a recursive predicate symbol of a CLP program \(P \). A linear level mapping \(\mu \) for \(p(x_1, \ldots, x_n) \) is a linear relation \(\sum_{i=1}^{n} \mu_i x_i \), where the coefficients \(\mu_i \) are non-negative integers.

Such linear level mappings should satisfy a property ensuring their usefulness for left-termination:

Definition 4.3 A linear level mapping \(\mu \) for \(p \) is valid wrt \(P_M^{\text{simpl}} \) if for each recursive clause defining \(p \) in \(P_M^{\text{simpl}} \), say \(p(x_0) \leftarrow c_0, p(x_1), \ldots, c_{\ell-1}, p(x_{\ell}), c_\ell \),
for $k = 0$ to $l-1$, $\bigwedge_{i=0}^{k} c_i \rightarrow \mu^T \tilde{x}_0 \geq 1 + \mu^T \tilde{x}_k$, where μ^T denotes the transposed vector of μ.

4.2 The algorithm SVG

Let us first quickly review the algorithm of Sohn and Van Gelder. It aims at checking the existence of one valid linear level mapping. SVG starts with a pure CLP program P and a constrained goal. A top-down boundedness analysis (see [23,24]) reveals the calling modes of each predicate. Arguments are detected as either bounded (denoted b) or unbounded (u). A CLP model M is computed and P is simplified to P_M^{simpl}. Then SVG examines each recursive procedure p/n in turn (the precise order does not matter). Let us symbolically define the level mapping for $p(x_1,\ldots,x_n)$ as $\mu^T \tilde{x} = \sum_{1 \leq i \leq n} \mu_i^u b_i x_i$ where $\mu_i^u = 0$ is x_i is labelled as unbounded wrt the calling mode of p/n and $\mu_i^b \geq 0$ if x_i is labelled as bounded. Each clause r_i is processed. For one such clause, l simplified rules (for $k = 0$ to $k = l-1$) are constructed:

$$p(\tilde{x}_0) \leftarrow \bigwedge_{0 \leq j \leq k} c_j, p(\tilde{x}_k)$$

One can assume that the constraint $C_{ij} = \bigwedge_{0 \leq j \leq k} c_j$ is satisfiable, already projected onto $\tilde{x}_0 \cup \tilde{x}_k$, only contains inequalities of the form \leq, and implies $\tilde{x}_0 \geq 0$ and $\tilde{x}_k \geq 0$. Such a simplified rule gives rise to the following (pseudo-)linear programming problem

$$\text{minimize } \theta = \mu^T (\tilde{x}_0 - \tilde{x}_k) \text{ subject to } C_{ij}$$

A valid linear level mapping μ exists (at least for this recursive call of this clause) if $\theta^* \geq 1$ where θ^* denotes the minimum of the objective function. Unfortunately, because of the symbolic constants μ, (1) is not a linear programming problem.

The clever idea of the authors is to consider its dual form:

$$\text{maximize } \eta = \tilde{y}^T \beta \text{ subject to } \tilde{y} \geq 0 \land \tilde{y} A \geq (\mu, -\mu)$$

By duality theory (see [29] for instance), we have $\theta^* = \eta^*$. Now, the authors observe that μ appears linearly in the dual problem (it is not true for (1)) because no μ_i appears in A. Hence (2) can be rewritten, by adding $\eta \geq 1$ and $\tilde{y}^T \beta \geq 0 \land \tilde{y}^T \alpha = 0$, as S_{ij}, a set of linear inequations. If the conjunction $S_p = \bigwedge_{i,j} S_{ij}$ for each recursive call and for each clause defining p/n is satisfiable, then there exists a valid linear level mapping for p/n.

4.3 An extension of SVG

Instead of checking satisfiability of S_p, we can project it onto μ (we do not need the top-down boundedness analysis explained subsection 4.2, all arguments are assumed bounded). Hence we get in one constraint all the valid linear level mappings. It remains to compute the maximal elements of $\Pi_{\mu}(S_p)$, given the partial order: $\mu^1 \succeq \mu^2$ if $\forall i \in [1;n][\mu_i^1 \neq 0 \rightarrow \mu_i^2 \neq 0]$.

10
Example 4.4 For app/3, let \(\mu(x, y, z) = ax + by + cz \). We have \(\Pi_p(S_p) = \{a + c \geq 1\} \). There are two maximal elements: \(\mu^1(x, y, z) = x \) and \(\mu^2(x, y, z) = z \).

In some sense, given a model for a program, this extension is complete. But a more precise model can lead to more maximal elements. Hence the precision of the inferred CLP model is important. From an implementation point of view, this algorithm heavily relies on the costly projection operator. We found that a good strategy is to project constraints as soon as possible.

5 Inferring termination neutral arguments

Predicates frequently contain arguments that have no influence on universal left termination. Differences are a frequent pattern with this property. In most uses of differences (e.g. list differences), one argument of the difference is termination neutral.

Definition 5.1 [Termination neutral argument (TNA)] Let \(G \) be a goal \(\leftarrow p(\ldots, x_i, \ldots) \), where the \(i \)-th argument is a variable \(x_i \) that occurs only at this position and let \(\theta \) be a substitution s.t. \(\text{DOM}(\theta) = x_i \). The argument \(i \) is a left-termination neutral argument (TNA), if

\[
\forall \theta : G\theta \text{ left } \rightarrow \text{ terminates } \Leftrightarrow G \text{ left } \rightarrow \text{ terminates}
\]

Since the TNA property is independent of a particular norm, the analysis can be performed prior to any other analysis. The information is currently used to accelerate the search for level mappings: if the \(i \)-th argument of \(p \) is detected as TNA, we set its corresponding coefficient \(\mu_i \) to 0 before computing \(\mu \). Table 4 summarizes the gain we obtain when applying the TNA analysis on the six most demanding programs.

Example 5.2 The second argument of app/3, the third of app3/4, and the second of new/2 are termination neutral. For app/3, we can safely state \(\mu(x, y, z) = ax + cz \).

To determine some termination neutral arguments we represent each argument of a predicate with a boolean 0-1 variable where 1 means termination neutral and 0 means that the argument may influence termination. Constraints are imposed that tell which arguments may influence termination. The actual result is computed by labeling for a maximal satisfying assignment.

We consider a clause (with nontrivial head unifications explicit) to consist of the following possibly empty sequences of goals \(S_1 \circ S_2 \circ S_3 \circ S_4 \). \(S_1 \) contains any goals, \(S_2 \) is a possibly nonterminating goal, \(S_3 \) are always terminating goals, \(S_4 \) is an always failing goal followed by any other goals. \(S_3 \) and \(S_4 \) are ignored in the analysis. Head variables that occur in \(S_1 \) may influence termination. All these variables are set to 0. A head variable \(H \) that first
occurs in S_2 may influence termination only if the argument B where it occurs in is not termination neutral. The constraint $\neg B \Rightarrow \neg H$ ensures that if B is false (may influence termination), then H is false, too. The following predicate shows all constraints imposed for our three predicates. A labeling process finds the desired answer.

\[
\text{tnaargs}(\text{app}(A_1, A_2, A_3), \text{app}(B_1, B_2, B_3, B_4), \text{nrev}(C_1, C_2)) \leftarrow \\
\% \text{ app/3 clause 1: } [] \circ [] \circ [A_1 = [], A_2 = A_3] \circ [] \\
\% \text{ app/3 clause 2: } \\
\% [A_1 = [X][Xs], A_3 = [X][Zs]] \circ [\text{app}(Xs, A_2, Zs)] \circ [] \circ [] \\
A_1 = 0, \neg A_2 \Rightarrow \neg A_2, A_3 = 0, \\
\% \text{ app3/4: } \\
\% [\text{app}(B_1, B_2, Vs)] \circ [\text{app}(Vs, B_3, B_4)] \circ [] \circ [] \\
B_1 = 0, B_2 = 0, \neg A_2 \Rightarrow \neg B_3, \neg A_3 \Rightarrow \neg A_4, \\
\% \text{nrev/2 clause 1: } [] \circ [] \circ [C_1 = [], C_2 = []] \circ [] \\
\% \text{nrev/2 clause 2: } \\
\% [C_1 = [X][Xs], \text{nrev}(Xs, Zs)] \circ [\text{app}(Zs, [X], C_2)] \circ [] \circ [] \text{ not optimal!} \\
\% [C_1 = [X][Xs]] \circ [\text{nrev}(Xs, Zs)] \circ [\text{app}(Zs, [X], C_2)] \circ [] \text{ % ideal} \\
C_1 = 0, \neg A_3 \Rightarrow \neg C_2
\]

For app/3 and app3/4 the results are optimal. However, in nrev/2 we are not able to infer that the second argument is termination neutral. While the second goal app/3 is in fact always terminating $\neg cTI$ is also able to prove this—we do not have this information right at hand at this point in time prior to the actual termination inference. In fact, the primary purpose of TNA analysis within cTI is to speed up the subsequent inference process, sacrificing precision for speed. The analysis performed in this manner is typically faster than parsing the corresponding program text with read/1 using SICStus' tokenizer written in C. It has never been observed to take longer than parsing the program twice.

Table 4
Impact of TNA on level mappings computation.

<table>
<thead>
<tr>
<th>Program</th>
<th>with TNA</th>
<th>no TNA</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>14120</td>
<td>14442</td>
<td>2%</td>
</tr>
<tr>
<td>MINISSAEXP</td>
<td>19578</td>
<td>21222</td>
<td>8%</td>
</tr>
<tr>
<td>PEEPPOLE</td>
<td>25938</td>
<td>25602</td>
<td>-1%</td>
</tr>
<tr>
<td>QPLAN</td>
<td>16900</td>
<td>16888</td>
<td>2%</td>
</tr>
<tr>
<td>RDTOK</td>
<td>3772</td>
<td>4034</td>
<td>7%</td>
</tr>
<tr>
<td>READ</td>
<td>20862</td>
<td>21292</td>
<td>2%</td>
</tr>
<tr>
<td>arith. mean</td>
<td>16810</td>
<td>17247</td>
<td>3%</td>
</tr>
<tr>
<td>max. gain</td>
<td>-</td>
<td>-</td>
<td>8%</td>
</tr>
</tbody>
</table>

\footnote{cTIs WWW interface provides an option “TNA only” to perform this comparison}
6 Conclusion

We have presented the main algorithms of cTI, our bottom-up left-termination inference tool for logic programs and given some running for medium-sized logic programs. The analysis requires three fixpoint computations and the inference of well-founded orders. We have described some optimizations and measured their impacts.

Still, more work is required to cope with certain kinds of programs like chat, as suggested by P. Tarau. A more detailed look to this program shows that it contains a predicate symbol with 14 arguments and one sec of 30 mutually recursive predicate symbols with 8 arguments per predicate symbol on the average. Our current implementation, using the constraint solvers of SICStus Prolog, is neither able to compute a numeric model nor the boolean model in reasonable time. Table 2 indicates that the bottleneck is situated in the numeric computations. We therefore consider to replace the generic solvers by more specialized tools (polyhedra manipulations, a a simplex solver optimized for projections, and a more efficient BDD package).

References

