
june 2010 | vol. 53 | no. 6 | communications of the acm 107

seL4: Formal Verification of an
Operating-System Kernel
By Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood

abstract
We report on the formal, machine-checked verification of
the seL4 microkernel from an abstract specification down to
its C implementation. We assume correctness of compiler,
assembly code, hardware, and boot code.

seL4 is a third-generation microkernel of L4 provenance,
comprising 8700 lines of C and 600 lines of assembler. Its
performance is comparable to other high-performance L4
kernels.

We prove that the implementation always strictly follows
our high-level abstract specification of kernel behavior. This
encompasses traditional design and implementation safety
properties such as that the kernel will never crash, and it will
never perform an unsafe operation. It also implies much
more: we can predict precisely how the kernel will behave in
every possible situation.

1. intRoDuction
Almost every paper on formal verification starts with the
observation that software complexity is increasing, that this
leads to errors, and that this is a problem for mission and
safety critical software. We agree, as do most.

Here, we report on the full formal verification of a criti-
cal system from a high-level model down to very low-level
C code. We do not pretend that this solves all of the soft-
ware complexity or error problems. We do think that our
approach will work for similar systems. The main message
we wish to convey is that a formally verified commercial-
grade, general-purpose microkernel now exists, and that
formal verification is possible and feasible on code sizes
of about 10,000 lines of C. It is not cheap; we spent signifi-
cant effort on the verification, but it appears cost-effective
and more affordable than other methods that achieve lower
degrees of trustworthiness.

To build a truly trustworthy system, one needs to start
at the operating system (OS) and the most critical part of
the OS is its kernel. The kernel is defined as the software
that executes in the privileged mode of the hardware,
meaning that there can be no protection from faults
occurring in the kernel, and every single bug can poten-
tially cause arbitrary damage. The kernel is a mandatory
part of a system’s trusted computing base (TCB)—the part
of the system that can bypass security.10 Minimizing this
TCB is the core concept behind microkernels, an idea that
goes back 40 years.

A microkernel, as opposed to the more traditional mono-
lithic design of contemporary mainstream OS kernels,
is reduced to just the bare minimum of code wrapping

hardware mechanisms and needing to run in privileged
mode. All OS services are then implemented as normal pro-
grams, running entirely in (unprivileged) user mode, and
therefore can potentially be excluded from the TCB. Previous
implementations of microkernels resulted in communica-
tion overheads that made them unattractive compared to
monolithic kernels. Modern design and implementation
techniques have managed to reduced this overhead to very
competitive limits.

A microkernel makes the trustworthiness problem
more tractable. A well-designed high-performance micro-
kernel, such as the various representatives of the L4 micro-
kernel family, consists of the order of 10,000 lines of code
(10 kloc). This radical reduction to a bare minimum comes
with a price in complexity. It results in a high degree of
interdependency between different parts of the kernel, as
indicated in Figure 1. Despite this increased complexity
in low-level code, we have demonstrated that with mod-
ern techniques and careful design, an OS microkernel is
entirely within the realm of full formal verification.

The original version of this paper was published in
the Proceedings of the 22nd ACM SIGOPS Symposium on
Operating Systems Principles, Oct. 2009.

figure 1. call graph of the seL4 microkernel. Vertices represent
functions, and edges invocations.

Doi:10.1145/1743546.1743574

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1743546.1743574&domain=pdf&date_stamp=2010-06-01

108 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

no buffer overflows: This is mainly a classic vector for code
injection, but buffer overflows may also inject unwanted
data and influence kernel behavior that way. We prove that
all array accesses are within bounds and we prove that all
pointer accesses are well typed, even if they go via casts to
void or address arithmetic.
no nULL pointer access: NULL pointer bugs can allow local
privilege escalation and execution of arbitrary code in ker-
nel mode.9 Absence of NULL pointer dereference is a direct
proof obligation for us for every pointer access.
no ill-typed pointer access: Even though the kernel code
deliberately breaks C type safety for efficiency at some
points, in order to predict that the system behaves accord-
ing to specification, we prove that circumventing the type
system is safe at all these points.
no memory leaks and no memory freed that is still in use.
This is not purely a consequence of the proof itself. Much of
the design of seL4 was focused on explicit memory manage-
ment. Users may run out of memory, but the kernel never will.
no nontermination: We have proved that all kernel calls
 terminate. This means the kernel will never suddenly freeze
and not return from a system call. This does not mean that
the whole system will never freeze. It is still possible to write
bad device drivers and bad applications, but set up correctly,
a supervisor process can always stay in control of the rest of
the system.
no arithmetic or other exceptions: The C standard defines
a long list of things that can go wrong and that should be
avoided: shifting machine words by a too-large amount,
dividing by zero, etc. We proved explicitly that none of these
occur, including the absence of errors due to overflows in
integer arithmetic.
no unchecked user arguments: All user input is checked and
validated. If the kernel receives garbage or malicious argu-
ments it will respond with the specified error messages, not
with crashes. Of course, the kernel will allow a thread to kill
itself if that thread has sufficient capabilities. It will never
allow anything to crash the kernel, though.

Many of these are general security traits that are good to
have for any kind of system. We have also proved a large num-
ber of properties that are specific to seL4. We have proved
them about the kernel design and specification. With func-
tional correctness, we know they are true about the code as
well. Some examples are:
Aligned objects: Two simple low-level invariants of the
kernel are: all objects are aligned to their size, and no two
objects overlap in memory. This makes comparing memory
regions for objects very simple and efficient.
Well-formed data structures: Lists, doubly linked, singly
linked, with and without additional information, are a pet
topic of formal verification. These data structures also occur
in seL4 and we proved the usual properties: lists are not cir-
cular when they should not be, back pointers point to the
right nodes, insertion, deletion etc., work as expected.
Algorithmic invariants: Many optimizations rely on certain
properties being always true, so specific checks can be left
out or can be replaced by other, more efficient checks. A sim-
ple example is that the distinguished idle thread is always
in thread state idle and therefore can never be blocked or

Formal verification of software refers to the application
of mathematical proof techniques to establish proper-
ties about programs. Formal verification can cover not just
all lines of code or all decisions in a program, but all pos-
sible behaviors for all possible inputs. For example, the very
simple fragment of C code if (x < y)z = x/y else z = y/x
for x, y, and z being int tested with x = 4, y = 2 and x = 8,
y = 16, results in full code coverage: every line is executed at
least once, and every branch of every condition is taken at
least once. Yet, there are still two potential bugs remaining.
Of course, any human tester will find inputs such as x = 0,
y = −1 and x = −1, y = 0 that expose the bugs, but for bigger
programs it is infeasible to be sure of completeness. This is
what formal verification can achieve.

The approach we use is interactive, machine-assisted,
and machine-checked proof. Specifically, we use the theo-
rem prover Isabelle/HOL.8 Interactive theorem proving
requires human intervention and creativity to construct
and guide the proof. It has the advantage that it is not
constrained to specific properties or finite, feasible state
spaces. We have proved the functional correctness of the
seL4 microkernel, a secure embedded microkernel of the
L46 family. This means, we have proved mathematically
that the implementation of seL4 always strictly follows our
high-level abstract specification of kernel behavior. This
property is stronger and more precise than what automated
techniques like model checking, static analysis, or kernel
implementations in type-safe languages can achieve. We
not only analyze specific aspects of the kernel, such as safe
execution, but also provide a full specification and proof
for the kernel’s precise behavior.

In the following, we describe what the implications of the
proof are, how the kernel was designed for verification, what
the verification itself entailed and what its assumptions are,
and finally what effort it cost us.

2. imPLications
In a sense, functional correctness is one of the strongest
properties to prove about a system. Once we have proved
functional correctness with respect to a model, we can use
this model to establish further properties instead of having
to reason directly about the code. For instance, we prove that
every system call terminates by looking at the model instead
of the code. However, there are some security-relevant prop-
erties, such as transmission of information via covert chan-
nels, for which the model may not be precise enough.

So our proof does not mean that seL4 is secure for all pur-
poses. We proved that seL4 is functionally correct. Secure
would first need a formal definition and depends on the
application. Taken seriously, security is a whole-system
question, including the system’s human components.

Even without proving specific security properties on top,
a functional correctness proof already has interesting impli-
cations for security. If the assumptions listed in Section 4.5
are true, then in seL4 there will be:
no code injection attacks: If we always know precisely what
the system does and if the spec does not explicitly allow it,
then we can never have any foreign code executing as part
of seL4.

june 2010 | vol. 53 | no. 6 | communications of the acm 109

to provide a programming language for OS developers,
while at the same time providing an artifact that can readily
be reasoned about in the theorem proving tool: the design
team wrote increasingly complete prototypes of the kernel
in Haskell, exporting the system call interface via a hard-
ware simulator to user-level binary code. The formal meth-
ods team imported this prototype into the theorem prover
and used it as an intermediate executable specification. The
approach aims at quickly iterating through design, proto-
type implementation, and formal model until convergence.

Despite its ability to run real user code, the Haskell ker-
nel remains a prototype, as it does not satisfy our high-
performance requirement. Furthermore, Haskell requires
a significant run-time environment (much bigger than our
kernel), and thus violates our requirement of a small TCB.
We therefore translated the Haskell implementation manu-
ally into high-performance C code. An automatic translation
(without proof) would have been possible, but we would have
lost most opportunities to micro-optimize the kernel in order
to meet our performance targets. We do not need to trust the
translations into C and from Haskell into Isabelle—we for-
mally verify the C code as it is seen by the compiler, gaining
an end-to-end theorem between formal specification and the
C semantics.

3.2. Design decisions
Global Variables and side effects: Use of global variables and
functions with side effects is common in operating systems—
mirroring properties of contemporary computer hardware
and OS abstractions. Our verification techniques can deal
routinely with side effects, but implicit state updates and
complex use of the same global variable for different pur-
poses make verification more difficult. This is not surprising:
the higher the conceptual complexity, the higher the verifica-
tion effort.

The deeper reason is that global variables usually require
stating and proving invariant properties. For example, sched-
uler queues are global data structures frequently imple-
mented as doubly linked lists. The corresponding invariant
might state that all back links in the list point to the appropri-
ate nodes and that all elements point to thread control blocks
and that all active threads are in one of the scheduler queues.

Invariants are expensive because they need to be proved
not only locally for the functions that directly manipulate
the scheduler queue, but for the whole kernel—we have
to show that no other pointer manipulation in the kernel
destroys the list or its properties. This proof can be easy or
hard, depending on how modularly the global variable is
used.

Dealing with global variables was simplified by deriving
the kernel implementation from Haskell, where side effects
are explicit and drawn to the design team’s attention.
Kernel Memory Management: The seL4 kernel uses a model
of memory allocation that exports control of the in-kernel
allocation to appropriately authorized applications. While
this model is mostly motivated by the need for precise guar-
antees of memory consumption, it also benefits verification.
The model pushes the policy for allocation outside the ker-
nel, which means we only need to prove that the mechanism

otherwise waiting for I/O. This can be used to remove checks
in the code paths that deal with the idle thread.
Correct book-keeping: The seL4 kernel has an explicit
user-visible concept of keeping track of memory, who has
access to it, who access was delegated to, and what needs to
be done if a privileged process wants to revoke access from
delegates. It is the central mechanism for reusing memory
in seL4. The data structure that backs this concept is corre-
spondingly complex and its implications reach into almost
all aspects of the kernel. For instance, we proved that if a
live object exists anywhere in memory, then there exists an
explicit capability node in this data structure that covers the
object. And if such a capability exists, then it exists in the
proper place in the data structure and has the right relation-
ship towards parents, siblings, and descendants within. If an
object is live (may be mentioned in other objects anywhere
in the system) then the object itself together with that capa-
bility must have recorded enough information to reach all
objects that refer to it (directly or indirectly). Together with
a whole host of further invariants, these properties allow
the kernel code to reduce the complex, system-global test
whether a region of memory is mentioned anywhere else in
the system to a quick, local pointer comparison.

We have proved about 80 such invariants on the execut-
able specification such that they directly transfer to the data
structures used in the C program.

A verification like this is not an absolute guarantee. The
key condition in all this is if the assumptions are true. To
attack any of these properties, this is where one would have
to look. What the proof really does is take 7500 lines of C
code out of the equation. It reduces possible attacks and
the human analysis necessary to guard against them to the
assumptions and specification. It also is the basis for any
formal analysis of systems running on top of the kernel or
for further high-level analysis of the kernel itself.

3. KeRneL DesiGn foR VeRification
The challenge in designing a verifiable and usable kernel
lies in reducing complexity to make verification easier while
maintaining high performance.

To achieve these two objectives, we designed and imple-
mented a microkernel from scratch. This kernel, called seL4,
is a third-generation microkernel, based on L4 and influ-
enced by EROS.11 It is designed for practical deployment
in embedded systems with high trustworthiness require-
ments. One of its innovations is completely explicit memory-
management subject to policies defined at user level, even for
kernel memory. All authority in seL4 is mediated by capabili-
ties,2 tokens identifying objects and conveying access rights.

We first briefly present the approach we used for a kernel/
proof codesign process. Then we highlight the main design
decisions we made to simplify the verification work.

3.1. Kernel/proof codesign process
One key idea in this project was bridging the gap between
verifiability and performance by using an iterative approach
to kernel design, based around an intermediate target that
is readily accessible to both OS developers and formal meth-
ods practitioners. We used the functional language Haskell

110 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

stack, and a mostly atomic application programming inter-
face. This is aided by the traditional L4 model of system calls
which are primitive and mostly short-running.

We minimize the effect of interrupts (and hence pre-
emptions) by disabling interrupts during kernel execution.
Again, this is aided by the L4 model of short system calls.

However, not all kernel operations can be guaranteed to
be short; object destruction especially can require almost
arbitrary execution time, so not allowing any interrupt pro-
cessing during a system call would rule out the use of the
kernel for real-time applications, undermining the goal of
real-world deployability.

We ensure bounded interrupt latencies by the standard
approach of introducing a few, carefully placed, interrupt
points. On detection of a pending interrupt, the kernel
explicitly returns through the function call stack to the ker-
nel/user boundary and responds to the interrupt. It then
restarts the original operation, including reestablishing all
the preconditions for execution. As a result, we completely
avoid concurrent execution in the kernel.
i/o: Interrupts are used by device drivers to affect I/O. L4
kernels traditionally implement device drivers as user-level
programs, and seL4 is no different. Device interrupts are
converted into messages to the user-level driver.

This approach removes a large amount of complexity
from the kernel implementation (and the proof). The only
exception is an in-kernel timer driver which generates timer
ticks for scheduling, which is straightforward to deal with.

4. VeRification of seL4
This section gives an overview of the formal verification of
seL4 in the theorem prover Isabelle/HOL.8 The property
we are proving is functional correctness. Formally, we are
showing refinement: A refinement proof establishes a cor-
respondence between a high-level (abstract) and a low-level
(concrete, or refined) representation of a system.

The correspondence established by the refinement proof
ensures that all Hoare logic properties of the abstract model
also hold for the refined model. This means that if a security
property is proved in Hoare logic about the abstract model
(not all security properties can be), our refinement guarantees
that the same property holds for the kernel source code. In this
paper, we concentrate on the general functional correctness
property. We have also modelled and proved the security of
seL4’s access-control system in Isabelle/HOL on a high level.3

Figure 2 shows the specification layers used in the verifi-
cation of seL4; they are related by formal proof. In the follow-
ing sections we explain each layer in turn.

4.1. abstract specification
The abstract level describes what the system does without
saying how it is done. For all user-visible kernel operations,
it describes the functional behavior that is expected from
the system. All implementations that refine this specifica-
tion will be binary compatible.

We precisely describe argument formats, encodings and
error reporting, so, for instance, some of the C-level size
 restrictions become visible on this level. We model finite
machine words, memory, and typed pointers explicitly.

works, not that the user-level policy makes sense. The mecha-
nism works if it keeps kernel code and data structures safe
from user access, if the virtual memory (VM) subsystem is
fully controlled by the kernel interface via capabilities, and if
it provides the necessary functionality for user level to man-
age its own VM policies.

Obviously, moving policy into user land does not change
the fact that memory allocation is part of the TCB. It does
mean, however, that memory allocation can be verified sepa-
rately, and can rely on verified kernel properties.

The memory-management model gives free memory
to the user-level manager in the form of regions tagged as
untyped. The memory manager can split untyped regions
and retype them into one of several kernel object types (one
of them, frame, is for user-accessible memory); such opera-
tions create new capabilities. Object destruction converts a
region back to untyped (and invalidates derived capabilities).

Before reusing a block of memory, all references to this
memory must be invalidated. This involves either find-
ing all outstanding capabilities to the object, or returning
the object to the memory pool only when the last capabil-
ity is deleted. Our kernel uses both approaches. In the first
approach, a so-called capability derivation tree is used to
find and invalidate all capabilities referring to a memory
region. In the second approach, the capability derivation
tree is used to ensure, with a check that is local in scope, that
there are no system-wide dangling references. This is pos-
sible because all other kernel objects have further invariants
on their own internal references that relate back to the exis-
tence of capabilities in this derivation tree.

Similar book-keeping would be necessary for a tradi-
tional malloc/free model in the kernel. The difference is that
the complicated free case in our model is concentrated in
one place, whereas otherwise it would be repeated numer-
ous times over the code.
Concurrency and nondeterminism: Concurrency is the
execution of computation in parallel (in the case of multiple
hardware processors), or by nondeterministic interleaving
via a concurrency abstraction like threads. Reasoning about
concurrent programs is hard, much harder than reasoning
about sequential programs. For the time being, we limited
the verification to a single-processor version of seL4.

In a uniprocessor kernel, concurrency can result from
three sources: yielding of the processor from one thread to
another, (synchronous) exceptions and (asynchronous) inter-
rupts. Yielding can be synchronous, by an explicit handover,
such as when blocking on a lock, or asynchronous, by pre-
emption (but in a uniprocessor kernel, the latter can only
happen as the result of an interrupt).

We limit the effect of all three by a kernel design which
explicitly minimizes concurrency.

Exceptions are completely avoided, by ensuring that they
never occur. For instance, we avoid virtual-memory excep-
tions by allocating all kernel data structures in a region of
VM which is always guaranteed to be mapped to physical
memory. System-call arguments are either passed in regis-
ters or through preregistered physical memory frames.

The complexity of synchronous yield we avoid by using
an event-based kernel execution model, with a single kernel

june 2010 | vol. 53 | no. 6 | communications of the acm 111

data structures are now explicit data types, records, and lists
with straightforward, efficient implementations in C. For
example the capability derivation tree of seL4, modelled as a
tree on the abstract level, is now modelled as a doubly linked
list with limited level information. It is manipulated explic-
itly with pointer-update operations.

Figure 4 shows part of the scheduler specification at this
level. The additional complexity becomes apparent in the
chooseThread function that is no longer merely a sim-
ple predicate, but rather an explicit search backed by data
structures for priority queues. The specification fixes the
behavior of the scheduler to a simple priority-based round-
robin algorithm. It mentions that threads have time slices
and it clarifies when the idle thread will be scheduled. Note
that priority queues duplicate information that is already
available (in the form of thread states), in order to make it
available efficiently. They make it easy to find a runnable
thread of high priority. The optimization will require us to
prove that the duplicated information is consistent.

We have proved that the executable specification cor-
rectly implements the abstract specification. Because of
its extreme level of detail, this proof alone already provides
stronger design assurance than has been shown for any
other general-purpose OS kernel.

4.3. c implementation
The most detailed layer in our verification is the C imple-
mentation. The translation from C into Isabelle is correct-
ness-critical and we take great care to model the semantics
of our C subset precisely and foundationally. Precisely means
that we treat C semantics, types, and memory model as the
C99 standard4 prescribes, for instance, with architecture-
dependent word size, padding of structs, type-unsafe casting
of pointers, and arithmetic on addresses. As kernel program-
mers do, we make assumptions about the compiler (GCC)
that go beyond the standard, and about the architecture

Otherwise, the data structures used in this abstract specifi-
cation are high level—essentially sets, lists, trees, functions,
and records. We make use of nondeterminism in order to
leave implementation choices to lower levels: if there are
multiple correct results for an operation, this abstract layer
would return all of them and make clear that there is a choice.
The implementation is free to pick any one of them.

An example of this is scheduling. No scheduling policy is
defined at the abstract level. Instead, the scheduler is mod-
elled as a function picking any runnable thread that is active
in the system or the idle thread. The Isabelle/HOL code for
this is shown in Figure 3. The function all_active_tcbs
returns the abstract set of all runnable threads in the sys-
tem. Its implementation (not shown) is an abstract logical
predicate over the whole system. The select statement
picks any element of the set. The OR makes a nondetermin-
istic choice between the first block and switch_to_idle_
thread. The executable specification makes this choice
more specific.

4.2. executable specification
The purpose of the executable specification is to fill in the
details left open at the abstract level and to specify how the
kernel works (as opposed to what it does). While trying to
avoid the messy specifics of how data structures and code
are optimized in C, we reflect the fundamental restrictions
in size and code structure that we expect from the hardware
and the C implementation. For instance, we take care not to
use more than 64 bits to represent capabilities, exploiting
known alignment of pointers. We do not specify in which
way this limited information is laid out in C.

The executable specification is deterministic; the only
nondeterminism left is that of the underlying machine. All

figure 2. the refinement layers in the verification of seL4.

High-performance C implementation

Executable specification Haskell prototype

High-performance C implementation

Executable specification Haskell prototype
Automatic
translation

Isabelle/HOL

Refinement proof

Refinement proof

Abstract specification

figure 3. isabelle/hoL code for scheduler at abstract level.

schedule º do
 threads ¬ all_active_tcbs;
 thread ¬ select threads;
 switch_to_thread thread
od OR switch_to_idle_thread

figure 4. haskell code for schedule.

schedule = do
 action <- getSchedulerAction
 case action of
 ChooseNewThread -> do
 chooseThread
 setSchedulerAction ResumeCurrentThread
 ...
chooseThread = do
 r <- findM chooseThread¢ (reverse [minBound ..

maxBound])
 when (r == Nothing) $ switchToIdleThread
chooseThread¢ prio = do
 q <- getQueue prio
 liftM isJust $ findM chooseThread² q
chooseThread² thread = do
 runnable <- isRunnable thread
 if not runnable then do
 tcbSchedDequeue thread
 return False
 else do
 switchToThread thread
 return True

112 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

be inlined and, after compilation on ARM, the result is more
compact and faster than GCC’s native bitfields. The tool not
only generates the C code, it also automatically generates
Isabelle/HOL specifications and proofs of correctness.

Figure 5 shows part of the implementation of the sched-
uling functionality described in the previous sections. It is
standard C99 code with pointers, arrays and structs. The
thread_state functions used in Figure 5 are examples of
generated bitfield accessors.

4.4. the proof
This section describes the main theorem we have shown
and how its proof was constructed.

As mentioned, the main property we are interested in is
functional correctness, which we prove by showing formal
refinement. We have formalized this property for general
state machines in Isabelle/HOL, and we instantiate each of
the specifications in the previous sections into this state-
machine framework.

We have also proved the well-known reduction of refine-
ment to forward simulation, illustrated in Figure 6 where
the solid arrows mean universal quantification and the
dashed arrows existential: To show that a concrete state
machine M2 refines an abstract one M1, it is sufficient to
show that for each transition in M2 that may lead from
an initial state s to a set of states s¢, there exists a corre-
sponding transition on the abstract side from an abstract
state s to a set s ¢ (they are sets because the machines may
be nondeterministic). The transitions correspond if there
exists a relation R between the states s and s such that for
each concrete state in s¢ there is an abstract one in s ¢ that
makes R hold between them again. This has to be shown
for each transition with the same overall relation R. For
externally visible state, we require R to be equality. For
each refinement layer in Figure 2, we have strengthened
and varied this proof technique slightly, but the general
idea remains the same.

We now describe the instantiation of this framework to
the seL4 kernel. We have the following types of transition in

used (ARMv6). These are explicit in the model, and we can
therefore detect violations. Foundationally means that we
do not just axiomatize the behavior of C on a high level, but
we derive it from first principles as far as possible. For exam-
ple, in our model of C, memory is a primitive function from
addresses to bytes without type information or restrictions.
On top of that, we specify how types like unsigned int are
encoded, how structures are laid out, and how implicit and
explicit type casts behave. We managed to lift this low-level
memory model to a high-level calculus that allows efficient,
abstract reasoning on the type-safe fragment of the kernel.
We generate proof obligations assuring the safety of each
pointer access and write. They state that the pointer in ques-
tion must be non-null and of the correct alignment. They are
typically easy to discharge. We generate similar obligations
for all restrictions the C99 standard demands.

We treat a very large, pragmatic subset of C99 in the verifi-
cation. It is a compromise between verification convenience
and the hoops the kernel programmers were willing to jump
through in writing their source. The following paragraphs
describe what is not in this subset.

We do not allow the address-of operator & on local vari-
ables, because, for better automation, we make the assump-
tion that local variables are separate from the heap. This could
be violated if their address was available to pass on. It is the
most far-reaching restriction we implement, because it is com-
mon in C to use local variable references for return parameters
to avoid returning large types on the stack. We achieved com-
pliance with this requirement by avoiding reference param-
eters as much as possible, and where they were needed, used
pointers to global variables (which are not restricted).

One feature of C that is problematic for verification
(and programmers) is the unspecified order of evaluation
in expressions with side effects. To deal with this feature
soundly, we limit how side effects can occur in expressions.
If more than one function call occurs within an expression
or the expression otherwise accesses global state, a proof
obligation is generated to show that these functions are side-
effect free. This proof obligation is discharged automatically.

We do not allow function calls through function pointers.
(We do allow handing the address of a function to assembler
code, e.g., for installing exception vector tables.) We also do
not allow goto statements, or switch statements with fall-
through cases. We support C99 compound literals, making
it convenient to return structs from functions, and reducing
the need for reference parameters. We do not allow com-
pound literals to be lvalues. Some of these restrictions could
be lifted easily, but the features were not required in seL4.

We did not use unions directly in seL4 and therefore do
not support them in the verification (although that would be
possible). Since the C implementation was derived from a
functional program, all unions in seL4 are tagged, and many
structs are packed bitfields. Like other kernel implemen-
tors, we do not trust GCC to compile and optimize bitfields
predictably for kernel code. Instead, we wrote a small tool
that takes a specification and generates C code with the nec-
essary shifting and masking for such bitfields. The tool helps
us to easily map structures to page table entries or other
hardware-defined memory layouts. The generated code can

figure 5. c code for part of the scheduler.

void setPriority(tcb_t *tptr, prio_t prio) {
 prio_t oldprio;
 if(thread_state_get_tcbQueued(tptr->tcbState)) {
 oldprio = tptr->tcbPriority;
 ksReadyQueues[oldprio] =
 tcbSchedDequeue(tptr, ksReadyQueues[oldprio]);
 if(isRunnable(tptr)) {
 ksReadyQueues[prio] =
 tcbSchedEnqueue(tptr, ksReadyQueues[prio]);
 }
 else {
 thread_state_ptr_set_tcbQueued(&tptr->tcbState,
 false);
 }
 }
 tptr->tcbPriority = prio;
}

june 2010 | vol. 53 | no. 6 | communications of the acm 113

between entry and exit points in each specification layer for
a running kernel.

Assuming correctness of the C compiler means that we
assume GCC correctly translates the seL4 source code in our
C subset according to the ISO/IEC C99 standard,4 that the
formal model of our C subset accurately reflects this stan-
dard and that the model makes the correct architecture-
specific assumptions for the ARMv6 architecture on the
Freescale i.MX31 platform.

The assumptions on hardware and assembly mean that
we do not prove correctness of the register save/restore
and the potential context switch on kernel exit. Cache con-
sistency, cache coloring, and TLB flushing requirements
are part of the assembly implemented machine interface.
These machine interface functions are called from C, and
we assume they do not have any effect on the memory state
of the C program. This is only true if they are used correctly.

The VM subsystem of seL4 is not assumed correct, but
is treated differently from other parts of the proof. For our
C semantics, we assume a traditional, flat view of in-kernel
memory that is kept consistent by the kernel’s VM subsys-
tem. We make this consistency argument only informally;
our model does not oblige us to prove it. We do however
substantiate the model and informal argument by manually
stated, machine-checked properties and invariants. This
means we explicitly treat in-kernel VM in the proof, but this
treatment is different from the high standards in the rest
of our proof where we reason from first principles and the
proof forces us to be complete.

This is the set of assumptions we picked. If they are too
strong for a particular purpose, many of them can be elimi-
nated combined with other research. For instance, we have ver-
ified the executable design of the boot code in an earlier design
version. For context switching, Ni et al.7 report verification suc-
cess, and the Verisoft project1 shows how to verify assembly
code and hardware interaction. Leroy verified an optimizing C
compiler5 for the PowerPC and ARM architectures.

An often-raised concern is the question What if there
is a mistake in the proof? The proof is machine-checked by
Isabelle/HOL. So what if there is a bug in Isabelle/HOL? The
proof checking component of Isabelle is small and can be
isolated from the rest of the prover. It is extremely unlikely
that there is a bug in this part of the system that applies in a
correctness-critical way to our proof. If there was reason for
concern, a completely independent proof checker could be
written in a few hundred lines of code. Provers like Isabelle/
HOL can achieve a degree of proof trustworthiness that far
surpasses the confidence levels we rely on in engineering or
mathematics for our daily survival.

5. eXPeRience anD Lessons LeaRneD
5.1. Verification effort
The project was conducted in three phases. First an ini-
tial kernel with limited functionality (no interrupts,
single address space, and generic linear page table) was
designed and implemented in Haskell, while the verifica-
tion team mostly worked on the verification framework
and generic proof libraries. In a second phase, the verifica-
tion team developed the abstract spec and performed the

our state machines: kernel transitions, user transitions, user
events, idle transitions, and idle events. Kernel transitions are
those that are described by each of the specification layers
in increasing amount of detail. User transitions are specified
as nondeterministically changing arbitrary user-accessible
parts of the state space. User-events model kernel entry (trap
instructions, faults, interrupts). Idle transitions model the
behavior of the idle thread. Finally, idle events are interrupts
occurring during idle time; other interrupts that occur dur-
ing kernel execution are modelled explicitly and separately in
each layer of Figure 2.

The model of the machine and the model of user pro-
grams remain the same across all refinement layers; only
the details of kernel behavior and kernel data structures
change. The fully nondeterministic model of the user means
that our proof includes all possible user behaviors, be they
benign, buggy, or malicious.

Let machine MA denote the system framework instan-
tiated with the abstract specification of Section 4.1, let
machine ME represent the framework instantiated with the
executable specification of Section 4.2, and let machine MC
stand for the framework instantiated with the C program
read into the theorem prover. Then we prove the following
two, very simple-looking theorems:

Theorem 1. ME refines MA.

Theorem 2. MC refines ME.

Therefore, because refinement is transitive, we have

Theorem 3. MC refines MA.

4.5. assumptions
Formal verification can never be absolute; it always must
make fundamental assumptions. The assumptions we
make are correctness of the C compiler, the assembly code, the
hardware, and kernel initialization. We explain each of them
in more detail below.

The initialization code takes up about 1.2 kloc of the ker-
nel. The theorems in Section 4.4 only state correspondence

figure 6. forward simulation.

Abstract operation
s s �

Concrete operation
s s�

S
ta

te
 r

el
at

io
n

S
ta

te
 r

el
at

io
n

M1

M2

114 communications of the acm | june 2010 | vol. 53 | no. 6

research highlights

ability to change and rearrange code in discussion with
the design team was an important factor in the verification
team’s productivity and was essential to complete the veri-
fication on time.

The second refinement stage from executable spec to
C uncovered 160 bugs, 16 of which were also found dur-
ing testing, early application and static analysis. The bugs
discovered in this stage were mainly typos, misreading the
specification, or failing to update all relevant code parts for
specification changes. Even though their cause was often
simple, understandable human error, their effect in many
cases was sufficient to crash the kernel or create security
vulnerabilities. There were no deeper, algorithmic bugs in
the C level, because the C code was written according to a
very precise, low-level specification.

5.2. the cost of change
One issue of verification is the cost of proof maintenance:
how much does it cost to reverify after changes are made
to the kernel? This obviously depends on the nature of the
change. We are not able to precisely quantify such costs,
but our iterative verification approach has provided us with
some relevant experience.

The best case is a local, low-level code change, typically an
optimization that does not affect the observable behavior.
We made such changes repeatedly, and found that the effort
for reverification was always low and roughly proportional to
the size of the change.

Adding new, independent features, which do not interact
in a complex way with existing features, usually has a mod-
erate impact. For example, adding a new system call to the
seL4 API that atomically batches a specific, short sequence
of existing system calls took one day to design and imple-
ment. Adjusting the proof took less than 1 person week.

Adding new, large, cross-cutting features, such as add-
ing a complex new data structure to the kernel supporting
new API calls that interact with other parts of the kernel, is
significantly more expensive. We experienced such a case
when progressing from the first to the final implementa-
tion, adding interrupts, ARM page tables, and address
spaces. This change costs several pms to design and
implement, and resulted in 1.5–2 py to reverify. It modi-
fied about 12% of existing Haskell code, added another
37%, and reverification cost about 32% of the time previ-
ously invested in verification. The new features required
only minor adjustments of existing invariants, but lead to
a considerable number of new invariants for the new code.
These invariants had to be preserved over the whole kernel,
not just the new features.

Unsurprisingly, fundamental changes to existing features
are bad news. We experienced one such change when we
added reply capabilities for efficient RPC as an API opti-
mization after the first refinement was completed. Even
though the code size of this change was small (less than 5%
of the total code base), it violated key invariants about the
way capabilities were used in the system until then and the
amount of conceptual cross-cutting was huge. It took about
1 py or 17% of the original proof effort to reverify.

There is one class of otherwise frequent code changes

first refinement while the development team completed
the design, Haskell prototype and C implementation. The
third phase consisted of extending the first refinement
step to the full kernel and performing the second refine-
ment. The overall size of the proof, including framework,
libraries, and generated proofs (not shown in the table) is
200,000 lines of Isabelle script.

Table 1 gives a breakdown for the effort and size of each
of the layers and proofs. About 30 person months (pm)
went into the abstract specification, Haskell prototype
and C implementation (over all project phases), including
design, documentation, coding, and testing.

This compares well with other efforts for developing a
new microkernel from scratch: The Karlsruhe team reports
that, on the back of their experience from building the
earlier Hazelnut kernel, the development of the Pistachio
kernel costs about 6 person years (py). SLOCCount with the
“embedded” profile estimates the total cost of seL4 at 4 py.
Hence, there is strong evidence that the detour via Haskell
did not increase the cost, but was in fact a significant net
cost saver.

The cost of the proof is higher, in total about 20 py. This
includes significant research and about 9 py invested in for-
mal language frameworks, proof tools, proof automation,
theorem prover extensions, and libraries. The total effort for
the seL4-specific proof was 11 py.

We expect that redoing a similar verification for a new
kernel, using the same overall methodology, would reduce
this figure to 6 py, for a total (kernel plus proof) of 8 py. This
is only twice the SLOCCount estimate for a traditionally
engineered system with no assurance.

The breakdown in Table 1 of effort between the two
refinement stages is illuminating: almost 3:1. This is a
reflection of the low-level nature of our Haskell prototype,
which captures most of the properties of the final prod-
uct. This is also reflected in the proof size—the first proof
step contained most of the deep semantic content. 80%
of the effort in the first refinement went into establishing
invariants, only 20% into the actual correspondence proof.
We consider this asymmetry a significant benefit, as the
executable spec is more convenient and efficient to reason
about than C.

The first refinement step led to some 300 changes in the
abstract spec and 200 in the executable spec. About 50% of
these changes relate to bugs in the associated algorithms
or design. Examples are missing checks on user-supplied
input, subtle side effects in the middle of an operation
breaking global invariants, or over-strong assumptions
about what is true during execution. The rest of the
changes were introduced for verification convenience. The

table 1. code and proof statistics.

 haskell/c isabelle Proof

 pm kloc kloc invariants py klop

abst.
exec.
impl.

 4
24
 2

−
5.7
8.7

 4.9
13
15

~75
~80

0

8
3

110
 55

june 2010 | vol. 53 | no. 6 | communications of the acm 115

References
 1. Alkassar, E., Schirmer, n., Starostin,

A. Formal pervasive verification
of a paging mechanism. TACAS.
C.R. Ramakrishnan and J. Rehof,
eds. Volume 4963 of LnCS (2008).
Springer, 109–123.

 2. Dennis, J.b., Van Horn, E.C.
Programming semantics for
multiprogrammed computations.
CACM 9 (1966), 143–155.

 3. Elkaduwe, D., klein, g., Elphinstone, k.
Verified protection model of the seL4
microkernel. vSTTE 2008—verified
Software: Theories, Tools & Experiments.
J. Woodcock and n. Shankar eds.
Volume 5295 of LnCS (Toronto, Canada,
oct 2008), Springer, 99–114.

 4 ISo/IEC. Programming languages—C.
Technical Report 9899:TC2, ISo/IEC
JTC1/SC22/Wg14, May 2005.

 5. Leroy, X. Formal certification of a compiler
back-end, or: Programming a compiler
with a proof assistant. 33rd POPL. J.g.

Morrisett and S.L.P. Jones, eds. (new
york, ny, uSA, 2006), ACM, 42–54.

 6. Liedtke, J. Towards real microkernels.
CACM 39, 9 (Sept 1996), 70–77.

 7. ni, Z., yu, D., Shao. Z. using XCAP to
certify realistic system code: Machine
context management. 20th TPHOLs,
volume 4732 of LnCS (kaiserslautern,
germany, Sept 2007), Springer, 189–206.

 8. nipkow, T., Paulson, L., Wenzel, M.
Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. Volume 2283 of
LnCS (2002), Springer.

 9. ormandy, T., Tinnes, J. Linux null pointer
dereference due to incorrect proto_ops
initializations. http://www.cr0.org/misc/
CVE-2009–2692.txt, 2009.

 10. Saltzer, J.H., Schroeder, M.D. The
protection of information in computer
systems. Proc. IEEE 63 (1975), 1278–1308.

 11. Shapiro, J.S., Smith, J.M., Farber, D.J.
ERoS: A fast capability system. 17th
SOSP (Charleston, SC, uSA, Dec
1999), 170–185.

that does not occur after the kernel has been verified: imple-
mentation bug fixes.

6. concLusion
We have presented our experience in formally verifying
seL4. We have shown that full, rigorous, formal verification
is practically achievable for OS microkernels.

The requirements of verification force the designers to
think of the simplest and cleanest way of achieving their
goals. We found repeatedly that this leads to overall better
design, for instance, in the decisions aimed at simplifying
concurrency-related verification issues.

Our future research agenda includes verification of the
assembly parts of the kernel, a multi-core version of the ker-
nel, as well as formal verification of overall system security
and safety properties, including application components.
The latter now becomes much more meaningful than previ-
ously possible: application proofs can rely on the abstract,
formal kernel specification that seL4 is proven to implement.

acknowledgments
We would like to acknowledge the contribution of the former
team members on this verification project: Timothy Bourke,
Jeremy Dawson, Jia Meng, Catherine Menon, and David Tsai.

NICTA is funded by the Australian Government
as represented by the Department of Broadband,
Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of
Excellence program.

Gerwin Klein national ICT Australia
(nICTA), university of South Wales
(unSW), Sydney.

June andronick nICTA, unSW.

Kevin elphinstone nICTA, unSW.

Gernot heiser nICTA, unSW, open
kernel Labs.

Dhammika elkaduwe nICTA, unSW,
now at university of Peradeniya,
Sri Lanka.

Kai engelhardt nICTA, unSW.

Rafal Kolanksi nICTA, unSW.

harvey tuch nICTA, unSW, now at
VMWare.

simon Winwood nICTA, unSW.

David cock nICTA.

Philip Derrin nICTA, now at open kernel
Labs.

michael norrish nICTA, Australian
national university, Canberra.

thomas sewell nICTA.

© 2010 ACM 0001-0782/10/0600 $10.00

New Edition of a Bestseller!

Algorithms and Theory of
Computation Handbook,
Second Edition—
Two Volume Set
Praise for the Previous Edition

“… excellent survey of the state of the
art … highly recommended for anyone
interested in algorithms, data struc-
tures and the theory of computation …
an indispensable book of reference … .”
—R. Kemp, Zentralblatt MATH, Vol. 926

Catalog no. C8180
January 2010, 1938 pp.
ISBN: 978-1-58488-818-5
$179.95 / £114.00
$143.96 / £91.20

Flexible, Reliable Software
Using Patterns and
Agile Development
“… brings together a careful selection
of topics that are relevant, indeed
crucial, for developing good quality
software … leads the reader through
an experience of active learning.”

—Michael Kölling, Bestselling
Author and originator of the BlueJ

and Greenfoot environments
Catalog no. C3622
May 2010, 527 pp.
ISBN: 978-1-4200-9362-9
$69.95 / £44.99
$55.96 / £35.99

Handbook of
Chemoinformatics
Algorithms
Providing an overview of the most
common chemoinformatics algo-
rithms, this book explains how to
effectively apply algorithms and
graph theory for solving chemical
problems.
Catalog no. C2922
April 2010, 454 pp.
ISBN: 978-1-4200-8292-0
$99.95 / £63.99
$79.96 / £51.19

Have you
Considered All

the Possibilities?

Save 20%

on these

New & Noteworthy
Resources

from
Chapman & Hall/CRC Press

Save 20% on your online
order by entering promo
code 736DM at checkout

Discount expires July 31, 2010

www.crcpress.com

CHAPMAN & HALL BOOKS

