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Program termination is a relevant property that has been extensively studied in the 
context of many different formalisms and programming languages. Traditional approaches 
to proving termination are usually based on inspecting the source code. Recently, a new 
semantics-based approach has emerged, which typically follows a two-stage scheme: first, 
a finite data structure representing the computation space of the program is built; then, 
termination is analyzed by inspecting the transitions in this data structure using traditional, 
syntax-based techniques.
Unfortunately, this approach is still specific to a programming language and semantics. In 
this work, we present instead a general, high-level framework that follows the semantics-
based approach to proving termination. In particular, we focus on the first stage and 
advocate the use of symbolic execution, together with appropriate subsumption and 
abstraction operators, for producing a finite representation of the computations of a 
program. Hopefully, this higher level approach will provide useful insights for designing 
new semantics-based termination tools for particular programming languages.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As witnessed by the extensive literature on the subject, determining whether a program terminates for all input data is 
a fundamental problem in computer science (see, e.g., [14,17,18,40], and references therein). In general, the techniques for 
proving program termination are specific to a programming language. Traditional approaches often rely on inspecting the 
shape of the program. For instance, one of the most popular approaches to analyzing termination of rewrite systems, the 
dependency pairs approach [7], is based on finding appropriate orderings that relate the left-hand side of the rules with some 
subterms of the right-hand side. Size-change termination analysis [28] for functional programs is also based on inspecting 
the source code, in this case finding an ordering that relates the size of the arguments of consecutive function calls. In the 
context of imperative programming, one can also find a flurry of works that are aimed at finding appropriate invariants to 
prove that all program loops are terminating by inspecting the source code (see e.g., [12,13,38,24] and references therein).

Despite the fact that some of these approaches are quite powerful, some drawbacks still exist. On the one hand, their 
syntax-driven nature makes them specific to a particular programming language and semantics. For example, the techniques 
developed for proving termination of eager functional programs and those for proving termination of lazy functional pro-
grams are different. Recently, a new semantics-based approach has emerged. Intuitively speaking, rather than inspecting the 
source code, this approach is based on constructing a finite representation of all the computations of a program—usually 
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a graph—and, then, inspecting the transitions in this graph in order to analyze the termination of the program. Actually, it 
suffices to restrict the analysis to those transitions that belong to a loop of the graph, i.e., a (potential) loop of the pro-
gram. The construction of the graph can be seen as a front-end that depends on the considered programming language 
and semantics. Once the graph is built, one can express its transitions in a common language (e.g., a rule-based formalism 
such as term rewriting or logic programming) and, then, apply the existing syntax-directed approaches. In this way, the 
back-end could be shared by the different termination provers. We call this approach semantics-based since the front-end 
(the construction of the graph) is driven by the semantics of the program rather than by its syntax.

In the literature, we can already find a number of approaches that mostly follow this semantics-based scheme, e.g., 
to prove the termination of Haskell [21], Prolog with impure features [23,42], narrowing [35,46], or Java bytecode [2,3,9,
10,36,43]. While all these approaches have proven useful in practice, they are still tailored to the specific features of the 
considered programming language and semantics. Unfortunately, this makes it rather difficult to grasp the key ingredients 
of the approach and, thus, it is not easy to design a termination tool for a different programming language by following the 
same pattern.

In this work, we present instead a general, high-level framework that follows the semantics-based approach to proving 
termination. Our purpose in this paper is not to introduce a new, semantics-based termination prover but to present a 
language-independent formulation that uses well-known principles from symbolic execution and partial evaluation, so that 
the vast literature on these subjects can be reused. In particular, we focus on the first stage—constructing a finite representa-
tion of all program computations—and advocate the use of symbolic execution, together with appropriate subsumption and 
abstraction operators. Symbolic execution [26,11] is a well-known technique for program verification, testing, debugging, etc. 
In contrast to concrete execution, symbolic execution considers that the values of some input data are unknown, i.e., some 
input parameters x, y, . . . take symbolic values X, Y , . . . . Because of this, symbolic execution is often non-deterministic: at 
some control statements, we need to follow more than one execution path because the available information does not suf-
fice to determine the validity of a control expression, e.g., symbolic execution may follow both branches of the conditional 
“if (x>0) then exp1 else exp2” when the symbolic value X of variable x is not constrained enough to imply neither x>0
nor ¬(x>0). Symbolic states include a path condition that stores the current constraints on symbolic values, i.e., the condi-
tions that must hold to reach a particular execution state. For instance, after symbolically executing the above conditional, 
the derived states for exp1 and exp2 would add the conditions X>0 and X≤0, respectively, to their path conditions.

Traditionally, formal techniques based on symbolic execution have enforced soundness, i.e., the definition of underapprox-
imations: if a symbolic state is reached and its path condition is satisfiable, there must be a concrete execution path that 
reaches the corresponding concrete state. These approaches, however, are often incomplete, i.e., there are some concrete 
computations that are not covered by the symbolic executions. In contrast, we consider a complete approach to symbolic 
execution, so that it overapproximates concrete execution. While underapproximations are useful for testing and debugging 
(since there are no false positives), overapproximations are important for verifying liveness properties such as program 
termination.

A preliminary version of some of the ideas in this paper appeared in [47]. Basically, [47] proposed a method for proving 
program termination by i) first producing a finite—but complete—symbolic execution of a program, ii) extracting a rewrite 
system that reproduces the transitions of symbolic execution and, finally, iii) using an off-the-shelf tool for proving the 
termination of the rewrite system (i.e., AProVE [22]). Here, in contrast to [47], we focus only on the front-end—constructing 
a symbolic execution graph—but introduce a more detailed approach. On the one hand, we consider a generalized notion 
of abstraction (w.r.t. [47]) which is much more useful in practice. Also, we introduce an algorithm for the construction 
of a finite representation of symbolic executions and define concrete subsumption and abstraction operators. Finally, we 
also prove the correctness of the resulting finite symbolic execution graphs (using the generic operations of subsumption 
and—generalized—abstraction), which guarantee their usefulness in the context of termination analysis.

The remainder of this paper is organized as follows. Section 2 introduces the notion of complete symbolic execution. 
We illustrate our developments using both a simple imperative language and a first-order eager functional language. Sec-
tion 3 presents appropriate subsumption and abstraction operators so that a finite (but still complete) representation of the 
computation space can be obtained. Finally, Section 4 discusses some related work and Section 5 concludes.

2. Complete symbolic execution

In this section, we recall the notion of symbolic execution and introduce the conditions for completeness. We illustrate 
our developments with two simple programming languages.

Analogously to, e.g., [33], we abstract away from the syntax of a concrete programming language and represent a program
P by a transition system denoted by a tuple 〈�, �, T , ρ〉 where � is a (possibly infinite) set of states, � ⊆ � are the initial 
states, T is a finite set of transitions (can be thought of as labels of program statements), and ρ is a mapping that assigns 
to each transition a binary relation over states: ρτ ⊆ � × �, for τ ∈ T . The transition relation of a program P is denoted by 
R P and defined as follows:

R P =
⋃

ρτ
τ∈T
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IMP

Expressions: include variables, integers, Booleans and the usual 
arithmetic and relational expressions.
Statements: assignments (var := exp), conditionals (if cond
then statement1 [else statement2] fi) and iterations (while
cond do statements done). Statements can be labeled. We also 
use input() to denote a generic I/O operation that reads data 
from the keyboard, file, etc.
States: 〈l, σ 〉, where l is a program label and σ is a substitu-
tion for the program variables; here, pc denotes the program 
counter.
Transitions: transitions are associated to the program state-
ments, so that the execution of a statement produces a state 
transition.
Transition relations: transition relations (s, s′) can be compactly 
described as logical formulas over unprimed and primed vari-
ables corresponding to the variables of s and s′ (so that 
variables not appearing in the formula are simply not con-
strained).

FUNC

Expressions: include variables, data constructors (e.g., list con-
structors Nil and Cons) and defined functions.
Statements: equations lhs = rhs, where lhs and rhs are expres-
sions and Var(rhs) ⊆ Var(lhs). We further require lhs to be 
of the form f (t1, . . . , tn), where f is a defined function and 
t1, . . . , tn are constructor terms (i.e., expressions built from 
variables and constructor symbols), and no variable occurs 
twice in lhs.
States: in this language, states are naturally associated to ex-
pressions.
Transitions: transitions are associated to the program equations, 
so that the application of an equation produces a state transi-
tion.
Transition relation: for every equation lhs = rhs, we have an 
associated transition relation of the form (C[lhsσ ], C[rhsσ ])
denoting the possible reductions using this rule. Here, C[ ] de-
notes an arbitrary context and σ is an arbitrary substitution 
such that Var(lhsσ) = Var(rhsσ) = ∅.

Fig. 1. Example programming languages IMP and FUNC.

l0 : x := input();
l1 : while x > 0 do
l2 : x := x − 1;
l3 : done

l0
τ1

l1

τ4

τ2

l2
τ3

l3

Fig. 2. Program WHILE and its control flow graph.

Thus, transition relations are (possibly infinite) sets of pairs of states (s, s′), where s is the current state and s′ is the next 
state. We do not formalize the structure of states since it depends on the considered programming language (see Fig. 1).

In the following, we consider two simple programming languages for illustrating our developments: IMP (an imperative 
language) and FUNC (a call-by-value functional language). They are succinctly described in Fig. 1. In this work, we use 
substitutions to denote (finite) mappings from variables to values or expressions, together with the usual operations on 
substitutions: application of a substitution to an expression, composition of substitutions, etc. We denote the application 
of a substitution θ to an expression e by eθ (rather than θ(e)). Given a state s and a substitution θ , by abuse of notation, 
we let sθ denote the application of θ to all expressions in s. The variables of a syntactic object o are denoted by Var(o). 
Moreover, in the functional language, we use contexts, i.e., expressions containing a “hole”, denoted by C[ ], so that C[e] is 
the expression that results from filling this hole with the expression e.

Computations are (possibly infinite) maximal sequences of states s0, s1, . . . such that

• s0 ∈ � is an initial state and
• (si, si+1) ∈ R P for all i ≥ 0 (up to the length of the sequence if it is finite).

We will denote computations as follows: s0
τ1→R P s1

τ2→R P . . . (we will omit the transition label and/or the program’s transi-
tion relation when they are clear from the context, or are not relevant).

Example 1. Let us first consider the language IMP and the program WHILE shown in Fig. 2, with labels l0, l1, l2, l3 and only 
one variable x (besides the program counter pc). Here, four transitions are possible, τ1 (associated to x := input()), τ2 and 
τ4 (associated to while x > 0 do . . . done) and τ3 (associated to x := x − 1), as shown in the control flow graph depicted in 
Fig. 2. The transition relations can be defined as follows:

ρτ1 : pc = l0 ∧ pc′ = l1
ρτ2 : pc = l1 ∧ pc′ = l2 ∧ x > 0
ρτ3 : pc = l2 ∧ pc′ = l1 ∧ x′ = x − 1
ρτ4 : pc = l1 ∧ pc′ = l3 ∧ x ≤ 0

Therefore, the transition relation RWHILE is defined as follows: RWHILE = ρτ1 ∪ ρτ2 ∪ ρτ3 ∪ ρτ4 . For instance, given an initial 
state 〈l0, { }〉, an example computation follows:
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r0 : main(x, y) = mult(x, y)

r1 : mult(Z, y) = Z
r2 : mult(S(x), y) = add(mult(x, y), y)

r3 : add(Z, y) = y
r4 : add(S(x), y) = S(add(x, y))

Fig. 3. Program MULT.

〈l0, { }〉 τ1→ 〈l1, {x → 2}〉 τ2→ 〈l2, {x → 2}〉
τ3→ 〈l1, {x → 1}〉 τ2→ 〈l2, {x → 1}〉
τ3→ 〈l1, {x → 0}〉 τ4→ 〈l3, {x → 0}〉

Example 2. Let us now consider the language FUNC and the program MULT shown in Fig. 3. Here, mult (multiplication) 
and add (addition) denote defined functions while Z (zero) and S (successor) denote constructor symbols, used to build 
natural numbers. For simplicity, we consider that programs contain a special function, called main, that reduces to the 
initial expression to be evaluated.

Basically, standard functional reduction proceeds as follows: given an equation of the form f (t1, . . . , tn) = r and an 
expression e, we should find an innermost function call of the form f (s1, . . . , sn), i.e., e = C[ f (s1, . . . , sn)], such that there 
exists a matching substitution σ with f (t1, . . . , tn)σ = f (s1, . . . , sn); then, we have that C[ f (s1, . . . , sn)] reduces to C[rσ ]. 
Consequently, we have a transition associated to each (labeled) equation, whose transition relations are defined as follows:

ρr0 : (C[main(x, y)σ ], C[mult(x, y)σ ])
ρr1 : (C[mult(Z, y)σ ], C[Zσ ])
ρr2 : (C[mult(S(x), y)σ ], C[add(mult(x, y), y)σ ])
ρr3 : (C[add(Z, y)σ ], C[yσ ])
ρr4 : (C[add(S(x), y)σ ], C[S(add(x, y))σ ])

for any constructor substitution σ (i.e., a substitution from variables to terms made of constructor symbols) that makes the 
expressions ground (i.e., without variables). Therefore, the transition relation RMULT is now defined by RMULT = ρr0 ∪ ρr1 ∪
ρr2 ∪ ρr3 ∪ ρr4 . For instance, given the initial expression main(S(Z), S(S(Z))), we have the following computation:

main(S(Z),S(S(Z)))
r0→ mult(S(Z),S(S(Z)))
r2→ add(mult(Z,S(S(Z))),S(S(Z)))
r1→ add(Z,S(S(Z)))
r3→ S(S(Z))

Therefore, we have that main(S(Z), S(S(Z))) reduces to S(S(Z)).

Symbolic execution [26,11], originally introduced in the context of program testing and debugging, extends con-
crete execution in order to deal with variables bound to symbolic expressions (instead of concrete values). For instance, 
〈l0, {x → X, y → Y , z → 42}, X > Y 〉 is a symbolic state in the language IMP, where x, y are program variables bound to 
symbolic values (denoted by capital letters), z is a local variable bound to the integer 42, and X > Y is a path condition (see 
Fig. 1). Program variables can also be bound to symbolic expressions like X + 2 ∗ Y or arbitrary data structures (e.g., arrays, 
linked lists, etc.) possibly including symbolic values denoting missing information. Control statements often involve (non-
deterministically) exploring several paths. The path condition of symbolic states is then used to keep track of the assumptions 
made on the symbolic values in each computation thread.

In the following, we denote symbolic states with S1, S2, etc.; also, we use �� to denote the domain of symbolic states. 
Here, we assume that the structure of symbolic states is unknown but shares the same elements of concrete states (replacing 
values with symbolic expressions if needed) plus a path condition. Let us now introduce some useful auxiliary functions:

Definition 1. Given a symbolic state S , we introduce the following functions:

• pcond(S) denotes the path condition of S;
• svars(S) denotes the set of symbolic variables that occur in S;
• state(S) denotes a state that is equal to S but it does not include the path condition (but may contain some symbolic 

expressions and not only values).

Moreover, let V be a set of symbolic variables and π be a path condition:

• solsV (π) denotes the set of substitutions for the variables of V that satisfy π .
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There is a clear relation between concrete and symbolic states: a symbolic state represents the set of concrete states that 
can be obtained by replacing its symbolic variables with concrete values such that the path condition holds:

Definition 2 (Concretization). Given a symbolic state, S , with π = pcond(S), V = svars(S) and s = state(S), the concretiza-
tion function γ : �� → ℘(�), returns γ (S) = {sθ | θ ∈ solsV (π)}, where sθ denotes the state that results from sθ by 
evaluating its expressions (if any).

Let us note that our symbolic states share some similarities with the notion of region in [25].

Example 3. In the language IMP, symbolic states can be denoted by 〈l, θ, π〉, where l is a label, θ is a substitution from 
program variables to symbolic expressions, and π is a path condition. Given, for instance, a symbolic state S = 〈l2, {x →
X −1}, X > 1〉, we have pcond(S) = X > 1, svars(S) = {X}, state(S) = 〈l2, {x → X −1}〉 and sols{X}(X > 1) = {{X → 2}, {X →
3}, . . .}. Therefore, we have

γ (S) = {〈l2, {x → 2 − 1}〉, 〈l2, {x → 3 − 1}〉, . . .} = {〈l2, {x → 1}〉, 〈l2, {x → 2}〉, . . .}
In the language FUNC, symbolic states can be denoted by 〈e, θ〉, where e is an expression, possibly containing symbolic 
variables, and θ is a substitution from symbolic variables to symbolic expressions. Given for instance a symbolic state

S = 〈add(mult(W ,S(S(Z))),S(S(Z))), {X → S(W )}〉
we have pcond(S) = {X → S(W )} (i.e., the path condition is now represented by a substitution), svars(S) = {X, W }, 
state(S) = add(mult(W , S(S(Z))), S(S(Z))) and

sols{X,W }({X → S(W )}) = {{X → S(Z), W → Z}, {X → S(S(Z)), W → S(Z)}, . . .}
Hence, γ (S) = {add(mult(Z, S(S(Z))), S(S(Z))), add(mult(S(Z), S(S(Z))), S(S(Z))), . . .}.1

In the following, we assume a decidable partial order �γ on symbolic states:

Definition 3. We denote by �γ a partial order on symbolic states such that S �γ S ′ implies γ (S) ⊆ γ (S ′). Moreover, we 
assume that (��, �) is a partial ordered set (poset) with the ascending chain condition: every ascending sequence of the 
form S0 � S1 � S2 � . . . eventually stabilizes, i.e., there exists a positive integer n such that Sn = Sn+1 = Sn+2 = . . . .

Essentially, the ascending chain condition is required for the abstraction operator to be safe. Loosely speaking, given 
a poset (��, �) and an abstraction operator α (see Section 3.2 for a precise definition), we require S � α(S) for each 
symbolic state S , i.e., we require α(S) to describe more concrete states than S . When (��, �) satisfies the ascending chain 
condition, the application of abstraction allows us to always get a symbolic state S such that α(S) = S so that it cannot be 
further generalized (which is essential to guarantee the completeness of the process).

The ascending chain condition is usually required in the context of abstract interpretation [15]. When the poset is finite, 
it trivially satisfies the ascending chain condition. When it is infinite, we can combine abstraction with a widening operator
so that the resulting partial order satisfies the ascending chain condition (see, e.g., [16]). For instance, given a domain of 
intervals of integer numbers and a finite set T (called the threshold set), one can define a widening operator �T as follows:

[a,b] �T [a′,b′] = [if a′ < a then max{l ∈ T | l ≤ a}
else a

if b′ > b then min{h ∈ T | h ≥ b′}
else b]

For example, one can consider the set T = {−∞, 0, ∞} so that [0, 10] �T [1, 10] = [1, 10] but [0, 10] �T [0, 12] = [0, +∞]. 
Then, if the partial order induced by the abstraction operator α does not satisfy the ascending chain condition, one can use 
a widening operator like �T so that α′(S) = S �T α(S) and α′ satisfies the ascending chain condition by construction [16].

For simplicity, in this paper we will only consider a finite domain of integers in the examples (from −minint to +maxint). 
Nevertheless, the examples could be extended to deal with an infinite domain of integers by, e.g., introducing integer 
intervals and a widening operator as shown above.

Now, we introduce our notion of symbolic program, which is again defined as a transition system. Analogously to �� , we 
use �� , T � and ρ� to denote the initial symbolic states, the finite set of transitions, and the mapping that assigns to each 
transition a binary relation over symbolic states, respectively.

1 The auxiliary function e to evaluate the symbolic expressions of e is not needed in this language since e = e for all expressions as long as built-in 
values and operators (e.g., integers and arithmetic operators) are not allowed.
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Definition 4 (Symbolic program). Let P = 〈�, �, T , ρ〉 be a concrete program. We say that P � = 〈��, ��, T �, ρ�〉 is a sym-
bolic version of P if the following conditions hold:

1. ∀s ∈ �. ∃S ∈ �� such that s ∈ γ (S);
2. ∀s ∈ �. ∃S ∈ �� such that s ∈ γ (S);
3. T = T � (i.e., the program sentences are not changed);
4. ∀(s, s′) ∈ ρτ and ∀S ∈ �� such that s ∈ γ (S) there exists (S, S ′) ∈ ρ

�
τ with s′ ∈ γ (S ′).

Loosely speaking, conditions (1) and (2) imply that replacing some values by symbolic expressions do not change the 
nature of a state. Condition (3) means that symbolic execution does not change the source program (only the input data 
can be replaced by symbolic values). Finally, condition (4) states that symbolic execution is indeed an overapproximation of 
normal execution, which guarantees that all concrete transitions have a counterpart in the symbolic program (and this is 
essential to analyze program termination).

As before, the transition relation R P � of a symbolic program P � is defined as the union of all transition relations: 
R P � = ⋃

τ∈T � ρ
�
τ . Symbolic executions are (possibly infinite) maximal sequences of symbolic states S0, S1, . . . such that

• S0 ∈ �� is an initial symbolic state and
• (Si, Si+1) ∈ R P � for all i ≥ 0 (up to the length of the sequence if it is finite).

We will denote symbolic executions as follows:

S0
τ1,π1� R P� S1

τ2,π2� R P� S2
τ3,π3� R P� . . .

where τi is the transition of the step and πi are the new constraints that are added to the path condition (we will omit the 
transition label, the path condition, and/or the program’s transition relation when they are clear from the context, or are 
not relevant). Here we consider that the satisfiability of the path condition is checked at every step. If the domain of path 
conditions is not decidable (as is often the case), one can use a time bound so that if the constraints are not solved within 
this bound, the path condition is assumed satisfiable (to ensure that an overapproximation is computed, which contrasts 
with traditional approaches where it is assumed unsatisfiable to preserve the generation of underapproximations).

Example 4. Consider again the program WHILE shown in Fig. 2. Let WHILE� be a symbolic version of this program, where 
the symbolic transition relations are defined in the obvious way: when a conditional is reached, we follow all paths which 
are consistent with the current path condition, and update them with the new constraints. More precisely, let us consider 
the following simple statement:

l1 : while x > 0 do
l2 : x := x − 1;
l3 : done

Then, given a symbolic state 〈l1, {x → X}, X < 0〉, there is only one possible transition to 〈l3, {x → X}, X < 0〉 since the 
current path condition, X < 0, makes the condition x > 0 false. On the other hand, given the symbolic state 〈l1, {x →
X}, true〉, we would have two possible transitions: to the symbolic state 〈l2, {x → X}, X > 0〉 and to the symbolic state 
〈l3, {x → X}, X ≤ 0〉.

As an example computation, let us consider the initial symbolic state 〈l0, {x → X}, true〉. Here, we have for instance the 
following symbolic execution:

〈l0, {x → X}, true〉 τ1� 〈l1, {x → X}, true〉
τ2� 〈l2, {x → X}, X > 0〉
τ3� 〈l1, {x → X − 1}, X > 0〉
τ2� 〈l2, {x → X − 1}, X > 1〉
τ3� 〈l1, {x → X − 2}, X > 1〉
τ4� 〈l3, {x → X − 2}, X = 2〉

Note that we have simplified the path condition X > 0 ∧ X − 1 > 0 to X > 1 and the path condition X > 1 ∧ X − 2 = 0 to 
X = 2.

Example 5. Consider now the program MULT shown in Fig. 3. Let MULT� be a symbolic version of this program; here, 
symbolic transitions are defined using a symbolic extension of functional reduction. Essentially, the symbolic extension will 
consider a unifying substitution instead of a matching substitution to allow the instantiation of symbolic variables in the 
expression being reduced: given an equation f (t1, . . . , tn) = r and an expression e, we should find an innermost function 
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call of the form f (s1, . . . , sn), i.e., e = C[ f (s1, . . . , sn)], such that there exists a unifying substitution σ with f (t1, . . . , tn)σ =
f (s1, . . . , sn)σ ; therefore, we now have that C[ f (s1, . . . , sn)] reduces to (C[r])σ .2 More details can be found, e.g., in [4], 
where a symbolic extension of functional reduction is introduced for defining a partial evaluation framework.

For instance, given the initial symbolic state 〈main(X, S(S(Z))), id〉, where X denotes a symbolic variable, we have the 
following symbolic execution:

〈main(X,S(S(Z))), id〉 r0� 〈mult(X,S(S(Z))), id〉
r2� 〈add(mult(W ,S(S(Z))),S(S(Z))), {X → S(W )}〉
r1� 〈add(Z,S(S(Z))), {X → S(Z), W → Z}〉
r3� 〈S(S(Z)), {X → S(Z), W → Z}〉

So we have that main(X, S(S(Z))) reduces to S(S(Z)) if X takes the value S(Z).

Now, we lift the fourth condition of Definition 4 to computations.

Lemma 1 (Overapproximation). Let P be a program and P � a symbolic version of P . If there exists a (possibly infinite) computation of 
the form s0

τ1→R P s1
τ2→R P . . . then, for any symbolic state S0 such that s0 ∈ γ (S0), we have S0

τ1�
R�

P
S1

τ2�
R�

P
. . . where si ∈ γ (Si) for 

all i > 0.

Proof. The claim follows straightforwardly by applying property (4) of Definition 4. Consider the first transition s0
τ1→R P s1. 

By property (4), we have that, for all S0 ∈ �� such that s0 ∈ γ (S0), the transition S0
τ1�

R�
P
S1 holds with s1 ∈ γ (S1). 

The same reasoning can be applied repeatedly so that a symbolic execution mimicking the transitions of the concrete 
computation is built. �

Therefore, we can conclude that any symbolic version of a program that fulfills the conditions of Definition 4 is complete, 
i.e., it produces an overapproximation of the concrete computations. Thus the termination of the original program can be 
analyzed by inspecting the symbolic executions.

3. Constructing a finite representation of symbolic executions

The main drawback of symbolic execution is that the computation space is usually infinite, even for programs where 
concrete executions always terminate. When computing underapproximations, this is not a significant drawback since one 
can just stop the symbolic executions at any point (e.g., introducing a bound on the number of symbolic execution steps). 
Unfortunately, this is not safe when computing an overapproximation. In this section, we present a framework for producing 
a finite representation of the (possibly infinite) symbolic executions of a program that is still complete.

Example 6. Consider again a symbolic version WHILE� of the program of Fig. 2. Here, we have for instance the following 
infinite symbolic execution:

〈l0, {x → X}, true〉 τ1� 〈l1, {x → X}, true〉
τ2� 〈l2, {x → X}, X > 0〉
τ3� 〈l1, {x → X − 1}, X > 0〉
τ2� 〈l2, {x → X − 1}, X > 1〉
τ3� 〈l1, {x → X − 2}, X > 1〉
τ2� . . .

by always choosing transition τ2 from location l1.
Analogously, we have the following infinite symbolic execution using the symbolic program MULT�:

〈add(X, Y ), id〉 r4� 〈S(add(X ′, Y )), {X → S(X ′)}〉
r4� 〈S(S(add(X ′, Y ))), {X → S(S(X ′′)), X ′ → S(X ′′)}〉
r4� . . .

by always performing a transition using rule r4.

2 Observe that the context may contain symbolic variables that are instantiated by σ , thus we apply it to the whole expression and not only to r.
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The computations of a symbolic program can be represented by means of a tree-like structure as follows:

Definition 5 (Symbolic execution graph). Let P � = 〈��, ��, T , ρ�〉 be a symbolic program. We represent the computations of 
P � for an initial symbolic state S0 ∈ �� by means of a (possibly infinite) directed rooted node- and edge-labeled graph GP � :

• nodes are labeled with symbolic states from �� , with S0 the root node;
• edges are labeled with a pair τ , π (a transition from T and a logical formula denoting the new path condition added 

in the step);

• there is an edge labeled with τ , π from a node labeled with S to a node labeled with S ′ , denoted by S τ ,π−→ S ′ , iff 
S τ ,π� R P� S ′ (we will ignore τ and/or π when they are clear from the context, or are not relevant);

• nodes can be marked (graphically denoted by underlining the node) or unmarked; initially, the root node is unmarked 
and nodes are marked when their symbolic execution is already considered. As we will see later, marks are used in the 
algorithm for constructing symbolic execution trees (cf. Definition 12) to keep track of the nodes that have been already 
processed.

Clearly, every symbolic program and initial symbolic state induce an associated symbolic execution graph which is generally 
infinite.

In the literature of symbolic execution, one can find two basic operations in order to make the symbolic execution graph 
finite: subsumption and abstraction (see, e.g., [5,6]). Similar operations can also be found in the partial evaluation literature 
(see, e.g., [32,34,30]).

3.1. Subsumption

In general, subsumption allows us to stop symbolic execution when we reach a state that is an instance of (i.e., it is 
subsumed by) a previous one.

In the following, we assume that symbolic execution graphs may also contain edges labeled with sub and abs to account 
for subsumption and abstraction steps.

Definition 6 (Subsumption step). Let P � = 〈��, ��, T , ρ�〉 be a symbolic program and GP � be a (possibly incomplete) symbolic 
execution graph for S0 ∈ �� where

S0 −→ S1 −→ . . . −→ Sn−1 −→ Sn

is a path in the graph with n > 0, so that all nodes are marked except the last one. If there exists a node labeled with Si , 
0 ≤ i < n, such that Si −→ Si+1 is a symbolic execution step and Sn �γ Si , we mark Sn and add an edge labeled with sub
from Sn to Si .

Observe that our definition of subsumption is nondeterministic since there are two degrees of freedom: when subsump-
tion is to be considered (e.g., at every node), and the choice of the previous nodes with which subsumption is tested (e.g., 
all ancestors in the same derivation). Here, we consider a simple strategy that is based on the notion of comparable states.

Definition 7 (Comparison relation). Let �� be a domain of symbolic states and let ∼ be an equivalence relation for �� . As 
usual, we let [s] = {s′ ∈ �� | s ∼ s′} denote the equivalence class of state s and ��/ ∼ denote the set of equivalence classes 
of �� .

We say that ∼ is a comparison relation for �� if it induces a finite number of equivalence classes, i.e., ��/ ∼ is finite.

Intuitively speaking, restricting our tests to comparable states is safe by Ramsey’s theorem [41] since the number of 
incomparable equivalence classes is finite.

In the following, we consider the following simple strategy: every new node in the symbolic execution graph is tested 
against all comparable ancestors: if the new node is subsumed by a previous one, a subsumption edge is added and the 
node is marked; otherwise, nothing is done and symbolic execution proceeds.

Example 7. Consider the symbolic program WHILE� and the infinite computation shown in Example 6. Here, we consider 
that two symbolic states are comparable if they have the same label, i.e., 〈l1, σ1, π1〉 ∼ 〈l2, σ2, π2〉 iff l1 = l2. Then, the 
infinite-state path in the graph is made finite by using our subsumption strategy as follows3:

3 Note that the fact that the symbolic execution is now finite does not imply the termination of concrete executions. Actually, the original program is not 
terminating unless the values of x are bounded by some minimum value.
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〈l0, {x → X}, true〉
τ1

〈l1, {x → X}, true〉
τ2 τ4

〈l2, {x → X}, X > 0〉
τ3

〈l3, {x → X}, X ≤ 0〉

〈l1, {x → X}, X > 0〉

sub

Fig. 4. Symbolic execution graph for program WHILE� .

〈l0, {x → X}, true〉 τ1−→ 〈l1, {x → X}, true〉 ≡ S2
τ2−→ 〈l2, {x → X}, X > 0〉
τ3−→ 〈l1, {x → X − 1}, X > 0〉 ≡ S4
sub−→ S2

since γ (S4) = {〈l1, {x → 0}〉, 〈l1, {x → 1}〉, . . .} ⊆ {. . . , 〈l1, {x → −1}〉, 〈l1, {x → 0}〉, 〈l1, {x → 1}〉, . . .} = γ (S2) and, thus, 
S4 �γ S2 would hold in any sensible definition of �γ . The symbolic execution graph for program WHILE� is shown in 
Fig. 4.

Example 8. Let us consider now the symbolic program MULT� . Here, we consider that two states 〈e1, σ1〉 and 〈e2, σ2〉 are 
comparable if the expressions e1 and e2 are rooted by the same (defined or constructor) function symbol. In this language, 
〈e2, σ2〉 �γ 〈e1, σ1〉 if e2σ2 is an instance of e1σ1, i.e., there exists a substitution θ such that e2σ2 = e1σ1θ .

Unfortunately, given the infinite computation shown in Example 6:

〈add(X, Y ), id〉 r4� 〈S(add(X ′, Y )), {X → S(X ′)}〉
r4� 〈S(S(add(X ′, Y ))), {X → S(S(X ′′)), X ′ → S(X ′′)}〉
r4� . . .

subsumption does not suffice to stop this derivation. Basically, new states do not subsume previous states because of the 
increasing number of topmost constructors S. This is usually solved in functional languages either by introducing further 
operations for removing the topmost constructor symbols from the states or by only considering function calls (i.e., maximal 
subexpressions rooted by defined function symbols). Here, we prefer to keep the framework as simple as possible, so this 
situation will be dealt with our second operator: abstraction (see below).

3.2. Abstraction

While subsumption allows one to produce finite-state symbolic execution graphs in many cases, this cannot be always 
ensured. In some cases, some form of abstraction is also required. For this purpose, we first introduce the notion of compo-
sition operator. In the following, we let �⇒ denote the multiset extension of the symbolic execution transition relation �, 
i.e., given a multiset of symbolic states (S1, . . . , Sn), we have (S1, . . . , Si, . . . , Sn) τ ,π�⇒ (S1, . . . , S ′

i , . . . , Sn) iff Si
τ ,π� S ′

i for 
some i ∈ {1, . . . , n}.

Definition 8. Let 〈�, �, T , ρ〉 be a program and 〈��, ��, T �, ρ�〉 its symbolic version. We say that the (associative and 
commutative) binary operator ⊕ is a composition operator if the following conditions hold:

• Si �γ S ′
i implies S1 ⊕ . . . ⊕ Si ⊕ . . . ⊕ Sn �γ S1 ⊕ . . . ⊕ S ′

i ⊕ . . . ⊕ Sn , 1 ≤ i ≤ n, with S1, . . . , Sn, S ′
i ∈ �� .

• If S �γ S1 ⊕ . . .⊕Sn and there is an infinite computation from some s ∈ γ (S), then there is also an infinite computation 
from some s′ ∈ γ (Si), i ∈ {1, . . . , n}.

Roughly speaking, the first condition ensures that generalizing part of an expression also generalizes the complete ex-
pression. The second condition is needed to ensure that analyzing the termination of the computations from S1, . . . , Sn
independently suffices for inferring the termination of the computations from S1 ⊕ . . . ⊕ Sn .

Definition 9 (Abstraction operator). Let S be a symbolic state and let C be a set of symbolic states (typically, a set of previous 
symbolic states). We say that α : �� × ℘(��) → ℘(��) is an abstraction operator if α(S, C) = {S1, . . . , Sn}, n > 0, implies 
S �γ S1 ⊕ . . . ⊕ Sn for some composition operator ⊕.

Loosely speaking, an abstraction operator may decompose a symbolic state into a number of symbolic states whose 
composition (using an appropriate operator ⊕) is more general than the original symbolic state. This divide and conquer



G. Vidal / Science of Computer Programming 102 (2015) 142–157 151
strategy is often essential to obtain a finite graph. The abstraction operator usually takes into account the computation 
history (i.e., the previous states in the same computation). As mentioned before, since the ascending chain condition holds 
for �γ , abstraction suffices to eventually build a graph where all states can be folded back using subsumption, thus ensuring 
the construction of a finite graph.

Definition 10 (Abstraction step). Let P � = 〈��, ��, T , ρ�〉 be a symbolic program and GP � be an incomplete symbolic execu-
tion graph for S0 ∈ �� where

S0 −→ S1 −→ . . . −→ Sn−1 −→ Sn

is a path in the graph with n > 0, so that all nodes are marked but the last one. Given an abstraction operator α, we 
perform an abstraction step by marking Sn and adding edges labeled with abs from Sn to new nodes labeled with the 
symbolic states in α(Sn, C), with C ⊆ {S0, . . . , Sn−1}.

We note that, in contrast to our approach, abstraction in symbolic execution is typically used to underapproximate the 
computation space.4

Now, we present a simple and generic strategy to apply abstraction while ensuring the finiteness of the symbolic execu-
tion graph. For this purpose, we first recall the notion of well-quasi-order:

Definition 11 (Well-quasi-ordering, wqo). A well-quasi-ordering ≤ on a set S is a quasi-ordering (i.e., a reflexive and transitive 
binary relation) such that any infinite sequence of elements e1, e2, e3, . . . from S contains an increasing pair ei ≤ e j with 
i < j. The set (S, ≤) is said to be well-quasi-ordered.

Here, we plan to use a wqo (��, �) on symbolic states so that only states in the same equivalence class w.r.t. a compari-
son order ∼ are comparable with the ordering � (which is safe by Ramsey’s theorem [41], since the number of equivalence 
classes is finite).

Summarizing, we can use the following algorithm to construct a finite symbolic execution graph:

Definition 12 (Finite graph construction). Let P � = 〈��, ��, T , ρ�〉 be a symbolic program and GP � be an incomplete symbolic 
execution graph for S0 ∈ �� . We consider that ∼ is a comparison relation and (��, �) is a wqo.

Initialization:
i := 0; Ti is a tree with one unmarked node labeled with S0.

Repeat
1. Let S0 −→ S1 −→ . . . −→ Sn−1 −→ Sn be a root-to-leaf path in Ti .

2. We consider three possibilities to expand the graph:5

• If Sn subsumes a comparable symbolic state Si , 0 ≤ i ≤ n − 1, with Sn ∼ Si , Ti+1 is obtained by adding a 
subsumption edge from Sn to Si and marking the node Sn .

• Otherwise, we check if Sn is bigger than some comparable symbolic state Si , 0 ≤ i ≤ n −1, i.e., Si � Sn and Sn ∼
Si . In this case, Ti+1 is obtained by applying an abstraction step to Sn w.r.t. the set of comparable ancestors, 
and marking this node.

• Otherwise, one symbolic execution step is performed. Here, Ti+1 is obtained by marking Sn and adding the 
corresponding children (which can be none if the state is a final state).

3. i := i + 1
until Ti does not contain unmarked nodes

Finiteness of the symbolic execution graph is an easy consequence of the following facts:

• Since (��, �) is a wqo, by Definition 11, any infinite path in the symbolic execution graph S0, S1, S2, . . . must contains 
an increasing pair Si � S j with i < j. Therefore, abstraction is applied to these paths.

• Moreover, every abstraction step reduces a symbolic state S to a (finite) set of new abstracted states S1, . . . , Sn such 
that S �γ S1 ⊕ . . . ⊕ Sn . Furthermore, by Definition 8, Si �γ S ′

i implies S1 ⊕ . . . ⊕ Si ⊕ . . . ⊕ Sn � S1 ⊕ . . . ⊕ S ′
i ⊕

. . . ⊕Sn , so further abstractions to an element of a composition still generalizes the composed expression. Finally, since 
(��,�γ ) satisfies the ascending chain condition, a symbolic state can only be abstracted a finite number of times, so 
that subsumption eventually applies.

4 Actually, [6] already suggests in the conclusion how to compute an overapproximation by also evaluating abstracted states, as we do.
5 Here, we consider that the comparable symbolic states are tried sequentially from the root of the graph to the current node.
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Example 9. Let us first consider the language IMP. Here, for simplicity, we assume that integer variables are bounded 
between −minint and +maxint . Then, we can easily define a wqo (��, �imp) on comparable symbolic states as follows:

〈l,σ1,π1〉 �imp 〈l,σ2,π2〉
iff {xσ1θ1 | x ∈ V , θ1 ∈ solsV (π1)} ⊆ {xσ2θ2 | x ∈ V , θ2 ∈ solsV (π2)}

where V is the set of the program variables and e denotes the evaluation of expression e. For instance, for the 
program WHILE� , the biggest state has the form {l, {x → X}, true}, since it denotes the set {−minint, −minint +
1, . . . , 0, . . . , +maxint − 1, +maxint}. Alternatively, one could consider an infinite integer domain and represent symbolic 
values with integer intervals, so that abstraction is based on some widening operator, as discussed in page 146.

In our previous example, it is not possible to construct a symbolic execution where some state is bigger (using �imp) 
than a previous state since variables can only become more constrained. However, we can slightly modify the program as 
follows:

l0 : x := 1;
l1 : while x > 0 do
l2 : x := input();
l3 : done

l0
τ1 l1

τ4

τ2

l2
τ3

l3

Now, we have the following symbolic execution:

〈l0, {x → X}, true〉 τ1� 〈l1, {x → 1}, true〉
τ2� 〈l2, {x → 1}, true〉
τ3� 〈l1, {x → X ′}, true〉

so that 〈l1, {x → X ′}, true〉 is not subsumed by the previous comparable state 〈l1, {x → 1}, true〉 but we have

〈l1, {x → 1}, true〉 �imp 〈l1, {x → X ′}, true〉
since {1} ⊆ {−minint, . . . , 0, . . . , +maxint}. In our simple language IMP, no composition operator is required since abstraction 
would only return a single, more general symbolic state. In the interprocedural case, however, states usually contain a stack
and abstraction may need to produce more than one new symbolic state.

Here, we can use a simple abstraction operator that simply assigns a fresh symbolic variable to each program variable 
that keeps growing. Therefore, the symbolic execution proceeds as follows:

〈l1, {x → X ′}, true〉 abs� 〈l1, {x → X ′′}, true〉 ≡ S5
τ2� 〈l2, {x → X ′′}, X ′′ > 0〉
τ3� 〈l1, {x → X ′′′}, X ′′ > 0〉
sub� S5

and the symbolic execution is thus finite now.

Example 10. In the context of logic and functional programming, the definition of a wqo is often based on some variant 
of the homeomorphic embedding ordering [27,19]. Intuitively speaking, e1 �func e2 if e1 can be obtained from e2 by deleting 
some function symbols (see, e.g., [29] for a precise definition). E.g., f(f(a,g(b)),b) embeds (is bigger than) f(a,g(b)).

Let us consider again the infinite symbolic execution of Example 8:

〈add(X, Y ), id〉 r4� 〈S(add(X ′, Y )), {X → S(X ′)}〉
r4� 〈S(S(add(X ′, Y ))), {X → S(S(X ′′)), X ′ → S(X ′′)}〉
r4� . . .

Here, we consider that 〈e1, σ1〉 �func 〈e2, σ2〉 iff the states are comparable and e1 �func e2. Then, we have that

〈S(add(X ′, Y )), {X → S(X ′)}〉 �func 〈S(S(add(X ′, Y ))), {X → S(S(X ′′)), X ′ → S(X ′′)}〉
and they are comparable since both states have S as the root symbol.

Roughly speaking, in our functional context, abstraction may take an expression containing nested function symbols, e.g., 
f(g(X), Y ), and return new states containing the constituents of this expression, e.g., f(W , Y ) and W = g(X), where W is a 
fresh symbolic variable, so that f(W , Y ) ⊕ (W = g(X)) = f(g(X), Y). For simplicity, we do not make the link W explicit (since 
it is not relevant for our purposes: proving termination) and just write f(W , Y ) and g(X).
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In particular, an abstraction operator can be naturally defined using the notion of least general generalization [37]. 
First, given two expressions, e1 and e2, we say that e is a generalization of e1 and e2 if there exist substitu-
tions θ1 and θ2 such that eθ1 = e1 and eθ2 = e2; we say that e is the least general generalization (lgg) if e is 
an instance of any other generalization. We assume a function lgg such that lgg(e1, e2) = (e, θ1, θ2). For instance, 
lgg(f(g(a),b), f(g(b), c))= (f(g(X),Y), {X → a,Y → b}, {X → b,Y → c}).

Essentially, given two symbolic states s1 = 〈e1, σ1〉 and s2 = 〈e2, σ2〉 with lgg(e1, e2) = (e, θ1, θ2), the abstraction of s2
w.r.t. s1 returns the symbolic state 〈e, σ2〉, together with new states 〈e′, σ2〉 for each expression containing defined functions 
in θ2.

Here, the lgg of S(add(X ′, Y )) and S(S(add(X ′, Y ))) returns

(S(W ), {W → add(X ′, Y )}, {W → S(add(X ′, Y ))})
Therefore, an abstraction step proceeds as follows:

〈S(S(add(X ′, Y ))), {X → S(S(X ′′)), X ′ → S(X ′′)}〉
abs� 〈S(add(X ′, Y )), {X → S(S(X ′′)), X ′ → S(X ′′)}〉

and the new symbolic state subsumes a previous state, so the computation terminates.
In other cases, abstraction returns more than one relevant (i.e., with defined functions) symbolic states and we have to 

follow several paths, e.g.,

〈main(X,S(S(Z))), id〉
r0� 〈mult(X,S(S(Z))), id〉
r2� 〈add(mult(W ,S(S(Z))),S(S(Z))), {X → S(W )}〉
r2� 〈add(add(mult(W ′,S(S(Z))),S(S(Z))),S(S(Z))), {X → S(S(W ′)), W → S(W ′)}〉 ≡ S

with

S abs� 〈add(X ′,S(S(Z))), {X → S(S(W ′)), W → S(W ′)}〉
and

S abs� 〈mult(W ,S(S(Z))), {X → S(S(W ′)), W → S(W ′)}〉
The second symbolic state is already subsumed by a previous one, while the first one will require a few further steps.

The complete symbolic execution graph for program MULT� is shown in Fig. 5, where we skip the substitutions of the 
symbolic states to keep the graph simple.

We have presented the conditions that an abstraction strategy must fulfill in order to ensure the finiteness of the sym-
bolic execution graph and its correctness (i.e., that an overapproximation is still computed, see Theorem 1 below). Of course, 
the definition of a good abstraction strategy depends on the considered programming language, since the definition of both 
the wqo � and the abstraction operator α highly depend on the features of the programming language. We refer the inter-
ested reader to papers dealing with concrete programming languages (like, e.g., Java [10], where an abstraction operation is 
introduced in order to merge two symbolic states whenever the evaluation reaches a program position for the second time).

3.3. Closed symbolic execution graphs

In the previous section, we have introduced subsumption and abstraction operators that allow one (using appropriate 
strategies) to construct a finite symbolic execution graph. However, is the resulting graph still complete? (i.e., does it still 
represent an overapproximation of the original computations?). In this section, we introduce the notion of closed symbolic 
execution graph,6 which suffices for completeness.

Definition 13 (Closed symbolic execution graph). Let P be a program and P � a symbolic version of P . Let G be a finite symbolic 
execution graph (possibly including subsumption and abstraction steps). Then, G is closed if all nodes are marked.

The closedness of a symbolic execution graph guarantees that all concrete executions are covered in the graph (i.e., 
that it computes an overapproximation). We note that our closed symbolic execution graphs have some similarities with 
the abstract reachability graphs of [25]; however, the abstract reachability graph only represents an overapproximation of 
concrete execution when the graph is finite, which is not always ensured (though some strategies are discussed).

Finally, we present the main results of this section, which show that closed symbolic execution graphs indeed represent 
an overapproximation of concrete execution and can be used for proving the termination of the original program.

6 The terminology “closed” is taken from the partial evaluation literature.
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main(X,S(S(Z)))

r0

mult(X,S(S(Z)))
r1 r2

Z add(mult(W ,S(S(Z))),S(S(Z)))
r1

r2add(Z,S(S(Z)))

add(add(mult(W ′,S(S(Z))),S(S(Z))),S(S(Z)))

abs

absadd(X ′,S(S(Z)))

r3
r4

mult(W ,S(S(Z)))

sub

S(S(Z)) S(add(X ′′,S(S(Z))))

r3
r4

S(S(S(Z))) S(S(add(X ′′′,S(S(Z)))))

abs
abs

abs

add(X ′′,S(S(Z)))

sub

S(add(X ′′′,S(S(Z))))

sub

S(Y )

Fig. 5. Symbolic execution graph for program MULT� .

Theorem 1. Let P be a program and P � a symbolic version of P . Let G be a closed symbolic execution graph for S0 and let s0 ∈ γ (S0). 
For every computation s0

τ1→R P s1
τ2→R P . . ., there is a symbolic execution S0

τ1�R P� S1
τ2�R P� . . . such that for all Si

τi+1� Si+1 , i ≥ 0, 

either the edge Si
τi+1−→ Si+1 belongs to the graph G or there are nodes Si1, . . . , Sin , n > 1, in G with Si = Si1 ⊕ . . . ⊕Si j ⊕ . . . ⊕ Sin , 

Si+1 = Si1 ⊕ . . . ⊕ S ′
i j ⊕ . . . ⊕ Sin , 1 ≤ j ≤ n, and the edge Si j

τi+1−→ S ′
i j belongs to G .

Proof. We prove the claim by induction. Since the base case is trivial, we consider the inductive case. Consider an arbitrary 
transition si

τi+1→ R P si+1, i > 0. By condition (4) of Definition 4, we have that, for any Si such that si ∈ γ (Si), the transition 
Si

τi+1�
R�

P
Si+1 holds with si+1 ∈ γ (Si+1). First, we consider that the graph contains a node labeled with Si . Since the graph 

is closed, we only need to distinguish the following cases7:

• The graph has an edge Si
τi+1−→ Si+1. Then, the claim follows by induction.

• The graph contains an edge Si
sub−→ S ′

i . By Definition 6, Si �γ S ′
i and, thus, γ (Si) ⊆ γ (S ′

i ). Therefore, we have si ∈ γ (S ′
i )

too. By condition (4) of Definition 4, the transition S ′
i

τi+1�
R�

P
Si+1 holds too with si+1 ∈ γ (Si+1). Hence, S ′

i

τi+1−→ Si+1

belongs to the graph and the proof follows by induction.

• The graph contains edges Si
abs−→ Si1, . . . , Si

abs−→ Sin , n ≥ 1. By Definitions 9 and 10, we have Si �γ Si1 ⊕ . . . ⊕ Sin

and, thus, γ (Si) ⊆ γ (Si1 ⊕ . . . ⊕ Sin). Therefore, we have si ∈ γ (Si1 ⊕ . . . ⊕ Sin). Let S ′ = Si1 ⊕ . . . ⊕ Sin . By con-

dition (4) of Definition 4, the transition S ′ τi+1�
R�

P
S ′′ holds too with si+1 ∈ γ (S ′′). By Definition, S ′ τi+1� S ′′ implies 

(Si1, . . . , Si j, . . . , Sin) 
τi+1�⇒ (Si1, . . . , S ′

i j, . . . , Sin), 1 ≤ j ≤ n, with S ′′ = Si1 ⊕ . . . ⊕ S ′
i j ⊕ . . . ⊕ Sin . Therefore, we have 

Si j
τi+1� S ′

i j . For simplicity, we assume that there are no consecutive abstraction or subsumption steps (though extend-

ing the proof for the general case is not difficult). Thus, we have Si j
τi+1−→ S ′

i j in the graph, and the proof follows by 
induction.

Let us now consider that the graph contains nodes labeled with Si1, . . . , Sin such that Si = Si1 ⊕ . . . ⊕ Sin . Then, we 
distinguish the following possibilities:

7 We note that if the graph were not closed, one should also consider (unmarked) nodes without output edges, and the claim would not be true.
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• The graph has an edge Si j
τi+1−→ S ′

i j , 1 ≤ j ≤ n, with Si+1 = Si1 ⊕ . . . ⊕S ′
i j ⊕ . . . ⊕Sin , and the claim follows by induction.

• The graph contains an edge Si j
sub−→ S ′

i j , 1 ≤ j ≤ n. By Definition 6, we have Si j �γ S ′
i j . Now, by Definition 8, we have 

Si1 ⊕ . . . ⊕ Si j ⊕ . . . ⊕ Sin �γ Si1 ⊕ . . . ⊕ S ′
i j ⊕ . . . ⊕ Sin . Let S ′ = Si1 ⊕ . . . ⊕ S ′

i j ⊕ . . . ⊕ Sin . Then, we have si ∈ γ (S ′)

too. By condition (4) of Definition 4, the transition S ′ τi+1�
R�

P
S ′′ holds too with si+1 ∈ γ (S ′′). Hence, Sa

τi+1−→ Sb belongs 
to the graph, with Sa = Sik , Sb = S ′

ik , k ∈ {1, . . . , j − 1, j + 1, . . . , n} and S ′′ = Si1 ⊕ . . . ⊕ S ′
ik ⊕ . . . ⊕ Sin , or Sa = S ′

i j , 
Sb = S ′′

i j , and S ′′ = Si1 ⊕ . . . ⊕ S ′′
i j ⊕ . . . ⊕ Sin . In either case, the proof follows by induction.

• The graph contains edges Sij
abs−→ S ′

1, . . . , Sij
abs−→ S ′

m , m ≥ 1, 1 ≤ j ≤ n. By Definition 9, we have Si j �γ S ′
1 ⊕ . . . ⊕ S ′

m
and, by Definition 8, Si1 ⊕ . . .⊕Si j ⊕ . . .⊕Sin �γ Si1 ⊕ . . .⊕(S ′

1 ⊕ . . .⊕S ′
m) ⊕ . . .⊕Sin = S ′ . Therefore, we have si ∈ γ (S ′). 

By condition (4) of Definition 4, the transition S ′ τi+1�
R�

P
S ′′ holds too with si+1 ∈ γ (S ′′). By definition, S ′ τi+1� S ′′ implies 

(Si1, . . . , S ′
1, . . . , S ′

m, . . . , Sin) = (S ′′
1 , . . . , S ′′

l , . . . , S ′′
k ) 

τi+1�⇒ (S ′′
1 , . . . , S ′′′

l , . . . , S ′′
k ), 1 ≤ l ≤ k, k = n + m − 1, and the proof 

proceeds as in the previous case. �
Thanks to Theorem 1 and the conditions of Definition 8, one can analyze the termination of the original program by 

analyzing the transitions (which are not subsumption or abstraction steps) in the closed symbolic execution graph. Actually, 
one can further restrict it to the transitions that belong to a loop in the graph (i.e., to the strongly connected components 
of the graph).

Our approach is clearly designed to perform a termination analysis. This is why the previous result, Theorem 1, only 
guarantees that there is a symbolic counterpart for every concrete execution. Nevertheless, one could extend the framework 
to also preserve other properties of interest so that other kind of analyses would be possible.

3.4. The approach in practice

In this paper, we have introduced two simple programming languages to illustrate our developments. Furthermore, in 
[47] we presented a termination prover for the language IMP. This tool constructs a finite symbolic execution graph and, 
then, extracts rewrite rules from the transitions in the graph. Finally, termination of the rewrite rules is analyzed using the 
termination prover AProVE [22]. A web interface to test the tool is available from

http :/ /kaz .dsic .upv.es /sett/

Clearly, both IMP and FUNC are tiny languages, still far from real world programming languages. However, as mentioned in 
the introduction, there are a number of powerful tools that have been already developed and that mostly follow the scheme 
presented in this paper. For instance, the system AProVE [22] for proving the termination of Prolog, Haskell and Java (as 
well as Costa [3,2] and Julia [43] to some extent, see below), follow a similar scheme and have been applied to real world 
programming languages. Therefore, the viability of the approach should be clear.

4. Related work

As mentioned before, there are already several approaches to proving the termination of programs which mostly follow 
a similar scheme as the one we have presented. This is the case, e.g., of the works that consider the termination of Haskell 
[21], Prolog with impure features [42], narrowing [35,46], and Java bytecode [36,10,9] by transforming the original termina-
tion problem into the problem of analyzing the termination of a rewrite system. Costa [3,2], a cost and termination analyzer 
for Java bytecode, follows a similar pattern but produces a constraint logic program instead. Moreover, in contrast to our 
approach, Costa basically uses a sort of control flow graph of the program—rather than a symbolic execution graph—to guide 
the compilation of a Java program into a constraint logic program. Julia [43] is also a termination prover for Java that follows 
a similar scheme as Costa but considers the result of a so called path-length analysis to compute the associated constraint 
logic programs.

The novelty of our approach is twofold. On the one hand, we propose a language-independent approach that may ease 
the design of new program analyzers for different programming languages by clarifying some common principles of these 
approaches. On the other hand, we reformulate the scheme using well-known principles from symbolic execution and partial 
evaluation, so that the vast literature on constructing finite symbolic executions can be reused (rather than starting from 
scratch, as some of the above works have done).

Proving that a program terminates for all possible inputs is undoubtedly a fundamental problem that has been exten-
sively studied in the context of term rewriting [8,45] and logic programming [31], where powerful termination provers exist 
(see, e.g., the results from the last termination competition [1]). In contrast, proving the termination of imperative programs 
has been mostly overlooked for decades. Recent progress in this area, however, has changed the picture and powerful—and 
usable—tools have emerged [44].

A popular recent branch of work is based on the notion of transition invariants [39] and applies to both sequential and 
concurrent programs (see [14] for a recent survey). This technique aims at identifying a set of invariants that approximate 

http://kaz.dsic.upv.es/sett/
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the closure of the transition relation of a program, so that if these invariants are well founded, the considered program is 
terminating. The main advantage of this method is that his divide-and-conquer approach allows one to search for different 
well-founded relations rather than a single, monolithic one for the complete program (which is much more difficult in 
practice). This method, however, relies on the construction of ranking functions and, thus, our symbolic execution-based 
approach may be advantageous when the control flow is complex (but can be represented with a finite number of states 
without losing too much precision). Actually, our preliminary experimental results showed that our scheme succeeds for 
some typical examples from the transition invariants literature [47].

Another alternative approach considers the termination of C programs by translating the original program to a term 
rewrite system [20]. However, in contrast to our approach, the rewrite rules are directly extracted from the program’s 
syntax. Consequently, it is (faster but) less accurate since no information is propagated forward in the computations. In 
order to alleviate this problem, additional static analyses are proposed, though their impact is difficult to measure.

5. Conclusion

In this work, we have presented the front-end of a language-independent approach to proving program termination by 
constructing a finite and complete symbolic execution graph. We have illustrated our approach using two simple imperative 
and functional programming languages. Hopefully, this higher level approach will provide useful insights for designing new 
semantics-based termination tools for particular programming languages.
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