
Sudoku in Coq

Laurent Théry
thery@sophia.inria.fr

Marelle Project - INRIA Sophia Antipolis

February 2006

Abstract

This note presents a formalisation done in Coq of Sudoku. We

formalise what is a Sudoku, a Sudoku checker and a Sudoku solver.

The Sudoku solver uses a naive Davis-Putnam procedure.

1 The Grid

The grid is parametrised by two integers h and w. It is composed of hw

subrectangles, each rectangle is composed of h lines and w columns. If we
take h = 3 and w = 3, we get the usual grid composed of 9 subsquares.

We are going to formalize the grid as a list of integers. In order to express
what rows, columns, subrectangles are, we first need to have some basic list
operations. The function take takes the n first elements of a list l.

Fixpoint take (n: nat) (l: list A) : list A :=

match l with

nil => nil

| a::l1 =>

match n with

O => nil

| S n1 => a:: take n1 l1

end

end.

The function jump skips the first n elements of a list l.

1

Fixpoint jump (n: nat) (l: list A) : list A :=

match l with

nil => nil

| a::l1 => match n with O => l | S n1 => jump n1 l1 end

end.

The function take_and_jump takes the t first elements then skips j elements
and repeats this n times.

Fixpoint take_and_jump (t j n: nat) (l: list A) : list A :=

match n with

0 => nil

| S n1 => take t l ++ take_and_jump t j n1 (jump j l)

end.

Now we are ready to consider an arbitrary grid. We take h as the number
of rows of a subrectangle and w as the number of columns of a subrectangle.
So a subrectangle contains exactly size cells.

Variable h w: nat.

Definition size := h * w.

In a grid, there are size rows. The function row returns the row number i.

Definition row i (l: list nat) := take size (jump (i * size) l).

The function column returns the column number i.

Definition column i (l: list nat) :=

take_and_jump 1 size size (jump i l).

The function rect returns the subrectangle number i.

Definition rect i (l: list nat) :=

take_and_jump w size h

(jump (w * (mod i h) + h * (div i h) * size) l).

In the list that represents the grid, we take the convention that the integer
0 indicates an empty cell. We define the list ref_list that contains all the
possible values of a cell: 1, 2, . . . , size.

Fixpoint progression (n m: nat) : list nat :=

match n with O => nil | S n1 => m :: progression n1 (S m) end.

Definition ref_list := progression size 1.

2

2 The Sudoku

A way to define what is a Sudoku is to use the notion of permutation.

Inductive permutation : list A -> list A -> Prop :=

| permutation_nil: permutation nil nil

| permutation_skip: forall a l1 l2,

permutation l2 l1 -> permutation (a :: l2) (a :: l1)

| permutation_swap: forall a b l,

permutation (a :: b :: l) (b :: a :: l)

| permutation_trans: forall l1 l2 l3,

permutation l1 l2 -> permutation l2 l3 -> permutation l1 l3.

A list of integers is a Sudoku if it has the right length, each of its rows is a
permutation of ref_list, each of its columns is a permutation of ref_list
and each of its subrectangles is a permutation of ref_list.

Definition sudoku l :=

length l = size * size /\

(forall i, i < size -> permutation (row i l) ref_list) /\

(forall i, i < size -> permutation (column i l) ref_list) /\

(forall i, i < size -> permutation (rect i l) ref_list).

3 The Sudoku checker

We can easily decide if a list is a a permutation of another one with the
function permutation_dec1.

Definition permutation_dec1 :

(forall a b : A, {a = b} + {a <> b}) ->

forall l1 l2, {permutation l1 l2} + {~ permutation l1 l2}.

It follows that we can define a Sudoku checker.

Definition check: forall l, {sudoku l} + {~sudoku l}.

4 The Sudoku solver

In order to solve Sudoku, we are going to translate the problem into a con-
straint problem and use a Davis-Putnam procedure [1] to solve it.

3

4.1 Positions, literals, clause and clauses

Positions

A literal represents the fact that a given cell contains a given value. We first
define the type pos for positions.

Inductive pos: Set := Pos (x: nat) (y: nat).

Positions starts at (0,0) till (size-1, size-1). A position is valid if it is inside
the grid.

Definition valid_pos (p: pos) := let (x,y) := p in

x < size /\ y < size.

To enumerate all the positions in a left-right top-down manner, we use the
function next.

Definition next (p: pos) := let (x,y) := pos in

if eq_nat (S y) size then Pos (S x) 0 else Pos x (S y).

We can turn a position into its index in the list that represents the grid with
the function pos2n

Definition pos2n (p: pos) := let (x,y) := p in x * size + y.

The function get retrieves from the list s that represents the grid the value
inside the cell at position p

Definition get p l := nth 0 (jump (pos2n p) l) 0.

The function update puts inside the cell at position p the value v.

Fixpoint subst (n: nat) (v: A) (l: list A) : list A :=

match l with

nil => nil

| a :: l1 =>

match n with O => L :: l1 | S n1 => a :: subst n1 L l1 end

end.

Definition update p L (l: list nat) := subst (pos2n p) L l.

Literals

A literal is composed of a position and a value.

Inductive lit: Set := L (p: pos) (v: nat).

4

Clause

A clause is a disjunction of literals. It is represented as a list. A clause is
satisfied if and only if at least one of its literals is satisfied,

Definition clause := list lit.

We provide some operations to manipulate clauses. The function lit_is_in
checks if a literal is in a clause.

Definition lit_is_in: lit -> clause -> bool.

The function lit_insert adds a literal inside a clause.

Definition lit_insert: lit -> clause -> clause.

The function lit_rm removes from c2 all the literals that occur in c1.

Definition lit_rm (c1 c2: clause): clause.

The function clause_merge appends all the literals in c1 and c2.

Definition clause_merge (c1 c2: clause): clause.

Clauses

The problem to solve is a conjunction of clauses. The conjunction is repre-
sented as a list. To solve the problem, we need to satisfy each clause, i.e. we
need to satisfy at least one literal in each clause.

Definition clauses:= list (nat * clause).

The integer associated to each clause represents the length of the clause, i.e.
the number of literals in the clause. This integer is used to sort the list.
Clauses with few literals are on top of the list. The function clause_insert
adds a clause in the list of clauses.

Definition clause_insert: clause -> clauses -> clauses.

The function clause_merge appends two lists of clauses.

Definition clauses_merge: clauses -> clauses -> clauses.

The key function for manipulating clauses is the function clauses_update.
It is used to update the list of clauses removing from the list all the clauses
that contain the literal l and removing from each clause in the list all the
literals that occur in c.

5

Fixpoint clauses_update (l: lit) (c: list lit) (cs: clauses)

{struct cs}: clauses :=

match cs with

nil => nil

| (n , c1) :: cs1 =>

if lit_is_in l c1 then clauses_update l c cs1 else

let res := lit_rm c c1 in

clause_insert res (clauses_update l c cs1)

end.

This function is called to update the list of constraints when a new fact is
known. The literal l is this new fact we know to hold (for example the cell
(1, 2) contains 3). The list of literals c contains the facts we know not to
hold (for example the cell (1, 2) does not contain 1, the cell (1, 2) does not
contain 2, the cell (1, 2) does not contain 4, . . .).

4.2 Generating problem constraints

In order to generate constraints, we need some list. The list indexes contains
all the possible index for a position from 0 to size -1.

Definition indexes := progression size 0.

The list cross contains all the position (x,y) with 0 ≤ x < h and 0 ≤ y < w.

Definition cross :=

let p := progression h 0 in

let q := progression w 0 in

fold_right (fun x l => (map (fun y => (Pos x y)) q) ++ l) nil p.

The list cross1 contains all the pairs (x,y) with 0 ≤ x < size and 1 ≤ y ≤

size.

Definition cross1 :=

let p := indexes in

let q := ref_list in

fold_right (fun x l => (map (fun y => (x, y)) q) ++ l) nil p.

The function gen_row generates the constraints that the row number i con-
tains the value z.

Definition gen_row i z :=

fold_right (fun y l => lit_insert (L (Pos i y) z) l) nil indexes.

6

The function gen_column generates the constraints that the column number
i contains the value z.

Definition gen_column i z :=

fold_right (fun x l => lit_insert (L (Pos x i) z) l) nil indexes.

The function gen_rect generates the constraints that the subrectangle num-
ber i contains the value z.

Definition gen_rect i z :=

let x := h * div i h in

let y := w * mod i h in

fold_right (fun p l => lit_insert (L (shift p x y) z) l)

nil cross.

where div and mod are the division and the modulo respectively. The function
gen_cell generates the constraints that the cell at position p contains a
value.

Definition gen_cell p :=

fold_right (fun z l => lit_insert (L p z) l) nil ref_list.

The function all_cell generates the constraint that all the cells of the grid
contain a value.

Definition all_cell :=

let c0 := cross2 in

(fold_right (fun p l => let res := gen_cell p in

clause_insert res l) nil c0).

5 Generating complement literals

To speed up the search, when we have a new fact, we not only remove all the
clauses that contains the corresponding literals but we also simplify clauses
removing the literals that cannot hold. Computing from a known fact the
list of fact that cannot hold is done by the function anti_literals.

Definition anti_literals (l: lit) :=

let c := l :: nil in

let (p, v) := l in

let (x, y) := p in

7

clause_merge (lit_rm c (gen_row x v))

(clause_merge (lit_rm c (gen_column y v))

(clause_merge (lit_rm c (gen_rect ((div x h) * h + (div y w)) v))

(lit_rm c (gen_cell p)))).

6 Generating the initial constraints

To generate the initial constraints, we just accumulate the clauses that each
number appears in each row, each number appears in each column, each
number appears in each subrectangle and finally each cell contains a value.

Definition init_c :=

let c1 := cross1 in

fold_right

(fun iz l => let res := gen_row (fst iz) (snd iz) in

clause_insert res l)

(fold_right

(fun iz l => let res := gen_column (fst iz) (snd iz) in

clause_insert res l)

(fold_right

(fun iz l => let res := gen_rect (fst iz) (snd iz) in

clause_insert res l)

all_cell c1) c1) c1.

These constraints are redundant but most importantly a list that satisfies
these constraints is a Sudoku. Note that the initial constraint only ensures
that the list ref_list is included in each row, each column and subrectangle.
It is sufficient because the list ref_list is composed of unique elements.

Inductive ulist : list A -> Prop :=

ulist_nil: ulist nil

| ulist_cons: forall a l, ~ In a l -> ulist l -> ulist (a :: l) .

Theorem ref_list_ulist : ulist ref_list.

So we can apply a derived version of the pigeon-hole principle.

Theorem ulist_eq_permutation: forall (l1 l2 : list A), ulist l1 ->

incl l1 l2 -> length l1 = length l2 -> permutation l1 l2.

8

where incl is the inclusion predicate.
Before starting the search, we first have to simplify the list of clauses

with all the information that is present in the initial grid. This is done
by the function gen_init_clauses_aux that walks through the initial grid
s and updates the list of clauses c. The argument p contains the actual
position of the element of the list s we are considering.

Fixpoint gen_init_clauses_aux (s: list nat) (p: pos) (c: clauses):

clauses :=

match s with

nil => c

| a :: s1 =>

let p1 := next p in

let ll := L p a in

if (In_dec eq_nat a ref_list) then

let c1 := clauses_update ll (anti_literals ll) c in

gen_init_clauses_aux s1 p1 c1

else gen_init_clauses_aux s1 p1 c

end.

The main function is gen_init_clauses.

Definition gen_init_clauses s :=

gen_init_clauses_aux s (Pos 0 0) init_c.

7 Finding one solution

To organize the search for a solution, we have to deal with Coq’s restriction
that only structural recursive schemas can be used in function definitions.
The first function we write is the function try_one that given the current
state of the Sudoku and the list of constraints cs tries to satisfies the clause
c. For this, it picks a literal of c, supposes it holds and calls the continuation
f to check if the result is satisfiable. If so, it returns the solution, otherwise
it tries the next literal.

Fixpoint try_one (s: list nat) (c: clause)

(cs: clauses)

(f: list nat -> clauses -> option (list nat))

{struct c}:

option (list nat) :=

match c with

9

nil => None

| (L p v) as k:: c1 =>

let s1 := update p v s in

let cs1 := clauses_update k (anti_literals k) cs in

match f s1 cs1 with

None => try_one s c1 cs f

| Some c1 => Some c1

end

end.

The function find_one_aux is the one that organizes the recursion.

Fixpoint find_one_aux (n: clauses) (s: list nat)

(cs: clauses): option (list nat) :=

match cs with

nil => Some s

| (_, nil) :: _ => None

| (_, p) :: cs1 =>

match n with

nil => None

| _ :: n1 => try_one s p cs1 (find_one_aux n1)

end

end.

It takes the current state of the Sudoku s and the corresponding list of clauses
cs. It looks at the top of the list of clauses. As this list is ordered, clauses
with few literals come first. If the list contains the empty clause, this clause
is unsatisfiable so there is no solution. Otherwise it takes the first clause
and tries to satisfy it using try_one. The argument n is a dummy argument
added to ensure structural termination. As at each call of try_one we remove
at least one clause from the list of clauses, taking the initial list of clauses
can safely by given as dummy argument. The main function is then

Definition find_one s :=

let cs := gen_init_clauses s in find_one_aux cs s cs.

To state the correctness of this algorithm, we need to define the predicate
that indicates if a grid is a refinement of another grid

Definition refine s1 s2 :=

length s1 = size * size /\

length s2 = size * size /\

forall p, valid_pos p ->

In (get p s1) ref_list -> get p s1 = get p s2.

10

With this predicate, the correctness is expressed as

Theorem find_one_correct:

forall s, length s = size * size ->

match find_one s with

None => forall s1, refine s s1 -> ~ sudoku s1

| Some s1 => refine s s1 /\ sudoku s1

end.

8 Finding all solutions

It is trivial to modify the previous algorithm so that it returns not the first
solution but all the solutions. The function try_all accumulates all the
solutions instead of stopping at the first one.

Fixpoint try_all (s: list nat) (c: clause) (cs: clauses)

(f: list nat -> clauses -> list (list nat)):

list (list nat) :=

match c with

nil => nil

| (L p v) as k:: l1 =>

let s1 := update p v s in

let cs1 := clauses_update k (anti_literals k) cs in

merges (f s1 cs1) (try_all s l1 cs f)

end.

where the function

merges:list nat -> list (list nat) -> list (list nat)

inserts a solution in a list of solutions.

Fixpoint find_all_aux (n: clauses) (s: list nat) (cs: clauses):

list (list nat) :=

match cs with

nil => s :: nil

| (_, nil) :: _ => nil

| (_, p) :: cs1 =>

match n with

nil => nil

| _ :: n1 => try_all s p cs1 (find_all_aux n1)

end

end.

11

The main function is then

Definition find_all s :=

let cs := gen_init_clauses s in find_all_aux cs s cs.

The corresponding correctness statement is the following.

Theorem find_all_correct:

forall s s1, refine s s1 -> (sudoku s1 <-> In s1 (find_all s)).

9 Running example

To use the Sudoku contribution, we first need to load it.

Require Import Sudoku.

Suppose we want to solve 3x3 Sudoku, we first create the initial position
taking the convention that zeros correspond to empty cells.

Definition test :=

5 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 4 :: 0 :: 8 :: 1 :: 0 :: 0 :: 0 :: 0 ::

0 :: 9 :: 3 :: 0 :: 0 :: 0 :: 0 :: 0 :: 2 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 2 :: 0 :: 3 ::

9 :: 0 :: 0 :: 7 :: 0 :: 0 :: 0 :: 0 :: 0 ::

2 :: 3 :: 0 :: 0 :: 0 :: 6 :: 0 :: 7 :: 0 ::

3 :: 6 :: 5 :: 1 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 5 :: 0 :: 8 :: 0 :: 0 ::

0 :: 0 :: 1 :: 0 :: 7 :: 0 :: 6 :: 0 :: 0 :: nil.

Doing

Eval compute in find_one 3 3 test.

returns

5 :: 8 :: 6 :: 2 :: 3 :: 7 :: 9 :: 1 :: 4 ::

7 :: 4 :: 2 :: 8 :: 1 :: 9 :: 3 :: 5 :: 6 ::

1 :: 9 :: 3 :: 4 :: 6 :: 5 :: 7 :: 8 :: 2 ::

6 :: 5 :: 7 :: 9 :: 8 :: 1 :: 2 :: 4 :: 3 ::

9 :: 1 :: 4 :: 7 :: 2 :: 3 :: 5 :: 6 :: 8 ::

2 :: 3 :: 8 :: 5 :: 4 :: 6 :: 1 :: 7 :: 9 ::

3 :: 6 :: 5 :: 1 :: 9 :: 8 :: 4 :: 2 :: 7 ::

4 :: 7 :: 9 :: 6 :: 5 :: 2 :: 8 :: 3 :: 1 ::

8 :: 2 :: 1 :: 3 :: 7 :: 4 :: 6 :: 9 :: 5 :: nil

12

Doing

Eval compute in length (find_all 3 3 test).

returns 1. We are then sure that there is a unique solution to this Sudoku
The source code is available at

ftp://ftp-sop.inria.fr/marelle/Laurent.Thery/Sudoku.zip

References

[1] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. J. ACM, 7(3):201–215, 1960.

13

ftp://ftp-sop.inria.fr/marelle/Laurent.Thery/Sudoku.zip

	The Grid
	The Sudoku
	The Sudoku checker
	The Sudoku solver
	Positions, literals, clause and clauses
	Generating problem constraints

	Generating complement literals
	Generating the initial constraints
	Finding one solution
	Finding all solutions
	Running example

