
Proving Pearl: Knuth’s Algorithm for Prime
Numbers

Laurent Théry

INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis France�

Laurent.Thery@sophia.inria.fr

Abstract. In his book “The Art of Computer Programming”, Donald
Knuth gives an algorithm to compute the first n prime numbers. Sur-
prisingly, proving the correctness of this simple algorithm from basic
principles is far from being obvious and requires a wide range of verifica-
tion techniques. In this paper, we explain how the verification has been
mechanised in the Coq proof system.

1 Introduction

There is no relation between the length of a program and the difficulty of its proof
of correctness. Very long programs performing elementary tasks could be trivial
to prove correct, while short programs relying on some very deep properties
could be much harder. Highly optimized programs usually belong to the second
category. For example, algorithms designed for efficient arithmetic operations
are known to be hard to verify since every single line has been thought in order
to minimize execution time and/or memory allocation. Bertot et al. [4] illustrate
the difficulty of verifying such algorithms.

In this paper we are interested in an algorithm given by Knuth in his book
“The Art of Computer Programming” [12]. This algorithm takes an integer n
as an argument and returns the list of the first n prime numbers. The cor-
rectness of this simple algorithm relies on a deep property of prime numbers
called Bertrand’s postulate. The property, first conjectured by Bertrand and
then proved by Chebyshev, states that for any integer number n ≥ 2 there
always exists a prime number p strictly between n and 2n. Proving Knuth’s al-
gorithm from basic principles means formally proving Bertrand’s postulate. To
do so we follow the proof given by Arkadii Slinko [15]. The original idea of this
elementary proof is due to Paul Erdös [6]. The proof itself has a very interesting
structure. The initial problem in number theory is translated into real analysis,
namely analysing the variation of a function. Using derivative and the interme-
diate value theorem, it is possible to conclude that for n greater than 128 the
property holds. To finish the proof, we are then left with the task of individually
checking that the property holds for n varying from 2 to 127.

The paper is structured as follows. In Section 2, we show how prime numbers
can be easily defined in a prover. In Section 3, we present the algorithm proposed
� Currently Visiting Professor at University of L’Aquila, Italy.

D. Basin and B. Wolff (Eds.): TPHOLs 2003, LNCS 2758, pp. 304–318, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Proving Pearl: Knuth’s Algorithm for Prime Numbers 305

by Knuth. In Section 4, we detail the different logical assertions that need to be
attached to the program to prove its correctness. In Section 5, we outline the
proof of Bertrand’s postulate. In Section 6, we comment on some specific aspects
of our formalisation.

2 Prime Numbers

The notion of primality can be defined in a prover in a simple way. Natural
numbers are usually defined using Peano representation. In Coq, we have:
Inductive N :Set :=

O : N
| S : N → N.

With this definition, 0,1,2 are represented as O , (S O), (S (S O)). The next
step is to define the notion of divisibility:
Definition divides: N → N → Prop := λa, b: N.∃q: N. b = qa.

In Coq, predicates are represented as functions. The predicate divides is a
function that takes two natural numbers and returns a proposition. The fact
that a divides b is then written divides(a, b) and corresponds to the proposition
∃q: N. b = qa.

Once divisibility has been defined, we can proceed with primality. A number
is prime if it has exactly two divisors 1 and itself:
Definition prime: N → Prop := λa: N.

a �= 1 ∧ (∀b: N. divides(b, a) ⇒ (b = 1 ∨ b = a)).

With this definition it is possible to derive some basic properties of prime num-
bers. Two of them are of special interest in our context. The first one states that
all prime numbers are odd except 2. Using the definition of odd number:
Definition odd: N → Prop := λa: N.∃b: N. a = 2b + 1.

we have the following theorem:

Theorem prime2Odd: ∀p: N. prime(p) ⇒ p = 2 ∨ odd(p).

The second property states that a number n is prime if all the prime numbers
less than

√
n do not divide it:

Theorem primeDef1: ∀n: N.
1 < n ∧ (∀p: N. prime(p) ∧ p2 ≤ n ⇒ ¬(divides(p, n))) ⇒ prime(n).

The bound of
√

n comes from the fact that if n is composite, i.e. n = pq, then
either p or q must be less than

√
n.

3 Knuth’s Algorithm

To express the algorithm given by Knuth and state its correctness, we use the
Why tool [7]. This tool takes a program annotated with logical assertions à



306 L. Théry

parameter n: int
parameter a: array n of int
parameter m,s,i,j: int ref
parameter b: bool ref

external sqr : int -> int
external mod : int -> int -> int

begin
a[0] := 2;
m := 3;
i := 1;
while ((!i) < n) do
b := true;
s := (sqr !m);
j := 0;
while ((!b) && a[!j] <= !s) do
if (mod !m a[!j]) = 0
then b := false
else j := !j + 1

done;
if (!b) then
begin
a[!i] := !m;
i := !i + 1

end;
m := !m + 2

done
end

Fig. 1. The Algorithm in Why

la Hoare [10] and generates a list of verification conditions. Proving all these
conditions ensures that all the logical assertions in the program hold. Why is
generic in the sense that it is not linked to a specific prover. Outputs for Pvs
and Coq are available.

The algorithm written in Why is given in Figure 1. The syntax of Why is a
subset of the one of the Ocaml programming language. In Ocaml, a variable
that is modifiable has a reference type α ref . If x is a variable of type int ref , the
expression !x denotes the value of x and the statement x := !x +1 increments
the value of x by one. Let us explain the program given in Figure 1. It starts
with a sequence of declarations:

parameter n: int
parameter a: array n of int
parameter m,s,i,j: int ref
parameter b: bool ref



Proving Pearl: Knuth’s Algorithm for Prime Numbers 307

According to these declarations, n is a variable whose value cannot be modified,
a is an array that should eventually contain the first n primes, m, s, i and j are
modifiable integer variables, and b is a modifiable boolean variable. To write the
algorithm, we need two extra functions on integer numbers. Since these functions
are not going to be defined, they are declared external:

external sqr : int -> int
external mod : int -> int -> int

The first one represents the square root, the second one the modulo. For example
(sqr 5) and (mod 23 7) are both equal to 2.

The program has two while loops. The outer one fills the array a with prime
numbers. For this, it uses a candidate prime number m. The boolean variable b
tells whether m is prime or not. If at the end of the inner loop, the value of b is
true, m is put in the array. In any case at the end of each iteration of the outer
loop, the value of m is incremented by 2.

The inner loop checks the primality of the value of m. For this it makes use
of the property primeDef1 . The test (mod !m a[!j])=0 is used for checking if
a[j] divides m. The real difficulty in proving the correctness of the program lies
in the following line:

while ((!b) && a[!j] <= !s) do

If the guard of the loop had been more defensive, i.e.

while ((!b) && j<i && a[!j] <= !s) do

the correctness of the program would be a direct consequence of the two proper-
ties prime2Odd and primeDef1 . As noted by Knuth the test j<i is unnecessary
because of the density of prime numbers. To find a new prime number for the
location a[i], the program starts from the value a[i-1]+2 incrementing m re-
peatedly by 2 till a prime number is found. It results that j could exceed i if
and only if there was no prime number between a[i-1] and a[i-1]2. Bertrand’s
postulate ensures that there is always a prime between a[i-1] and 2a[i-1]. As
a[i-1] is prime and thus larger than 1, we have 2a[i-1] ≤ a[i-1]2, so j cannot
exceed i.

4 Correctness

In order to prove the program given in Figure 1, we have to annotate it with
logical assertions. To do so we need some predicates and functions:

logic one : bool -> int
logic In : int,array int,int,int -> prop
logic Prime : int -> prop
logic Odd : int -> prop
logic Divides : int,int -> prop



308 L. Théry

The function one transforms a boolean into an integer: true → 1 and false → 0.
It is used to express some termination properties of the program.
The predicate In is used to express properties of the array: In(n,a,i,j) is
equivalent to the fact that there exists an index i ≤ k < j such that a[k] = n.
The predicates Prime, Odd and Divides are the usual predicates on integers.

4.1 Preconditions and Postconditions

The only precondition for the program is

{ 0<n }

It is needed to ensure the correct execution of the statement a[0]=2. The post-
condition simply states that at the end of the program a should hold a complete
ordered list of prime numbers:

{(forall k:int. (0 <= k and k < n -> Prime(a[k]))) and
(forall k:int. forall j:int.

(0 <= k and k < j and j < n -> a[k] < a[j])) and
(forall k:int.

(0 <= k and k <= a[n-1] and Prime(k)) -> In(k,a,0,n))
}

4.2 Invariant and Variant for the First Loop

For the first loop

while ((!i) < n) do

the invariant is a conjunction of three blocks. The first one states that the final
assertion holds till i:

(forall k:int. (0 <= k and k < i -> Prime(a[k]))) and
(forall k:int. forall j:int.

(0 <= k and k < j and j < i -> a[k] < a[j])) and
(forall k:int.

(0 <= k and k <= a[i-1] and Prime(k)) -> In(k,a,0,i))

The second block keeps the information related to m, i.e. m is odd and in the
interval defined by Bertrand’s postulate:

a[i-1] < m and m < 2*a[i-1] and Odd (m)

The last block keeps the information related to i:

0 < i and i <= n

In order to find the variant that ensures the termination of the first loop, we
have to notice that either i gets closer to n or m gets closer to 2a[i-1]. So for
a lexicographic order, the pair of these two quantities always gets smaller. This
gives us the following variant:

variant (n-i, 2*a[i-1]-m) for lexZ



Proving Pearl: Knuth’s Algorithm for Prime Numbers 309

4.3 Invariant and Variant for the Second Loop

For the second loop

while ((!b) && a[!j] <= !s) do

the invariant is a conjunction of two blocks. The first block keeps the information
related to j:

0 <= j and j < i

The second block states that if the boolean b is true we have not yet found a
divisor of m and if it is false, a[j] divides m:

(if (b)
then (forall k:int.

(0 <= k and k < j -> not(Divides(a[k],m))))
else Divides(a[j],m))

The termination is ensured because j always gets closer to i except when b is
set to false:

variant one(b)+i-j

This ends all the assertions we need to put in the program. The complete anno-
tated program is given in Appendix A.

5 Bertrand’s Postulate

Running the Why tool on the annotated program given in Appendix A generates
18 verification conditions. Only the condition coming from the invariant of the
first loop that says that m keeps between a[i-1] and 2a[i-1] is difficult to
prove. This is no surprise: to prove it we need a proof of Bertrand’s postulate.

In this section we are not going to present the whole formal proof but only
illustrate some of its most interesting aspects. The proof is largely inspired from
that given by Arkadii Slinko [15]. Still, it has been slightly modified so to make
its formalisation in a prover easier. We refer to the technical report [16] for the
details of the proof.

5.1 Number Theory

The main part of the proof consists in proving properties about natural numbers.
Primality is a key notion on which we need to be able to compute. For this we
turn the predicate into a test function. The primality test 1p(a) is defined as
follows:

1p(a) = a if a is prime
1p(a) = 1 otherwise



310 L. Théry

In particular this test is used to express theorems about the product of prime
numbers. For example, to denote the product of all prime numbers less than n
we simply write

∏

i≤n

1p(i)

Another important notion in the proof of Bertrand’s postulate is the one of
binomial coefficients. The main step of the proof is to find an upper bound and
a lower bound for

(2n
n

)
. The lower bound is given by the following theorem:

Theorem binomialEven: ∀n: N. 0 < n ⇒ 4n ≤ 2n
(2n

n

)
.

The upper bound is only valid in a context where there is no prime between n
and 2n and where n is greater than 128:
Theorem upperBound:

∀n: N. 27 ≤ n ∧ (∀p: N. n < p < 2n ⇒ ¬(prime(p))) ⇒(2n
n

) ≤ (2n)
√

2n/2−142n/3.

In order to define binomial coefficients, we use Pascal’s triangle:
(0
a

)
= 0 if a �= 0

(
a
0

)
= 1

(
a+1
b+1

)
=

(
a

b+1

)
+

(
a
b

)

We then derive the usual closed form:
Theorem binomialFact: ∀n, m: N.

(
n+m

m

)
n!m! = (n + m)!.

Three main properties of binomial coefficients are needed:

Theorem binomialMonoS: ∀n, m, p: N. 2m < n ⇒ (
n
m

) ≤ (
n

m+1

)
.

Theorem binomialComp: ∀n, m: N.
(
n+m

n

)
=

(
n+m

m

)
.

Theorem primeDiracDividesBinomial:
∀n, m, p: N. n < p ≤ n + m ∧ m < p ⇒ divides(1p(p),

(
n+m

n

)
).

The first property is a direct consequence of the definition while the second
property follows from the closed form. To get the third property we use the
closed form and the fact that, if a prime number divides a product, then it
divides one of the elements of the product.

The road to the lower bound theorem binomialEven is rather direct. It starts
by proving the binomial theorem:

Theorem expPascal: ∀a, b, n: N. (a + b)n =
∑

0≤i≤n

(
n
i

)
aibn−i.

By applying this theorem for a = b = 1 we get

Theorem binomial2: ∀n: N. 2n =
∑

0≤i≤n

(
n
i

)
.



Proving Pearl: Knuth’s Algorithm for Prime Numbers 311

Now we have all the ingredients to prove the theorem binomialEven. Using the
theorem binomial2, we have

22n =
∑

0≤i≤2n

(2n
i

)

Taking apart the first and the last term gives

22n = 1 +
∑

1≤i≤2n−1

(2n
i

)
+ 1

We have 2 ≤ (2n
n

)
and using binomialMonoS and binomialComp we can prove

that(2n
i

) ≤ (2n
n

)
for 1 ≤ i ≤ 2n − 1

Using these two bounds we have

4n ≤ (2n
n

)
+ (2n − 1)

(2n
n

)
= 2n

(2n
n

)

The proof of the upper bound theorem upperBound is much more intricate. In
this paper we only illustrate how the expression 42n/3 is derived. It comes from
an appropriate upper bound on the product of prime numbers less than 2n/3.
In order to establish this upper bound, we first prove a dual theorem to the
theorem binomialEven and get

Theorem binomialOdd: ∀n: N.
(2n+1

n

) ≤ 4n.

The proof follows the same path as the one of binomialEven. We first use the
theorem binomial2:

22n+1 =
∑

0≤i≤2n+1

(2n+1
i

)

By keeping only the two middle terms of the sum, we have
(2n+1

n

)
+

(2n+1
n+1

) ≤ 22n+1

Using the theorem binomialComp, we get

2
(2n+1

n

) ≤ 22n+1

By simplifying by 2 on both sides we get the expected result.

Now it is possible to establish the expected upper bound on the product of
prime numbers:

Theorem prodPrimeLt: ∀n: N. 1 < n ⇒ ∏
i≤n 1p(i) < 4n.

The proof is done using complete induction on <. First of all, the property is
true for n = 2. We suppose that the property holds for all m < n and try to
prove that the property holds for n.
If n is even, we have

∏
i≤n 1p(p) =

∏
i≤n−1 1p(p) ≤ 4n−1 ≤ 4n



312 L. Théry

If n is odd, we can write n as 2m + 1 and we have
∏

i≤2m+1 1p(p) = (
∏

i≤m+1 1p(p)) (
∏

m+2≤i≤2m+1 1p(p))

Using the induction hypothesis on the left element of the product, we get
∏

i≤2m+1 1p(p) ≤ 4m+1 (
∏

m+2≤i≤2m+1 1p(p))

From the theorem primeDiracDividesBinomial we know that each element in the
product

∏
m+2≤i≤2m+1 1p(p) divides

(2m+1
m

)
. So we have

∏
i≤2m+1 1p(p) ≤ 4m+1

(2m+1
m

)

It is sufficient to apply the theorem binomialOdd to get the expected result
∏

i≤n 1p(p) ≤ 4m+14m = 42m+1 = 4n

5.2 Real Analysis

The two theorems binomialEven and upperBound give a lower bound and an
upper bound for 2n

(2n
n

)
respectively. By composing them, we get the following

inequality:

4n ≤ 2n
(2n

n

)
< (2n)

√
2n/242n/3

For n sufficiently large, this inequality cannot hold since elementary function
analysis tells us that the left part of the inequality, 4n, grows much faster than
the right part, (2n)

√
2n/242n/3. To prove this formally, we transfer the problem

into real analysis. So far all our definitions and theorems have been using natural
numbers only. For example, in the previous inequality the operations √ and /

are functions over natural numbers, i.e
√

6 = 2 and 7/2 = 3. Now if we are able
to prove that for x real and x ≥ 128 we have

(2x)
√

2x/242x/3 < 4x

where the operations √ and / are the usual real functions then, because of
monotonicity, the inequality over the natural numbers should also hold. This
means that the only way the theorem upperBound could still be true is because
the assumption that there is no prime number between n and 2n is false. So
Bertrand’s postulate would be true for n ≥ 128.

To prove the inequality over the reals, we first simplify it using properties of
the power function

(2x)
√

2x/2
< 4x/3

By taking the logarithm on both sides, we have
√

2x
2 ln(2x) < 2x

3 ln(2)



Proving Pearl: Knuth’s Algorithm for Prime Numbers 313

By simplifying it again we get

0 <
√

8x ln(2) − 3 ln(2x)

If we set f(x) =
√

8x ln(2)− 3 ln(2x), we are left with proving that this function
is always strictly positive for 128 ≤ x. If we evaluate f(128), we get

f(128)=f(27)
=

√
210 ln(2) − 3 ln(28)

=25 ln(2) − 3 23 ln(2)
=23 ln(2)(4 − 3) > 0

If we compute the derivative of f we get

f ′(x) = 8 ln(2)
2
√

8x
− 3

2
2x

=
√

2x ln(2) − 3
x

It is easy to show that the derivative is positive for 128 ≤ x. This implies that the
function is positive. The above function analysis demonstrates that Bertrand’s
conjecture holds for 128 ≤ n. Checking individually the cases from 2 to 127 gives
us the main result:
Theorem Bertrand: ∀n: N. 2 ≤ n ⇒ ∃p: N. prime(p) ∧ n < p < 2n.

6 Some Remarks on the Formal Development

The full development is available at
ftp://ftp-sop.inria.fr/lemme/Laurent.Thery/Bertrand/index.html
It is 6000 lines long. The actual proof of the 18 verification conditions is 1000
lines long of which 800 are just the statements of the conditions. The devel-
opment largely benefits from a previous formalisation of the correctness of the
RSA encryption algorithm [3] in which binomials were defined in order to prove
Fermat’s little theorem. From this previous development 1000 lines were reused.

The really difficult part of the formalisation is the proof of Bertrand’s postu-
late. With respect to the proof on paper [15], we discover that the applicability of
two properties should be restricted. The theorem powerDivBinomial3 was clearly
not valid for n = 1. More interesting was the case of the theorem upperBound.
In the paper the condition 128 ≤ n was missing. The condition that n ≥ 128
was only introduced later in the function analysis. In the proof of the theorem
upperBound it was wrongly stated that the number of prime numbers less than
p was always less than p/2 − 1. Spotting such minutiae is a clear benefit of for-
malising proofs with the help of a proof assistant. It shows that, when possible,
a mechanised proof is a valuable companion to a proof on paper.

Formalising the analysis of the function f requires basic notions about the
exponential and logarithmic functions. It also needs the fact that a function that
has a positive derivative is increasing. This is a consequence of the intermediate
value theorem. The most tedious part of the function analysis was actually to
prove that the inequality that we had over the natural numbers should also hold
for the real numbers. In Coq, natural numbers and real numbers being two



314 L. Théry

separate types, translating statements from natural to real numbers must be
justified explicitly.

When trying to prove the property that there is always a prime number be-
tween n and 2n for n ≤ 128, we took full advantage of the possibility of defining
functions that can be directly evaluated inside Coq. For example, we have de-
fined the function primeb of type N → bool and proved its associated theorem of
correctness
Theorem primebCorrect : ∀n: nat .

if primeb(n) then prime(p) else ¬prime(p).

This theorem says that if primeb(n) evaluates to true we have a proof of prime(p)
and if primeb(n) evaluates to false we have a proof of ¬prime(p). Coq is based
on the isomorphism of Curry-Howard. This means that proofs are programs.
So the proof of the theorem primebCorrect is actually a program that, given a
natural number n, returns a proof of primality or a proof of non-primality. It
means, for example, that since primeb(11 ) evaluates to true a proof of prime(11)
is simply the proof term primebCorrect(11 ), i.e. the application of the program
primebCorrect to the argument 11. Using functions that can be evaluated inside
Coq is interesting because not only it automates proofs but also generates very
small proof objects. Following the same idea we have a function checkPostulate
with the associated theorem of correctness
Theorem checkPostulateCorrect: ∀m: N.

checkPostulate(m) = true ⇒
∀n: N. 2 ≤ n ≤ m ⇒ ∃p: N. prime(p) ∧ n < p < 2n.

Then to prove the following theorem
Theorem postulateCorrect128:

∀n: N. 2 ≤ n ≤ 128 ⇒ ∃p: N. prime(p) ∧ n < p < 2n.

we use the previous theorem with a proof of checkPostulate(128) = true. Since
the function checkPostulate can be evaluated directly inside Coq, the expres-
sion checkPostulate(128) = true is identical to the expression true = true.
Its proof is an instantiation of the theorem reflEqual that states the reflex-
ivity of equality. The proof term for the theorem postulateCorrect128 is then
postulateCorrect(128, reflEqual(bool , true)).

The formal development also includes the proof of a surprising corollary of
Bertrand’s postulate suggested to us by Gérard Huet. For any given n, when
taking the set of all natural numbers from 1 to 2n, it is always possible to sort
them pairwise in such a way that the sum of each pair is a prime number. For
example, with n = 10 we have

{ (1, 2); (3, 4); (5, 8); (6, 7); (9, 14);
(10, 13); (11, 12); (15, 16); (17, 20); (18, 19) }

The proof of this corollary is left to the reader and can be found in the file
Partition.v of our formal development.



Proving Pearl: Knuth’s Algorithm for Prime Numbers 315

7 Conclusions

We believe that Knuth’s algorithm is a very nice example of both the complex-
ity and the diversity of program verification. First of all, it is elementary. Prime
numbers are among the first examples one encounters when learning program-
ming. They are also a standard example for theorem proving. From the point
of view of program verification, Knuth’s algorithm shows that adding or remov-
ing a single instruction in a program can have a huge impact on the difficulty
of establishing its correctness. With the extra test in the second loop, proving
Knuth’s algorithm correct would be a relatively easy exercise. Note that even if
Bertrand’s postulate were already in the database of the theorem prover, deriv-
ing the correctness of Knuth’s algorithm automatically would still require some
non-trivial insight. Bertrand’s postulate asserts that there is a prime between n
and 2n. In the program what is needed is that there exists a prime between n
and n2.

From the point of view of theorem proving, the interesting part of Knuth’s
algorithm is the proof of Bertrand’s postulate. In order to prove it, we had to
derive a fair amount of properties in discrete mathematics. This was no surprise.
More surprisingly the final steps required to transfer the problem into real anal-
ysis. As we could only assess that the property holds asymptotically, we had to
establish that the property holds for an initial segment of the integers. Luckily
enough we had only to check the property from 2 to 128. This property has been
proved automatically using the evaluation mechanism of functions inside Coq.
It is worth noticing that slightly different versions of the proof exist that give a
different initial segment to check. For example in the book “Proofs from THE
BOOK” [2] the bound is 4000 ≤ n. The function we have written to solve the
problem for n ≤ 128 is very näıve and uses a brute force method. It would be
too inefficient for n ≤ 4000. A systematic and more efficient method proposed
by Harrison and Théry [9] would be to delegate the search for all the necessary
primes to an external program and use Coq only to check the result. Note that
a similar method [5] has already been used to get relatively large prime numbers
in Coq.

The main contribution of this work is to present a tour of different formal
verification techniques with an elementary example, a proving pearl. The main
difficulty of proving Knuth’s algorithm correct lies in having all these techniques
working together. A much more elaborate proof effort that exhibits a similar
diversity of verification techniques is the one described by John Harrison [8]. The
fact that it is possible to carry out such kinds of verification in a single system
shows how generic provers based on higher-order logics are. Having expressive
logics makes them suitable for all different kinds of verification. It also indicates
the maturity of theorem provers.

Number theory is an area of interest for theorem proving. For example, Art
Quaife [14] shows how it is possible to prove automatically some non-trivial the-
orems of number theory. More recently, Joe Hurd [11] gives a very nice formalisa-
tion of the correctness of Miller-Rabin probabilistic algorithm to check primality.
Along this line, the next natural candidate for formal verification is the recent



316 L. Théry

polynomial algorithm to check primality proposed by Manindra Agrawal, Neeraj
Kayal and Nitin Saxena [1]. Unfortunately their algorithm relies on much deeper
properties than Bertrand’s postulate, such as Brun-Titchmarsh theorem. These
properties require the formalisation of some fascinating but elaborate tools, such
as sieve methods. It is then most likely that mechanising the correctness of such
an algorithm will still be a challenge for the next couple of years.

Acknowledgments. The formalisation in this paper was motivated by the
preparation of an introductive lecture on Formalised Mathematics that the au-
thor gave at the Types Summer School at Giens in September 2002.

When reading the tutorial [15], it became clear that formalising Bertrand’s
postulate was possible. Many thanks go to Arkadii Slinko for setting up such an
interesting web site.

Without the library of real analysis developed by Micaela Mayero and Olivier
Desmettre, our work could not have been completed. A special thank goes to
Olivier that adapted the library so to include some key properties that were
needed in our formalisation.

Jean-Christophe Filliâtre gave us a very reactive support on Why.
All the formalisation has been done using the neat user-interface PCoq [13].

Yves Bertot was kind enough to spend some time to update PCoq with the
very latest version of Coq.

References

1. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Preprint,
2002, Available at http://www.cse.iit.ac.in/primality.pdf.

2. Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer, 1998.
3. José C. Almeida and Laurent Théry. Correctness of the RSA algorithm. Coq

contribution, 1999, Available at http://coq.inria.fr/contribs/summary.html.
4. Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A GMP program computing

square roots and its proof within Coq. Journal of Automated Reasoning, 29(3–4),
2002.

5. Olga Caprotti and Martijn Oostdijk. Formal and Efficient Primality Proofs by
Use of Computer Algebra Oracles. Journal of Symbolic Computation, 32(1):55–70,
2001.

6. Paul Erdös. Beweis eines Satzes von Tschebyschef. In Acta Scientifica Mathemat-
ica, volume 5, pages 194–198, 1932.

7. Jean-Christophe Filliâtre. Proof of Imperative Programs in Type Theory. In
TYPES ’98, volume 1657 of LNCS, 1998.

8. John Harrison. Floating Point Verification in HOL. In Higher Order Logic Theorem
Proving and Its Applications, volume 971 of LNCS, pages 186–199, 1995.

9. John Harrison and Laurent Théry. A Skeptic’s Approach to Combining HOL and
Maple. Journal of Automated Reasoning, 21(3):279–294, 1998.

10. C. Anthony R. Hoare. An Axiomatic Basis for Computer Programming. Commu-
nication of the ACM, 12(10):576–80, 583, October 1969.

11. Joe Hurd. Formal Verification of Probabilistic Algorithms. Phd Thesis, University
of Cambridge, 2002.



Proving Pearl: Knuth’s Algorithm for Prime Numbers 317

12. Donald E. Knuth. The Art of Computer Programming: Fundamental Algorithms,
pages 147–149. Addison-Wesley, 1997.

13. PCoq. A Graphical User-interface to Coq, Available at http://www-sop.inria.fr
/lemme/pcoq/.

14. Art Quaife. Automated development of fundamental mathematical theories. Auto-
mated reasoning series: 2. Kluwer, 1992.

15. Arkadii Slinko. Number Theory. Tutorial 5: Bertrand’s Postulate. Available at
http://matholymp.com/tutorials/bertrand.pdf.

16. Laurent Théry. A Tour of Formal Verification with Coq: Knuth’s Algorithm for
Prime Numbers. Research Report 4600, INRIA, 2002.

A The Complete Annotated Program

{ n > 0 }
begin
a[0] := 2;
m := 3;
i := 1;
while ((!i) < n) do

{invariant
(0 < i and i <= n) and
(a[i-1] < m and m < 2*a[i-1]) and Odd (m) and
(forall k:int.

(a[i-1] < k and k < m -> not(Prime(k)))) and
(forall k:int. (0 <= k and k < i -> Prime(a[k]))) and
(forall k:int. forall j:int.

(0 <= k and k < j and j < i -> a[k] < a[j])) and
(forall k:int.

(0 <= k and k <= a[i-1] and Prime(k)) -> In(k,a,0,i))
variant (n-i, 2*a[i-1]-m) for lexZ }

b := true;
s := (sqr !m);
j := 0;
while (!b && a[!j] <= !s) do

{invariant
(if (b)

then
(forall k:int.

(0 <= k and k < j -> not(Divides(a[k],m))))
else Divides(a[j],m)) and

(0 <= j and j < i)
variant one(b)+i-j }

if (mod !m a[!j]) = 0
then b := false
else j := !j + 1

done;



318 L. Théry

if (!b) then
begin
a[!i] := !m;
i := !i + 1

end;
m := !m + 2

done
end
{(forall k:int. (0 <= k and k < n -> Prime(a[k]))) and
(forall k:int. forall j:int.

(0 <= k and k < j and j < n -> a[k] < a[j])) and
(forall k:int.

(0 <= k and k <= a[n-1] and Prime(k)) -> In(k,a,0,n))
}


	Introduction
	Prime Numbers
	Knuth's Algorithm
	Correctness
	Preconditions and Postconditions
	Invariant and Variant for the First Loop
	Invariant and Variant for the Second Loop

	Bertrand's Postulate
	Number Theory
	Real Analysis

	Some Remarks on the Formal Development
	Conclusions
	The Complete Annotated Program 



