
DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 75

DOI:10.1145/2699407

Connecting mathematical logic and
computation, it ensures that some
aspects of programming are absolute.

BY PHILIP WADLER

P OW E R F U L I N S I G H T S A R I S E from linking two fields
of study previously thought separate. Examples include
Descartes’s coordinates, which links geometry to
algebra, Planck’s Quantum Theory, which links
particles to waves, and Shannon’s Information Theory,

which links thermo dynamics to com-
munication. Such a synthesis is of-
fered by the principle of Propositions
as Types, which links logic to compu-
tation. At first sight it appears to be a
simple coincidence—almost a pun—
but it turns out to be remarkably ro-
bust, inspiring the design of automat-
ed proof assistants and programming
languages, and continuing to influ-
ence the forefronts of computing.

Propositions as Types is a notion
with many names and many origins.
It is closely related to the BHK Inter-
pretation, a view of logic developed by
the intuitionists Brouwer, Heyting, and
Kolmogorov in the 1930s. It is often re-
ferred to as the Curry–Howard Isomor-
phism, referring to a correspondence
observed by Curry in 1934 and refined
by Howard in 1969. Others draw atten-
tion to significant contributions from
de Bruijn’s Automath and Martin-Löf’s
Type Theory in the 1970s.

Propositions as Types is a notion with
depth. It describes a correspondence
between a given logic and a given pro-
gramming language. At the surface, it says
that for each proposition in the logic there
is a corresponding type in the program-
ming language—and vice versa. Thus
we have

propositions as types.

It goes deeper, in that for each proof of
a given proposition, there is a program
of the corresponding type—and vice
versa. Thus we also have

proofs as programs.

Propositions
as Types

 key insights
 ˽ Propositions as Types observes a deep

correspondence between logic and
computation: propositions in a logic
correspond to types in a programming
language; proofs of propositions correspond
to programs of the corresponding type;
and simplification of proofs corresponds
to evaluation of programs.

 ˽ Propositions as Types is broadly applicable,
applying to a wide variety of logics
(intuitionistic, second-order, classical,
linear) and of language features (lambda
calculus parametric polymorphism,
continuations, concurrency).

 ˽ Often the same ideas are discovered
independently by logicians and computer
scientists, demonstrating some aspects
of programming language design are not
arbitrary but absolute.

http://dx.doi.org/10.1145/2699407

76 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

contributed articles

“effectively calculable,” and then three
come along at once. The three were
lambda calculus, published in 1936
by Church,7 recursive functions, pro-
posed by Gödel at lectures in Princeton
in 1934 and published in 1936 by
Kleene,24 and Turing machines, pub-
lished in 1937 by Turing.36

Lambda calculus was introduced
by Church at Princeton, and further
developed by his students Rosser
and Kleene. At that time, Princeton
rivaled Göttingen as a center for
the study of logic. The Institute for
Advanced Study was co-located with
the Mathematics Department in
Fine Hall. In 1933, Einstein and von
Neumann joined the Institute, and
Gödel arrived for a visit.

Logicians have long been con-
cerned with the idea of func-
tion. Lambda calculus provides a
concise notation for functions, includ-
ing “first-class” functions that may
appear as arguments or results of other
functions. It is remarkably compact,
containing only three constructs:
variables, function abstraction, and
function application. Church6 at first
introduced lambda calculus as a way
to define notations for logical formu-
las (almost like a macro language) in a
new presentation of logic. All forms of
bound variable could be subsumed to
lambda binding; for instance, instead
of $x. A[x], Church wrote S(lx. A[x]).
However, it was later discovered by
Kleene and Rosser that Church’s sys-
tem was inconsistent. By this time,
Church and his students had realized
the system was of independent inter-
est. Church had foreseen this possi-
bility in his first paper on the subject,
where he wrote, “There may, indeed,
be other applications of the system
than its use as a logic.”

Church discovered a way of encod-
ing numbers as terms of lambda cal-
culus. The number n is represented
by a function that accepts a function
f and a value x, and applies the func-
tion to the value n times; for instance,
the number three is lf. lx. f (f (f (x)).
With this representation, it is easy
to encode lambda terms that can add
or multiply, but it was not clear how
to encode the predecessor function,
which finds the number one less than
a given number. One day in the den-
tist’s office, Kleene suddenly saw how

And it goes deeper still, in that for each
way to simplify a proof there is a corre-
sponding way to evaluate a program—
and vice versa. Thus we further have

simplification of proofs as
evaluation of programs.

Hence, we have not merely a shallow
bijection between propositions and
types but a true isomorphism, pre-
serving the deep structure of proofs
and programs, simplifications, and
evaluation.

Propositions as Types is a notion with
breadth. It applies to a range of logics,
including propositional, predicate, second-
order, intuitionistic, classical, modal,
and linear. It underpins the foundations of
functional programming, explaining fea-
tures including functions, records, vari-
ants, parametric polymor phism, data
abstraction, continuations, monads, lin-
ear types, and session types. It has inspired
automated proof assistants and pro-
gramming languages, including Agda,
Automath, Coq, Epigram, F#, F*, Haskell,
LF, ML, NuPRL, Scala, Singu larity, and
Trellys.

Propositions as Types is a notion
with mystery. Why should it be the case
that intuitionistic natural deduction,
as developed by Gentzen in the 1930s,
and simply typed lambda calculus, as
developed by Church around the
same time for an unrelated purpose,
should be discovered 30 years later
to be essentially identical? And why
should it be the case that the same cor-
respondence arises again and again?
The logician Hindley and the com-
puter scientist Milner independently
developed the same type system, now
dubbed Hindley–Milner. The logician
Girard and the computer scientist
Reynolds independently developed
the same calculus, now dubbed
Girard–Reynolds. Curry–Howard is a
double-barreled name that ensures
the existence of other double-bar-
reled names. Those of us who design
and use programming languages
may often feel they are arbitrary, but
Propositions as Types assures us some
aspects of programming are abso-
lute. (See the online appendix, which
contains a full version of this article,
along with additional details and ref-
erences, plus a historic note provided
by William Howard.)

Church and the Theory
of Computation
The origins of logic lie with Aristotle
and the stoics in classical Greece,
Ockham and the scholastics in the
middle ages, and Leibniz’s vision of
a calculus ratiocinator at the dawn
of the enlightenment. Our interest
in the subject lies with formal logic,
which emerged from the contributions
of Boole, De Morgan, Frege, Peirce,
Peano, and others in the 19th century.

As the 20th century dawned, White-
head and Russell’s Principia Mathematica
demonstrated formal logic could express
a large part of mathematics. Inspired
by this vision, Hilbert and his col-
leagues at Göttingen became the lead-
ing proponents of formal logic, aiming
to put it on a firm foundation.

One goal of Hilbert’s Program was
to solve the Entscheidungsproblem
(decision problem), that is, to develop
an “effectively calculable” proce-
dure to determine the truth or falsity
of any statement. The problem pre-
supposes completeness—that for
any statement, either it or its nega-
tion possesses a proof. In his address
to the 1930 Mathematical Congress
in Königsberg, Hilbert affirmed his
belief in this principle, concluding
“Wir müssen wissen, wir werden wissen”
(“We must know, we will know”),
words later engraved on his tomb-
stone. Perhaps a tombstone is an
appropriate place for these words, given
that any basis for Hilbert’s optimism
had been undermined the day before,
when at the selfsame conference
Gödel18 announced his proof that
arithmetic is incomplete.

While the goal was to satisfy
Hilbert’s program, no precise defini-
tion of “effectively calculable” was
required. It would be clear whether a
given procedure was effective or not,
like Justice Stewart’s characterization
of obscenity, “I know it when I see it.”
But to show the Entscheidungsproblem
undecidable required a formal definition
of “effectively calculable.”

One can find allusions to the con-
cept of algorithm in the work of Euclid
and, eponymously, al-Khwarizmi, but
the concept was formalized only in
the 20th century, and then simulta-
neously received three independent
definitions by logicians. Like buses,
you wait 2,000 years for a definition of

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 77

contributed articles

to define predecessor.23 Once this
hurdle was overcome, Church and
his students soon became convinced
any “effectively calculable” function
of numbers could be represented by a
term in the lambda calculus.

Church proposed l-definabil-
ity as the definition of “effectively
calculable,” what we now know
as Church’s Thesis, and demon-
strated there was a problem whose
solution was not l-definable, that
of determining whether a given l-term
has a normal form, what we now
know as the Halting Problem. A year
later, he demonstrated there was no
l-definable solution to the
Entschei dungsproblem.

In 1933, Gödel arrived for a visit
at Princeton. He was unconvinced
by Church’s contention that every
effectively calculable function was
l-definable. Church responded by
offering that if Gödel would pro-
pose a different definition, then
Church would “undertake to prove
it was included in l-definability.” In a
series of lectures at Princeton in 1934,
based on a suggestion of Herbrand,
Gödel proposed what came to be known
as “general recursive functions” as his
candidate for effective calculability.
Kleene took notes and published
the definition.24 Church and his stu-
dents soon determined that the two
definitions are equivalent; every gen-
eral recursive function is l-definable,
and vice versa. Rather than mollifying
Gödel, this result caused him to doubt
his own definition was correct! Things
stood at an impasse.

Meanwhile, at Cambridge, Turing,
a student of Max Newman, inde-
pendently formulated his own
notion of “effectively calculable”
in the form of what we now call a
Turing machine, and used it to show
the Entscheidungsproblem undecid-
able. Before the paper was published,
Newman was dismayed to discover
Turing had been scooped by Church.
However, Turing’s approach was suf-
ficiently different from Church’s to
merit independent publication. Turing
hastily added an appendix sketching
the equivalence of l-definability to his
machines, and his paper36 appeared
in print a year after Church’s, when
Turing was 23. Newman arranged for
Turing to travel to Princeton, where

he completed a doctorate under
Church’s supervision.

Turing’s most significant differ-
ence from Church was not in logic
or mathematics but in philosophy.
Whereas Church merely presented the
definition of l-definability and baldly
claimed it corresponded to effective
calculability, Turing undertook an
analysis of the capabilities of a “com-
puter” (at this time, the term referred
to a human performing a computa-
tion assisted by paper and pencil).
Turing argued that the number of
symbols must be finite (for if infinite,
some symbols would be arbitrarily
close to each other and undistinguish-
able), that the number of states of
mind must be finite (for the same rea-
son), and that the number of symbols
under consideration at one moment
must be bounded (“We cannot tell at
a glance whether 9999999999999999
and 999999999999999 are the same”).
Later, Gandy14 would point out that
Turing’s argument amounts to a the-
orem asserting any computation a
human with paper and pencil can per-
form can also be performed by a Turing
machine. It was Turing’s argument
that finally convinced Gödel; since
l-definability, recursive functions, and
Turing machines had been proved
equivalent, he now accepted that all
three defined “effectively calculable.”

As mentioned, Church’s first use of
lambda calculus was to encode formu-
las of logic, but this encoding had to
be abandoned because it led to incon-
sistency. The failure arose for a reason
related to Russell’s paradox, namely
that the system allowed a predicate to
act on itself, and so Church adapted
a solution similar to Russell’s, that of
classifying terms according to types.
Church’s simply typed lambda cal-
culus ruled out self-application, per-
mitting lambda calculus to support a
consistent logical formulation.8

Whereas self-application in
Russell’s logic leads to paradox, self-
application in Church’s untyped
lambda calculus leads to non-termi-
nating computations. Conversely,
Church’s simply typed lambda calcu-
lus guarantees every term has a normal
form, or corresponds to a computation
that halts.

Untyped lambda calculus or typed
lambda calculus with a construct for

Whereas Church
merely presented
the definition of
l-definability and
baldly claimed
it corresponded
to effective
calculability,
Turing undertook
an analysis
of the capabilities
of a “computer.”

78 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

contributed articles

observation, Howard pointed out there
is a similar correspondence between
natural deduction, on the one hand,
and simply typed lambda calculus, on
the other, and he made explicit the
third and deepest level of the corre-
spondence, as described in the intro-
duction, that simplification of proofs
corresponds to evaluation of programs.
Howard showed the correspondence
extends to the other logical connec-
tives—conjunction and disjunction—
by extending his lambda calculus
with constructs that represent pairs
and disjoint sums. Just as proof rules
come in introduction and elimination
pairs, so do typing rules; introduction
rules correspond to ways to define or
construct a value of the given type, and
elimination rules correspond to ways
to use or deconstruct values of the
given type.

We can describe Howard’s observa-
tion as follows:

•  Conjunction. Conjunction A & B
corresponds to Cartesian product
A ´ B, or a record with two fields,
also known as a pair. A proof of
the proposition A & B consists of a
proof of A and a proof of B.
Similarly, a value of type A ´ B con-
sists of a value of type A and a
value of type B.

•  Disjunction. Disjunction A ∨ B cor-
responds to a disjoint sum A + B,
or a variant with two alternatives.
A proof of the proposition A ∨ B
consists of either a proof of A or a
proof of B, including an indica-
tion of which of the two has been
proved. Similarly, a value of type
A + B consists of either a value of
type A or a value of type B, includ-
ing an indication of whether this
is a left or right summand.

•  Implication. Implication A ⊃ B cor-
responds to function space A → B.
A proof of the proposition A ⊃ B
consists of a procedure that given
a proof of A yields a proof of B.
Similarly, a value of type A → B
consists of a function that when
applied to a value of type A returns
a value of type B.

This reading of proofs goes back to
the intuitionists and is often called
the BHK interpretation, named for
Brouwer, Heyting, and Kolmogorov.

general recursion (sometimes called
a fixpoint operator) permits the defi-
nition of any effectively computable
function but has a Halting Problem
that is unsolvable. Typed lambda cal-
culus without a construct for general
recursion has a Halting Problem that
is trivial—every program halts!—but
cannot define some effectively com-
putable functions. Both kinds of cal-
culus have their uses, depending on
the intended application.

Gentzen and the Theory of Proof
A second goal of Hilbert’s program
was to establish the consistency of
various logics. If a logic is inconsis-
tent, it can derive any formula, ren-
dering it useless.

In 1935, at the age of 25, Gentzen15
introduced not one but two new for-
mulations of logic—natural deduction
and sequent calculus—that became
established as the two major systems
for formulating a logic and remain
so to this day. He showed how to nor-
malize proofs to ensure they were not
“roundabout,” yielding a new proof of
the consistency of Hilbert’s system.
And, to top it off, to match the use of
the symbol $ for the existential quanti-
fication introduced by Peano, Gentzen
introduced the symbol " to denote uni-
versal quantification. He wrote implica-
tion as A ⊃ B (if A holds, then B holds),
conjunction as A & B (both A and B
hold), and disjunction as A ∨ B (at least
one of A or B holds).

Gentzen’s insight was that proof
rules should come in pairs, a feature
not present in earlier systems (such as
Hilbert’s). In natural deduction, these
are introduction and elimination pairs.
An introduction rule specifies under
what circumstances one may assert
a formula with a logical connective
(for instance, to prove A ⊃ B, one may
assume A and then must prove B), while
the corresponding elimination rule
shows how to use that logical connec-
tive (for instance, from a proof of A ⊃ B
and a proof of A, one may deduce B, a
property dubbed modus ponens in the
middle ages). As Gentzen noted, “The
introductions represent, as it were,
the “definitions” of the symbols con-
cerned, and the eliminations are no
more, in the final analysis, than the
consequences of these definitions.”

A consequence of this insight was

that any proof could be normalized
to one that is not “roundabout,” where
“no concepts enter into the proof
other than those contained in the final
result.” For example, in a normalized
proof of the formula A & B, the only
formulas that may appear are itself
and its subformulas, A and B, and the
subformulas of A and B themselves.
No other formula (such as (B & A) ⊃ (A
& B) or A ∨ B) may appear; this is called
the Subformula Principle. An immedi-
ate consequence was consistency. It is
a contradiction to prove false, written
. The only way to derive a contradic-
tion is to prove, say, both A ⊃ and A
for some formula A. But given such a
proof, one could normalize it to one
containing only subformulas of its
conclusion, . But has no subfor-
mulas! It is like the old saw, “What
part of no don’t you understand?”
Logicians became interested in nor-
malization of proofs because of its
role in establishing consistency.

Gentzen preferred the system of
Natural Deduction because it was,
in his view, more natural. He intro-
duced Sequent Calculus mainly as
a technical device for proving the
Subformula Principle, though it
has independent interest. It is an
irony that Gentzen was required
to introduce Sequent Calculus in
order to prove the Subformula
Principle for Natural Deduction. He
needed a roundabout proof to show
the absence of roundabout proofs!
Later, in 1965, Prawitz showed how
to prove the Sub formula Principle
directly, by introducing a way to sim-
plify Natural Deduction proofs; and
this set the ground for Howard’s work
described in the next section.

Propositions as Types
In 1934, Curry observed a curious
fact, relating a theory of functions to
a theory of implication.11 Every type
of a function (A → B) could be read as
a proposition (A ⊃ B), and under this
reading the type of any given function
would always correspond to a provable
proposition. Conversely, for every prov-
able proposition there was a function
with the corresponding type.

In 1969, Howard circulated a xeroxed
manuscript;22 it was not published until
1980, where it appeared in a Festschrift
dedicate to Curry. Motivated by Curry’s

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 79

contributed articles

Brouwer founded intuitionism, and
Heyting and Kolmogorov formalized
intuitionistic logic and developed the
interpretation in the 1920s and 1930s.
Realizability, introduced by Kleene
in the 1940s, is based on a similar
interpretation.

Given the intuitionistic reading of
proofs, it hardly seems surprising that
intuitionistic natural deduction and
lambda calculus should correspond
so closely. But it was not until Howard
that the correspondence was laid out
clearly, in a way that allowed working
logicians and computer scientists to
put it to use.

Howard’s paper22 divides into two
halves. The first half explains a corre-
spondence between two well-understood
concepts, the propositional connec-
tives &, ∨, ⊃ on the one hand and the
computational types ´, +, → on the
other hand. The second half extends
this analogy, and for well-understood
concepts from logic proposes new
concepts for types that correspond to
them. In particular, Howard proposes
that the predicate quantifiers " and $
corresponds to new types we now call
“dependent types.”

With the introduction of depen-
dent types, every proof in predicate
logic can be represented by a term
of a suitable typed lambda calculus.
Mathematicians and computer scien-
tists proposed numer ous systems based
on this concept, including de Bruijn’s
Automath,13 Martin- Löf’s type theory,26
Bates and Constable’s PRL and nuPRL,2
and Coquand and Huet’s Calculus of
Constructions,9 which developed into
the Coq proof assistant.

Applications include CompCert,
a certified compiler for the C program-
ming language verified in Coq; a com-
puter-checked proof of the four-color
theorem also verified in Coq; parts
of the Ensemble distributed system
verified in NuPRL; and 20,000 lines of
browser plug-ins verified in F*.

de Bruijn’s work was independent of
Howard’s, but Howard directly inspired
Martin-Löf and all the other work listed
earlier. Howard was (justly!) proud of his
paper, citing it as one of the two great
achievements of his career.34

Intuitionistic Logic
In Gilbert and Sullivan’s The Gondoliers,
Casilda is told that as an infant she

was married to the heir of the King of
Batavia, but that due to a mix-up no one
knows which of two individuals, Marco
or Giuseppe, is the heir. Alarmed, she
wails, “Then do you mean to say that I
am married to one of two gondoliers,
but it is impossible to say which?” To
which the response is “Without any
doubt of any kind whatever.”

Logic comes in many varieties, and
one distinction is between “classical”
and “intuitionistic.” Intuitionists,
concerned by cavalier assumptions
made by some logicians about the
nature of infinity, insist upon a con-
structionist notion of truth. In par-
ticular, they insist that a proof of A ∨
B must show which of A or B holds,
and hence they would reject the claim
that Casilda is married to Marco or
Giuseppe until one of the two was
identified as her husband. Perhaps
Gilbert and Sullivan anticipated intu-
itionism, for their story’s outcome
is that the heir turns out to be a third
individual, Luiz, with whom Casilda is,
conveniently, already in love.

Intuitionists also reject the law of
the excluded middle, which asserts
A ∨ ¬A for every A, since the law gives
no clue as to which of A or ¬A holds.
Heyting formalized a variant of
Hilbert’s classical logic that captures
the intuitionistic notion of provability.
In particular, the law of the excluded
middle is provable in Hilbert’s logic,
but not in Heyting’s. Further, if the
law of the excluded middle is added
as an axiom to Heyting’s logic, then it
becomes equivalent to Hilbert’s.

Propositions as Types was first for-
mulated for intuitionistic logic. It is
a perfect fit, because in the intuition-
ist interpretation the formula A ∨ B
is provable exactly when one exhibits
either a proof of A or a proof of B, so the
type corresponding to disjunction is a
disjoint sum.

Other Logics, Other Computation
The principle of Propositions as Types
would be remarkable even if it applied
only to one variant of logic and one vari-
ant of computation. How much more
remarkable, then, that it applies to a wide
variety of logics and of computation.

Quantification over propositional
variables in second-order logic corre-
sponds to type abstraction in second-
order lambda calculus. For this reason,

the second-order lambda calculus was
discovered twice, once by the logician
Girard16 and once by the computer sci-
entist Reynolds.33 And for the same
reason, a similar system that supports
principle type inference was also dis-
covered twice, once by the logician
Hindley20 and once by the computer
scientist Milner.27 Building on the cor-
respondence, Mitchell and Plotkin28
observed existential quantification in
second-order logic corresponds pre-
cisely to data abstraction, an idea that
now underpins much research in the
semantics of programming languages.
The design of generic types in Java
and C# draws directly upon Girard–
Reynolds, while the type systems of
functional languages, including ML and
Haskell, are based on Hindley–Milner.
Philosophers might argue as to whether
mathematical systems are “discovered”
or “devised,” but the same system aris-
ing in two different contexts argues that
here the correct word is “discovered.”

Two major variants of logic are intu-
itionistic and classical. Howard’s origi-
nal paper observed a correspondence
with intuitionistic logic. Not until
two decades later was the correspon-
dence extended to also apply to clas-
sical logic, when Griffin19 observed
that Peirce’s Law in classical logic
provides a type for the call/cc oper-
ator of Scheme. Murthy31 went on to
note that Kolmogorov and Gödel’s
double-negation translation, widely
used to relate intuitionistic and clas-
sical logic, corresponds to the contin-
uation-passing style transformation
widely used by both semanticists and
implementers of lambda calculus.
Parigot,32 Curien and Herbelin,10 and
Wadler39 introduced various computa-
tional calculi motivated by correspon-
dences to classical logic.

Modal logic permits propositions to
be labeled as “necessarily true” or “pos-
sibly true.” Clarence Lewis introduced
modal logic in 1910, and his 1938 text-
book25 describes five variants, S1–S5.
Some claim each of these variants has
an interpretation as a form of compu-
tation via Propositions as Types, and a
down payment on this claim is given by
an interpretation of S4 as staged com-
putation due to Davies and Pfenning,12
and of S5 as spatially distributed com-
putation due to Murphy et al.30

Moggi29 introduced monads as a

80 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

contributed articles

We begin with the details of natural
deduction as defined by Gentzen15; the
proof rules are shown in Figure 1. To
simplify our discussion, we consider
just two of the connectives of natural
deduction. We write A and B as place-
holders standing for arbitrary formu-
las. Conjunction is written A & B, and
implication is written A ⊃ B.

We represent proofs by trees, where
each node of the tree is an instance of a
proof rule. Each proof rule consists of
zero or more formulas written above a
line, called the “premises,” and a single
formula written below the line, called
the “conclusion.” The interpretation
of a rule is that when all the premises
hold, then the conclusion follows.

The proof rules come in pairs, with
rules to introduce and to eliminate each
connective, labeled -I and -E, respectively.
As we read the rules from top to bottom,
introduction and elimination rules do
what they say on the tin: The first “intro-
duces” a formula for the connective,
which appears in the conclusion but not
in the premises; the second “eliminates”
a formula for the connective, which
appears in a premise but not in the con-
clusion. An introduction rule describes
under what conditions we say the con-
nective holds—how to define the connec-
tive. An elimination rule describes what
we may conclude when the connective
holds—how to use the connective.

The introduction rule for conjunc-
tion, &-I, states that if formula A holds
and formula B holds, then the for-
mula A & B must hold as well. There
are two elimination rules for conjunc-
tion. The first, &-E1, states that if the
formula A & B holds, then the formula
A must hold as well. The second, &-E2,
concludes B rather than A.

The introduction rule for impli-
cation, ⊃-I, states that if from the
assumption that formula A holds we
may derive the formula B, then we may
conclude the formula A ⊃ B holds and
discharge the assumption. To indicate
that A is used as an assumption zero,
once, or many times in the proof of B,
we write A in brackets and tether it to
B via ellipses. A proof is complete only
when every assumption in it has been
discharged by a corresponding use of
⊃-I, which is indicated by writing the
same name (here x) as a superscript
on each instance of the discharged
assumption and on the discharging

technique to explain the semantics of
important features of programming
languages such as state, exceptions, and
input–output. Monads became widely
adopted in the functional language
Haskell and later migrated into other
languages, including Clojure, Scala,
F#, and C#. Benton et al.3 observed
that monads correspond to yet another
modal logic, differing from all of S1–S5.

In classical, intuitionistic, and modal
logic, any hypothesis can be used an arbi-
trary number of times—zero, once, or
many. Linear logic, introduced in 1987
by Girard,17 requires that each hypoth-
esis is used exactly once. Linear logic is
“resource conscious” in that facts may be
used up and superseded by other facts,
suiting it for reasoning about the world
where situations change. Computational
aspects of linear logic are discussed by
Abramsky1 and Wadler,38 among many
others. Most recently, Session Types, a
way of describing communication pro-
tocols introduced by Honda,21 have been
related to intuitionistic linear logic by
Caires and Pfenning,4 and to classical lin-
ear logic by Wadler.40

Propositions as Types remains a
topic of active research.

Natural Deduction
We now turn to a more formal develop-
ment, presenting a fragment of natu-
ral deduction and a fragment of typed
lambda calculus in a style that makes
clear the connection between the two.

Figure 1. Gerhard Gentzen (1935)—Natural
Deduction.

A B
&-I

A & B

A & B
&-E1

A

A & B
&-E2

B

[A]x

⋅
⋅
⋅
B

⊃-Ix

A ⊃ B

A ⊃ B A
⊃-E

B

Figure 2. A proof.

[B & A]z

&-E2
A

[B & A]z

&-E1
B
&-I

A & B
⊃-Iz

(B & A) ⊃ (A & B)

Figure 4. Simplifying a proof.

&-E2

[B & A]z

A
&-E1

[B & A]z

B
&-I

A & B
⊃-Iz

(B & A) ⊃ (A & B)

B A
&-I

B & A
⊃-E

A & B

B A
& -I

B & A
&-E2

A

B A
&-I

B & A
&-E1

B
&-I

A & B

A B
&-I

A & B

=⇒
=⇒

Figure 3. Simplifying proofs.

⋅
⋅
⋅
A

⋅
⋅
⋅
B
&-I

A & B
&-E1 =⇒

=⇒

⋅
⋅
⋅
A

A

[A]x

⋅
⋅
⋅
B

⊃-Ix

A ⊃ B

⋅
⋅
⋅

A
⊃-E

⋅
⋅
⋅
A
⋅
⋅
⋅
B

B

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 81

contributed articles

rule. The elimination rule for implica-
tion, ⊃-E, states that if formula A ⊃ B
holds and if formula A holds, then we
may conclude formula B holds as well;
as mentioned earlier, this rule also
goes by the name modus ponens.

Critical readers will observe we
use similar language to describe
rules (“when-then”) and formulas
(“implies”). The same idea applies at
two levels, the meta level (rules) and
the object level (formulas), and in two
notations, using a line with premises
above and conclusion below for impli-
cation at the meta level, and the symbol
⊃ with premise to the left and conclu-
sion to the right at the object level. It is
almost as if to understand implication
one must first understand implication!
This Zeno’s paradox of logic was wryly
observed by Carroll.5 We need not let it
disturb us; everyone possesses a good
informal understanding of implica-
tion, which may act as a foundation for
its formal description.

A proof of the formula

(B & A) ⊃ (A & B).

is shown in Figure 2; that is, if B and A
hold, then A and B hold. This may seem
so obvious as to be hardly deserving
of proof! However, the formulas B ⊃ A
and A ⊃ B have meanings that differ,
and we need some formal way to con-
clude that the formulas B & A and A & B
have meanings that are the same. This
is what our proof shows, and it is reas-
suring it can be constructed from the
rules we posit.

The proof reads as follows. From
B & A we conclude A, by &-E2, and from
B & A we also conclude B, by &-E1. From
A and B we conclude A & B, by &-I. That
is, from the assumption B & A (used
twice) we conclude A & B. We discharge
the assumption and conclude (B & A) ⊃
(A & B) by ⊃-I, linking the discharged
assumptions to the discharging rule by
writing z as a superscript on each.

Some proofs are unnecessarily
roundabout. Rules for simplifying
proofs appear in Figure 3, and an exam-
ple appears in Figure 4. Let us focus on
the example first.

The top of Figure 4 shows a larger
proof built from the proof in Figure 2.
The larger proof assumes as premises
two formulas, B and A, and concludes
with the formula A & B. However, rather

Figure 5. Alonzo Church (1935)—Lambda Calculus.

M : A N : B
×-I

〈M, N〉 : A × B

L : A × B
×-E1

π1 L : A

L : A × B
×-E2

π2 L : B

[x : A]x

⋅
⋅
⋅

N : B
→-Ix

λx. N : A → B

L : A → B M : A
→-E

L M : B

Figure 8. Evaluating a program.

[z : B × A]z

×-E2
π2 z : A

[z : B × A]z

×-E1
π1 z : B

×-I
〈π2 z,π1 z〉 : A × B

λz. 〈π2 z, π1 z〉 : (B × A) → (A × B)

y : B x : A
× -I

〈y, x〉 : B × A
→

→-Iz

-E
(λz. 〈π2 z, π1 z〉) 〈y, x〉 : A × B

y : B x : A
×-I

〈y, x〉 : B × A
×-E2

π2 〈y, x〉 : A

y : B x : A
× -I

〈y, x〉 : B × A
× -E 1

π1 〈y, x〉 : B
× -I

〈π2 〈y, x〉,π1 〈y, x〉〉 : A × B

x : A y : B
×-I

〈x, y〉 : A × B

⇐
=

⇐
=

⋅
⋅
⋅

M : A

⋅
⋅
⋅

N : B
×-I

〈M, N〉 : A × B
×-E1

⋅
⋅
⋅

M : A
π1 〈M, N〉 : A

[x : A]x

⋅
⋅
⋅

N : B
→-Ix

λx. N : A → B

⋅
⋅
⋅

M : A
→-E

⋅
⋅
⋅

M : A
⋅
⋅
⋅

N[M/x] : B
(λx. N) M : B

=⇒

=⇒

Figure 7. Evaluating programs.

Figure 6. A program.

[z : B × A]z

×-E2
π2 z : A

[z : B × A]z

×-E1
π1 z : B

×-I
〈π2 z,π1 z〉 : A × B

→-Iz

λz . 〈π2 z,π1 z〉 : (B × A) → (A × B)

82 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

contributed articles

´-I, states that if term M has type A and
term N has type B, then we may form
the pair term áM, Nñ of product type A
´ B. There are two elimination rules
for products. The first, ´-E1, states
that if term L has type A ´ B, then we
may form the term p1 L of type A, which
selects the first component of the pair.
The second, ´-E2 is similar, save that it
forms the term p2 L of type B.

The introduction rule for functions,
→-I, states that if given a variable x of
type A we have formed a term N of type B,
then we may form the lambda term lx.
N of function type A → B. The variable
x appears free in N and bound in lx. N.
Undischarged assumptions correspond
to free variables, while discharged
assumptions correspond to bound vari-
ables. To indicate that the variable x
may appear zero, once, or many times
in the term N, we write x : A in brackets
and tether it to N : B via ellipses. A term
is closed only when every variable in it is
bound by a corresponding l term. The
elimination rule for functions, →-E,
states that given term L of type A → B
and term M of type A we may form the
application term L M of type B.

For natural deduction, we noted ear-
lier there might be confusion between
implication at the meta level and at
the object level. For lambda calculus
the distinction is clearer, as we have
implication at the meta level (if terms
above the line are well typed, then so
are terms below) but functions at the
object level (a function has type A → B
because if it is passed a value of type A
then it returns a value of type B).
What previously had been discharge of
assumptions (perhaps a slightly dif-
fuse concept) becomes binding of vari-
ables (a concept understood by most
computer scientists).

The reader will have observed a
striking similarity between Gentzen’s
rules from the preceding section and
Church’s rules from this section; ignor-
ing the terms in Church’s rules then
they are identical if one replaces & by ´
and ⊃ by →. The coloring of the rules is
chosen to highlight the similarity.

A program of type

(B ´ A) → (A ´ B)

is shown in Figure 6. Whereas the differ-
ence between B & A and A & B appears a
mere formality, the difference between

than concluding it directly we derive the
result in a roundabout way, in order to
illustrate an instance of ⊃-E, modus
ponens. The proof reads as follows: On
the left is the proof given previously,
concluding in (B & A) ⊃ (A & B); on the
right, from B and A we conclude B & A by
&-I. Combining these yields A & B by ⊃-E.

We may simplify the proof by apply-
ing the rewrite rules of Figure 3. These
rules specify how to simplify a proof
when an introduction rule is immedi-
ately followed by the corresponding
elimination rule. Each rule shows two
proofs connected by an arrow, indicat-
ing that the “redex” (the proof on the
left) may be rewritten, or simplified, to
yield the “reduct” (the proof on the right).
Rewrites always take a valid proof to
another valid proof.

For &, the redex consists of a proof of
A and a proof of B that combine to yield
A & B by &-I, which in turn yields A by
&-E1. The reduct consists simply of the
proof of A, discarding the unneeded
proof of B. There is a similar rule, not
shown, to simplify an occurrence of &-I
followed by &-E2.

For ⊃, the redex consists of a proof
of B from assumption A, which yields
A ⊃ B by ⊃-I, and a proof of A, which
combine to yield B by ⊃-E. The reduct
consists of the same proof of B, but
now with every occurrence of the
assumption A replaced by the given
proof of A. The assumption A may be
used zero, once, or many times in the
proof of B in the redex, so the proof of
A may be copied zero, once, or many
times in the proof of B in the reduct.
For this reason, the reduct may be
larger than the redex, but it will be
simpler in the sense it has removed
an unnecessary detour via the sub-
proof of A ⊃ B.

We can think of the assumption of A
in ⊃-I as a debt that is discharged by the
proof of A provided in ⊃-E. The proof
in the redex accumulates debt and pays
it off later; while the proof in the reduct
pays directly each time the assumption
is used. Proof debt differs from mon-
etary debt in that there is no interest,
and the same proof may be duplicated
freely as many times as needed to pay
off an assumption, the very property
that money, by being difficult to coun-
terfeit, is designed to avoid!

Figure 4 demonstrates use of these
rules to simplify a proof. The first proof

contains an instance of ⊃-I followed by
⊃-E and is simplified by replacing each
of the two assumptions of B & A on the left
by a copy of the proof of B & A on the right.
The result is the second proof, which, as
a result of the replacement, now con-
tains an instance of &-I followed by &-E2,
and another instance of &-I followed
by &-E1. Simplifying each of these yields
the third proof, which derives A & B
directly from the assumptions A and B
and can be simplified no further.

It is not difficult to see that proofs
in normal form satisfy the Subformula
Principle: Every formula of such a proof
must be a subformula of one of its undis-
charged assumptions or of its conclu-
sion. The proof in Figure 2 and the
final proof of Figure 4 both satisfy this
property, while the first proof of Figure 4
does not, since (B & A) ⊃ (A & B) is not a
subformula of A & B.

Lambda Calculus
We now turn our attention to the sim-
ply typed lambda calculus of Church8;
the type rules are in Figure 5. To sim-
plify our discussion, we take both prod-
ucts and functions as primitive types;
Church’s original calculus contained
only function types, with products as
a derived construction. We now write
A and B as placeholders for arbitrary
types, and L, M, N as placeholders for
arbitrary terms. Product types are writ-
ten A ´ B, and function types are writ-
ten A → B. Now, instead of formulas,
our premises and conclusions are
judgments of the form

 M : A

indicating term M has type A.
Like proofs, we represent type deri-

vations by trees, where each node of
the tree is an instance of a type rule.
Each type rule consists of zero or more
judgments written above a line, called
the “premises,” and a single judgment
written below the line, called the “con-
clusion.” The interpretation of a rule is
that when all the premises hold, then
the conclusion follows.

Like proof rules, type rules come in
pairs. An introduction rule describes
how to define or construct a term of the
given type, while an elimination rule
describes how to use or deconstruct a
term of the given type.

The introduction rule for products,

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 83

contributed articles

B ´ A and A ´ B is easier to appreciate;
converting the latter to the former
requires swapping the elements of the
pair, which is precisely the task per-
formed by the program corresponding
to our former proof.

The program reads as follows. From
variable z of type B ´ A we form term p2 z
of type A by ´-E2 and also term p1 z of
type B by ´-E1. From these two terms we
form the pair áp2 z, p1 zñ of type A ´ B by
´-I. Finally, we bind the free variable z to
form the lambda term lz. áp2 z, p1 zñ of
type (B ´ A) → (A ´ B) by →-I, connecting
the bound typings to the binding rule by
writing z as a superscript on each. The
function accepts a pair and swaps its ele-
ments, exactly as described by its type.

A program may be evaluated by
rewriting. Rules for evaluating pro-
grams appear in Figure 7, and an
example appears in Figure 8. Let us
focus on the example first.

The top of Figure 8 shows a larger
program built from the program in
Figure 6. The larger program has two
free variables, y of type B and x of type
A, and constructs a value of type A ´ B.
However, rather than constructing
it directly we reach the result in a
roundabout way, in order to illustrate
an instance of →-E, function applica-
tion. The program reads as follows:
On the left is the program given previ-
ously, forming a function of type (B ´
A) → (A ´ B). On the right, from B and
A we form the pair áy, xñ of type B ´ A by
´-I. Applying the function to the pair
forms a term of type A ´ B by →-E.

We may evaluate this program by
applying the rewrite rules of Figure
7. These rules specify how to rewrite
a term when an introduction rule is
immediately followed by the corre-
sponding elimination rule. Each rule
shows two derivations connected by
an arrow, indicating the “redex” (the
term on the left) may be rewritten, or
evaluated, to yield the “reduct”(the
term on the right). Rewrites always
take a valid type derivation to another
valid type derivation, ensuring
rewrites preserve types, a property
known as “subject reduction” or
“type soundness.”

For ´, the redex consists of term
M of type A and term N of type B that
combine to yield term áM, Nñ of type
A ´ B by ´-I, which in turn yields term
p1 áM, Nñ of type A by ´-E1. The reduct

consists simply of term M of type A,
discarding the unneeded term N of
type B. There is a similar rule, not
shown, to rewrite an occurrence of ´-I
followed by ´-E2.

For →, the redex consists of a deri-
vation of term N of type B from variable
x of type A, which yields the lambda
term lx. N of type A → B by →-I, and
a derivation of term M of type A, which
combine to yield the application (lx.
N) M of type B by →-E. The reduct con-
sists of the term N[M/x], which replaces
each free occurrence of the variable x
in term N by term M. Further, if in the
derivation that N has type B we replace
each assumption that x has type A by
the derivation that M has type A, we get
a derivation showing N[M/x] has type B.
Since the variable x may appear zero,
once, or many times in the term N, the
term M may be copied zero, once, or
many times in the reduct N[M/x]. For
this reason, the reduct may be larger
than the redex, but it will be simpler in
the sense it has removed a subterm of
type A → B. Discharge of assumptions
thus corresponds to applying a func-
tion to its argument.

Figure 8 demonstrates use of these
rules to evaluate a program. The first
program contains an instance of →-I
followed by →-E, and is rewritten
by replacing each of the two occur-
rences of z of type B ´ A on the left
by a copy of the term áy, xñ of type B
´ A on the right. The result is the sec-
ond program, which, as a result of
the replacement, now contains an

instance of ´-I followed by ´-E2, and
another instance of ´-I followed by
´-E1. Rewriting each of these yields
the third program, which derives the
term áx, yñ of type A ´ B, and can be
evaluated no further.

Hence, simplification of proofs cor-
responds exactly to evaluation of
programs, in this instance demon-
strating that applying the function to
the pair indeed swaps its elements.

Conclusion
Proposition as Types informs our view
of the universality of certain program-
ming languages.

The Pioneer spaceship includes a
plaque designed to communicate with
aliens, if any should ever intercept it (see
Figure 9). They may find some parts of
it easier to interpret than others. A
radial diagram shows the distance of 14
pulsars and the center of our galaxy from
Sol. Aliens are likely to determine the
length of each line is proportional to the
distances to each body. Another diagram
shows humans in front of a silhouette
of Pioneer. If Star Trek gives an accurate
conception of alien species, they may
respond, “They look just like us, except
they lack pubic hair.” However, if the
aliens’ perceptual system differs greatly
from our own, they may be unable to
decipher these squiggles.

What would happen if we tried to
communicate with aliens by transmit-
ting a computer program? In the movie
Independence Day, the heroes destroy the
invading alien mothership by infecting

Figure 9. Plaque on Pioneer spaceship.

4

5

2

3

6

1

84 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

contributed articles

 28. Mitchell, J.C., Plotkin, G.D. Abstract types have
existential type. Transactions on Programming
Languages and Systems 10, 3 (July 1988), 470–502.

 29. Moggi, E. Notions of computation and monads.
Information and Computation 93, 1 (1991), 55–92.

 30. Murphy VII, T., Crary, K., Harper, R., Pfenning, F.
A symmetric modal lambda calculus for distributed
computing. In Proceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science (Turku,
Finland, July 13–17). IEEE Press, 2004, 286–295.

 31. Murthy, C. An evaluation semantics for classical
proofs. In Proceedings of Sixth Annual IEEE
Symposium on Logic in Computer Science
(Amsterdam, the Netherlands, July 15–18). IEEE
Press, 1991, 96–107.

 32. Parigot, M. lm-calculus: An algorithmic interpretation
of classical natural deduction. In Logic Programming
and Automated Reasoning, Volume 624 of Lecture
Notes in Computer Science. Springer-Verlag, 1992,
190–201.

 33. Reynolds, J.C. Towards a theory of type structure.
In Proceedings of the Symposium on Programming,
Volume 19 of Lecture Notes in Computer Science
(1974). 408–423.

 34. Shell-Gellasch, A.E. Reflections of my advisor:
Stories of mathematics and mathematicians. The
Mathematical Intelligencer 25, 1 (2003), 35–41.

 35. Szabo, M.E., Ed. The Collected Papers of Gerhard
Gentzen. North Holland Publishing Co., Amsterdam,
the Netherlands, 1969.

 36. Turing, A.M. On computable numbers, with
an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society
s2–42, 1 (1937); received May 28, 1936, read
Nov. 12, 1936.

 37. van Heijenoort, J. From Frege to Gödel: A
Sourcebook in Mathematical Logic, 1879–1931.
Harvard University Press, Cambridge, MA, 1967.

 38. Wadler, P. A taste of linear logic. In Proceedings
of the 18th International Symposium on
Mathematical Foundations of Computer Science
Volume 711 of Lecture Notes on Computer
Science (Gdańsk, Poland, Aug. 30–Sept. 3).
Springer-Verlag, 1993, 185–210.

 39. Wadler, P. Call-by-value is dual to call-by-name.
In Proceedings of the International Conference on
Functional Programming (Uppsala, Sweden, Aug.
25–29).ACM Press, New York, 2003, 189–201.

 40. Wadler, P. Propositions as sessions. In Proceedings
of the International Conference on Functional
Programming (Copenhagen, Denmark, Sept.
10–12). ACM Press, New York, 2012, 273–286.

Philip Wadler (wadler@inf.ed.ac.uk) is Professor
of Theoretical Computer Science in the Laboratory
for Founda tions of Computer Science in the School of
Informatics at the University of Edinburgh, Scotland.

Copyright held by authors.
Publication rights licensed to ACM. $15.00.

it with a computer virus. Close inspec-
tion of the transmitted program shows
it contains curly braces; it is written in a
dialect of C! It is unlikely that alien spe-
cies would program in C and unclear
that aliens could decipher a program
written in C if presented with one.

What about lambda calculus? Pro-
positions as Types tell us lambda calcu-
lus is isomorphic to natural deduction.
It seems difficult to conceive of alien
beings who do not know the funda-
mentals of logic, and we might expect
the problem of deciphering a program
written in lambda calculus to be closer
to the problem of understanding
the radial diagram of pulsars than of
understanding the image of a man and
a woman on the Pioneer plaque.

We might be tempted to conclude
lambda calculus is universal, but first
ponder the suitability of the word
“universal.” These days, the multiple-
worlds interpretation of quantum
physics is widely accepted. Scientists
imagine that in different universes
one might encounter different funda-
mental constants (such as the strength
of gravity or the Planck constant). But
easy as it may be to imagine a universe
where gravity differs, it is difficult
to conceive of a universe where fun-
damental rules of logic fail to apply.
Natural deduction, and hence lambda
calculus, should not only be known
by aliens throughout our universe
but also throughout others. So we
may conclude it would be a mistake
to characterize lambda calculus as a
universal language, because calling it
universal would be too limiting.

Acknowledgments
Thank you to Gershom Bazerman, Pete
Bevin, Guy Blelloch, Rintcius Blok,
Ezra Cooper, Ben Darwin, Benjamin
Denckla, Peter Dybjer, Johannes Emer-
ich, Martin Erwig, Yitz Gale, Mikhail
Glushenkov, Gabor Greif, Vinod Gro-
ver, Sylvain Henry, Philip Hölzenspies,
William Howard, John Hughes, Colin
Lupton, Daniel Marsden, Craig McLaugh-
lin, Tom Moertel, Simon Peyton-Jones,
Benjamin Pierce, Lee Pike, Andrés Si-
card-Ramírez, Scott Rostrup, Dann To-
liver, Moshe Vardi, Jeremy Yallop, Rich-
ard Zach, Leo Zovik, and the referees.
This work was funded under Engineer-
ing and Physical Sciences Research
Council grant EP/K034413/1.

References

 1. Abramsky, S. Computational interpretations of linear
logic. Theoretical Compututer Science 111, 1–2
(1993), 3–57.

 2. Bates, J.L., Constable, R.L. Proofs as programs.
Transactions on Programming Languages and
Systems 7, 1 (Jan. 1985), 113–136.

 3. Benton, P.N., Bierman, G.M., de Paiva, V.
Computational types from a logical perspective.
Journal of Functional Programming 8, 2 (1998),
177–193.

 4. Caires, L., Pfenning, F. Session types as
intuitionistic linear propositions. In Proceedings of
the 21st International Conference on Concurrency
Theory (Paris, France, Aug. 31–Sept. 3, 2010),
222–236.

 5. Carroll, L. What the Tortoise said to Achilles. Mind 4,
14 (Apr. 1895), 278–280.

 6. Church, A. A set of postulates for the foundation of
logic. Ann. Math. 33, 2 (1932), 346–366.

 7. Church, A. An unsolvable problem of elementary
number theory. American Journal of Mathematics
58, 2 (Apr. 1936), 345–363; presented to the
American Mathematical Society, Apr. 19, 1935;
abstract in Bulletin of the American Mathematical
Society 41 (May 1935).

 8. Church, A. A formulation of the simple theory of types.
Journal of Symbolic Logic 5, 2 (June 1940), 56–68.

 9. Coquand, T. and Huet, G.P. The calculus of
constructions. Information and Computation 76, 2/3
(1988), 95–120.

 10. Curien, P.-L., Herbelin, H. The duality of computation.
In Proceedings of the International Conference on
Functional Programming (Montreal, Canada, Sept.
18–20). ACM Press, New York, 2000, 233–243.

 11. Curry, H.B. Functionality in combinatory logic.
Proceedings of the National Academy of Science 20
(1934), 584–590.

 12. Davies, R., Pfenning, F. A modal analysis of staged
computation. In Principles of Programming
Languages (St. Petersburg Beach, FL, 1996). 258–270.

 13. de Bruijn, N.G. The mathematical language
Automath, its usage, and some of its extensions.
In Proceedings of the Symposium on Automatic
Demonstration, Volume 125 of Lecture Notes
in Computer Science (Versailles, France, Dec.).
Springer-Verlag, 1968, 29–61.

 14. Gandy, R. The confluence of ideas in 1936. In The
Universal Turing Machine: A Half-century Survey,
R. Herken, Ed. Springer, 1995, 51–102.

 15. Gentzen, G. Untersuchungen über das logische
Schließen. Math. Z. 39, 2–3 (1935), 176–210,
405–431; reprinted in Szabo.35

 16. Girard, J.Y. Interprétation functionelle et élimination
des coupures dans l’arithm étique d’ordre supérieure.
These D’Etat, Université Paris VII, 1972.

 17. Girard, J.-Y. Linear logic. Theoretical Computer
Science 50 (1987), 1–102.

 18. Gödel, K. Über formal unterscheidbare Sätze der
Principia Mathematica und verwandter Systeme I.
Monatshefte für Mathematik und Physik 38 (1931),
173–198; reprinted in Heijenoort.37

 19. Griffin, T. A formulae-as-types notion of control.
In Proceedings of the 40th Annual Symposium on
Principles of Programming Languages (Rome, Italy,
Jan. 23–25). ACM Press, New York, 1990, 47–58.

 20. Hindley, R. The principal type scheme of an object
in combinatory logic. Transactions of the American
Mathematical Society 146 (Dec. 1969), 29–60.

 21. Honda, K. Types for dyadic interaction. In
Proceedings of the Fourth International Conference
on Concurrency Theory (Hildesheim, Germany, Aug.
23–26, 1993), 509–523.

 22. Howard, W.A. The formulae-as-types notion
of construction. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus, and
Formalism. Academic Press, 1980, 479–491;
original version was circulated privately in 1969.

 23. Kleene, S. Origins of recursive function theory. Annals
of the History of Computing 3, 1 (1981), 52–67.

 24. Kleene, S.C. General recursive functions of natural
numbers. Mathematical Annalen 112, 1 (Dec. 1936);
abstract in Bulletin of the AMS (July 1935).

 25. Lewis, C. and Langford, C. Symbolic Logic, 1938;
reprinted by Dover, 1959.

 26. Martin-Löf, P. Intuitionistic Type Theory. Bibliopolis,
Naples, Italy, 1984.

 27. Milner, R. A theory of type polymorphism in
programming. Journal of Computer and System
Sciences 17, 3 (1978), 348–375.

