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Connecting mathematical logic and 
computation, it ensures that some  
aspects of programming are absolute. 

BY PHILIP WADLER

P OW E R F U L  I N S I G H T S  A R I S E  from linking two fields  
of study previously thought separate. Examples include 
Descartes’s coordinates, which links geometry to 
algebra, Planck’s Quantum Theory, which links 
particles to waves, and Shannon’s Information Theory, 

which links thermo dynamics to com-
munication. Such a synthesis is of-
fered by the principle of Propositions 
as Types, which links logic to compu-
tation. At first sight it appears to be a 
simple coincidence—almost a pun—
but it turns out to be remarkably ro-
bust, inspiring the design of automat-
ed proof assistants and programming 
languages, and continuing to influ-
ence the forefronts of computing.

Propositions as Types is a notion 
with many names and many origins. 
It is closely related to the BHK Inter-
pretation, a view of logic developed by 
the intuitionists Brouwer, Heyting, and 
Kolmogorov in the 1930s. It is often re-
ferred to as the Curry–Howard Isomor-
phism, referring to a correspondence 
observed by Curry in 1934 and refined 
by Howard in 1969. Others draw atten-
tion to significant contributions from 
de Bruijn’s Automath and Martin-Löf’s 
Type Theory in the 1970s.

Propositions as Types is a notion with 
depth. It describes a correspondence 
between a given logic and a given pro-
gramming language. At the surface, it says 
that for each proposition in the logic there 
is a corresponding type in the program-
ming language—and vice versa. Thus 
we have

propositions as types.

It goes deeper, in that for each proof of 
a given proposition, there is a program 
of the corresponding type—and vice 
versa. Thus we also have

proofs as programs.

Propositions 
as Types

 key insights
 ˽ Propositions as Types observes a deep 

correspondence between logic and  
computation: propositions in a logic  
correspond to types in a programming  
language; proofs of propositions correspond 
to programs of the corresponding type; 
and simplification of proofs corresponds 
to evaluation of programs. 

 ˽ Propositions as Types is broadly applicable, 
applying to a wide variety of logics 
(intuitionistic, second-order, classical, 
linear) and of language features (lambda 
calculus parametric polymorphism, 
continuations, concurrency). 

 ˽ Often the same ideas are discovered 
independently by logicians and computer 
scientists, demonstrating some aspects 
of programming language design are not 
arbitrary but absolute. 
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“effectively calculable,” and then three 
come along at once. The three were 
lambda calculus, published in 1936 
by Church,7 recursive functions, pro-
posed by Gödel at lectures in Princeton 
in 1934 and published in 1936 by 
Kleene,24 and Turing machines, pub-
lished in 1937 by Turing.36

Lambda calculus was introduced 
by Church at Princeton, and further 
developed by his students Rosser 
and Kleene. At that time, Princeton 
rivaled Göttingen as a center for 
the study of logic. The Institute for 
Advanced Study was co-located with 
the Mathematics Department in 
Fine Hall. In 1933, Einstein and von 
Neumann joined the Institute, and 
Gödel arrived for a visit.

Logicians have long been con-
cerned with the idea of func-
tion. Lambda calculus provides a 
concise notation for functions, includ-
ing “first-class” functions that may 
appear as arguments or results of other 
functions. It is remarkably compact, 
containing only three constructs: 
variables, function abstraction, and 
function application. Church6 at first 
introduced lambda calculus as a way 
to define notations for logical formu-
las (almost like a macro language) in a 
new presentation of logic. All forms of 
bound variable could be subsumed to 
lambda binding; for instance, instead 
of $x. A[x], Church wrote S(lx. A[x]). 
However, it was later discovered by 
Kleene and Rosser that Church’s sys-
tem was inconsistent. By this time, 
Church and his students had realized 
the system was of independent inter-
est. Church had foreseen this possi-
bility in his first paper on the subject, 
where he wrote, “There may, indeed, 
be other applications of the system 
than its use as a logic.”

Church discovered a way of encod-
ing numbers as terms of lambda cal-
culus. The number n is represented 
by a function that accepts a function 
f and a value x, and applies the func-
tion to the value n times; for instance, 
the number three is lf. lx. f ( f ( f (x)). 
With this representation, it is easy 
to encode lambda terms that can add 
or multiply, but it was not clear how 
to encode the predecessor function, 
which finds the number one less than 
a given number. One day in the den-
tist’s office, Kleene suddenly saw how 

And it goes deeper still, in that for each 
way to simplify a proof there is a corre-
sponding way to evaluate a program—
and vice versa. Thus we further have 

simplification of proofs as  
evaluation of programs.

Hence, we have not merely a shallow 
bijection between propositions and 
types but a true isomorphism, pre-
serving the deep structure of proofs 
and programs, simplifications, and 
evaluation.

Propositions as Types is a notion with 
breadth. It applies to a range of logics, 
including propositional, predicate, second- 
order, intuitionistic, classical, modal, 
and linear. It underpins the foundations of 
functional  programming, explaining fea-
tures including functions, records, vari-
ants, parametric polymor phism, data  
abstraction, continuations, monads, lin-
ear types, and session types. It has inspired 
automated proof assistants and pro-
gramming languages, including Agda, 
Automath, Coq, Epigram, F#, F*, Haskell, 
LF, ML, NuPRL, Scala, Singu larity, and 
Trellys.

Propositions as Types is a notion 
with mystery. Why should it be the case 
that intuitionistic natural deduction, 
as developed by Gentzen in the 1930s, 
and simply typed lambda calculus, as 
developed by Church around the 
same time for an unrelated purpose, 
should be discovered 30 years later 
to be essentially identical? And why 
should it be the case that the same cor-
respondence arises again and again? 
The logician Hindley and the com-
puter scientist Milner independently 
developed the same type system, now 
dubbed Hindley–Milner. The logician 
Girard and the computer scientist 
Reynolds independently developed 
the same calculus, now dubbed 
Girard–Reynolds. Curry–Howard is a 
double-barreled name that ensures 
the existence of other double-bar-
reled names. Those of us who design 
and use programming languages 
may often feel they are arbitrary, but 
Propositions as Types assures us some 
aspects of programming are abso-
lute. (See the online appendix, which 
contains a full version of this article, 
along with additional details and ref-
erences, plus a historic note provided 
by William Howard.)

Church and the Theory  
of  Computation
The origins of logic lie with Aristotle 
and the stoics in classical Greece, 
Ockham and the scholastics in the 
middle ages, and Leibniz’s vision of 
a calculus ratiocinator at the dawn 
of the enlightenment. Our interest 
in the subject lies with formal logic, 
which emerged from the contributions 
of Boole, De Morgan, Frege, Peirce, 
Peano, and others in the 19th century.

As the 20th century dawned, White-
head and Russell’s Principia Mathematica 
demonstrated formal logic could express 
a large part of mathematics. Inspired 
by this vision, Hilbert and his col-
leagues at Göttingen became the lead-
ing proponents of formal logic, aiming 
to put it on a firm foundation.

One goal of Hilbert’s Program was 
to solve the Entscheidungsproblem 
(decision problem), that is, to develop 
an “effectively calculable” proce-
dure to determine the truth or falsity 
of any statement. The problem pre-
supposes completeness—that for 
any statement, either it or its nega-
tion possesses a proof. In his address 
to the 1930 Mathematical Congress 
in Königsberg, Hilbert affirmed his 
belief in this principle, concluding 
“Wir müssen wissen, wir werden wissen”  
(“We must know, we will know”), 
words later engraved on his tomb-
stone. Perhaps a tombstone is an  
appropriate place for these words, given  
that any basis for Hilbert’s optimism 
had been undermined the day before, 
when at the selfsame conference 
Gödel18 announced his proof that 
arithmetic is incomplete.

While the goal was to satisfy 
Hilbert’s program, no precise defini-
tion of “effectively calculable” was 
required. It would be clear whether a 
given procedure was effective or not, 
like Justice Stewart’s characterization 
of obscenity, “I know it when I see it.” 
But to show the Entscheidungsproblem 
undecidable required a formal definition 
of “effectively calculable.”

One can find allusions to the con-
cept of algorithm in the work of Euclid 
and, eponymously, al-Khwarizmi, but 
the concept was formalized only in 
the 20th century, and then simulta-
neously received three independent 
definitions by logicians. Like buses, 
you wait 2,000 years for a definition of 
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to define predecessor.23 Once this 
hurdle was overcome, Church and 
his students soon became convinced 
any “effectively calculable” function 
of numbers could be represented by a 
term in the lambda calculus.

Church proposed l-definabil-
ity as the definition of “effectively 
calculable,” what we now know 
as Church’s Thesis, and demon-
strated there was a problem whose 
solution was not l-definable, that  
of determining whether a given l-term 
has a normal form, what we now 
know as the Halting Problem. A year 
later, he demonstrated there was no  
l-definable solution to the 
Entschei dungsproblem.

In 1933, Gödel arrived for a visit 
at Princeton. He was unconvinced 
by Church’s contention that every 
effectively calculable function was 
l-definable. Church responded by 
offering that if Gödel would pro-
pose a different definition, then 
Church would “undertake to prove 
it was included in l-definability.” In a 
series of lectures at Princeton in 1934, 
based on a suggestion of Herbrand,  
Gödel proposed what came to be known  
as “general recursive functions” as his 
candidate for effective calculability. 
Kleene took notes and published 
the definition.24 Church and his stu-
dents soon determined that the two 
definitions are equivalent; every gen-
eral recursive function is l-definable, 
and vice versa. Rather than mollifying 
Gödel, this result caused him to doubt 
his own definition was correct! Things 
stood at an impasse.

Meanwhile, at Cambridge, Turing, 
a student of Max Newman, inde-
pendently formulated his own 
notion of “effectively calculable” 
in the form of what we now call a 
Turing machine, and used it to show 
the Entscheidungsproblem undecid-
able. Before the paper was published, 
Newman was dismayed to discover 
Turing had been scooped by Church. 
However, Turing’s approach was suf-
ficiently different from Church’s to 
merit independent publication. Turing 
hastily added an appendix sketching 
the equivalence of l-definability to his 
machines, and his paper36 appeared 
in print a year after Church’s, when 
Turing was 23. Newman arranged for 
Turing to travel to Princeton, where 

he completed a doctorate under 
Church’s supervision.

Turing’s most significant differ-
ence from Church was not in logic 
or mathematics but in philosophy. 
Whereas Church merely presented the 
definition of l-definability and baldly 
claimed it corresponded to effective 
calculability, Turing undertook an 
analysis of the capabilities of a “com-
puter” (at this time, the term referred 
to a human performing a computa-
tion assisted by paper and pencil). 
Turing argued that the number of 
symbols must be finite (for if infinite, 
some symbols would be arbitrarily 
close to each other and undistinguish-
able), that the number of states of 
mind must be finite (for the same rea-
son), and that the number of symbols 
under consideration at one moment 
must be bounded (“We cannot tell at 
a glance whether 9999999999999999 
and 999999999999999 are the same”). 
Later, Gandy14 would point out that 
Turing’s argument amounts to a the-
orem asserting any computation a 
human with paper and pencil can per-
form can also be performed by a Turing 
machine. It was Turing’s argument 
that finally convinced Gödel; since 
l-definability, recursive functions, and 
Turing machines had been proved 
equivalent, he now accepted that all 
three defined “effectively calculable.”

As mentioned, Church’s first use of 
lambda calculus was to encode formu-
las of logic, but this encoding had to 
be abandoned because it led to incon-
sistency. The failure arose for a reason 
related to Russell’s paradox, namely 
that the system allowed a predicate to 
act on itself, and so Church adapted 
a solution similar to Russell’s, that of 
classifying terms according to types. 
Church’s simply typed lambda cal-
culus ruled out self-application, per-
mitting lambda calculus to support a 
consistent logical formulation.8

Whereas self-application in 
Russell’s logic leads to paradox, self-
application in Church’s untyped 
lambda calculus leads to non-termi-
nating computations. Conversely, 
Church’s simply typed lambda calcu-
lus guarantees every term has a normal 
form, or corresponds to a computation 
that halts.

Untyped lambda calculus or typed 
lambda calculus with a construct for 

Whereas Church 
merely presented 
the definition of 
l-definability and 
baldly claimed 
it corresponded 
to effective 
calculability,  
Turing undertook  
an analysis  
of the capabilities  
of a “computer.”
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observation, Howard pointed out there 
is a similar correspondence between 
natural deduction, on the one hand, 
and simply typed lambda calculus, on 
the other, and he made explicit the 
third and deepest level of the corre-
spondence, as described in the intro-
duction, that simplification of proofs 
corresponds to evaluation of programs. 
Howard showed the correspondence 
extends to the other logical connec-
tives—conjunction and disjunction—
by extending his lambda calculus 
with constructs that represent pairs 
and disjoint sums. Just as proof rules 
come in introduction and elimination 
pairs, so do typing rules; introduction 
rules correspond to ways to define or 
construct a value of the given type, and 
elimination rules correspond to ways 
to use or deconstruct values of the 
given type.

We can describe Howard’s observa-
tion as follows:

•  Conjunction. Conjunction A & B 
corresponds to Cartesian product 
A ´ B, or a record with two fields, 
also known as a pair. A proof of 
the proposition A & B consists of a 
proof of A and a proof of B. 
Similarly, a value of type A ´ B con-
sists of a value of type A and a 
value of type B.

•  Disjunction. Disjunction A ∨ B cor-
responds to a disjoint sum A + B, 
or a variant with two alternatives. 
A proof of the proposition A ∨ B 
consists of either a proof of A or a 
proof of B, including an indica-
tion of which of the two has been 
proved. Similarly, a value of type  
A + B consists of either a value of 
type A or a value of type B, includ-
ing an indication of whether this 
is a left or right summand.

•  Implication. Implication A ⊃ B cor-
responds to function space A → B. 
A proof of the proposition A ⊃ B 
consists of a procedure that given 
a proof of A yields a proof of B. 
Similarly, a value of type A → B 
consists of a function that when 
applied to a value of type A returns 
a value of type B.

This reading of proofs goes back to 
the intuitionists and is often called 
the BHK interpretation, named for 
Brouwer, Heyting, and Kolmogorov. 

general recursion (sometimes called 
a fixpoint operator) permits the defi-
nition of any effectively computable 
function but has a Halting Problem 
that is unsolvable. Typed lambda cal-
culus without a construct for general 
recursion has a Halting Problem that 
is trivial—every program halts!—but 
cannot define some effectively com-
putable functions. Both kinds of cal-
culus have their uses, depending on 
the intended application.

Gentzen and the Theory of Proof
A second goal of Hilbert’s program 
was to establish the consistency of 
various logics. If a logic is inconsis-
tent, it can derive any formula, ren-
dering it useless.

In 1935, at the age of 25, Gentzen15 
introduced not one but two new for-
mulations of logic—natural deduction 
and sequent calculus—that became 
established as the two major systems 
for formulating a logic and remain 
so to this day. He showed how to nor-
malize proofs to ensure they were not 
“roundabout,” yielding a new proof of 
the consistency of Hilbert’s system. 
And, to top it off, to match the use of 
the symbol $ for the existential quanti-
fication introduced by Peano, Gentzen 
introduced the symbol " to denote uni-
versal quantification. He wrote implica-
tion as A ⊃ B (if A holds, then B holds), 
conjunction as A & B (both A and B 
hold), and disjunction as A ∨ B (at least 
one of A or B holds).

Gentzen’s insight was that proof 
rules should come in pairs, a feature 
not present in earlier systems (such as 
Hilbert’s). In natural deduction, these 
are introduction and elimination pairs. 
An introduction rule specifies under 
what circumstances one may assert 
a formula with a logical connective 
(for instance, to prove A ⊃ B, one may 
assume A and then must prove B), while 
the corresponding elimination rule 
shows how to use that logical connec-
tive (for instance, from a proof of A ⊃ B  
and a proof of A, one may deduce B, a 
property dubbed modus ponens in the 
middle ages). As Gentzen noted, “The 
introductions represent, as it were, 
the “definitions” of the symbols con-
cerned, and the eliminations are no 
more, in the final analysis, than the 
consequences of these definitions.”

A consequence of this insight was 

that any proof could be normalized 
to one that is not “roundabout,” where 
“no concepts enter into the proof 
other than those contained in the final 
result.” For example, in a normalized 
proof of the formula A & B, the only 
formulas that may appear are itself 
and its subformulas, A and B, and the 
subformulas of A and B themselves. 
No other formula (such as (B & A) ⊃ (A 
& B) or A ∨ B) may appear; this is called 
the Subformula Principle. An immedi-
ate consequence was consistency. It is 
a contradiction to prove false, written 
. The only way to derive a contradic-
tion is to prove, say, both A ⊃  and A 
for some formula A. But given such a 
proof, one could normalize it to one 
containing only subformulas of its 
conclusion, . But  has no subfor-
mulas! It is like the old saw, “What 
part of no don’t you understand?” 
Logicians became interested in nor-
malization of proofs because of its 
role in establishing consistency.

Gentzen preferred the system of 
Natural Deduction because it was, 
in his view, more natural. He intro-
duced Sequent Calculus mainly as 
a technical device for proving the 
Subformula Principle, though it 
has independent interest. It is an 
irony that Gentzen was required 
to introduce Sequent Calculus in  
order to prove the Subformula 
Principle for Natural Deduction. He 
needed a roundabout proof to show 
the absence of roundabout proofs! 
Later, in 1965, Prawitz showed how 
to prove the Sub formula Principle 
directly, by introducing a way to sim-
plify Natural Deduction proofs; and 
this set the ground for Howard’s work 
described in the next section.

Propositions as Types
In 1934, Curry observed a curious 
fact, relating a theory of functions to 
a theory of implication.11 Every type 
of a function (A → B) could be read as 
a proposition (A ⊃ B), and under this 
reading the type of any given function 
would always correspond to a provable 
proposition. Conversely, for every prov-
able proposition there was a function 
with the corresponding type.

In 1969, Howard circulated a xeroxed 
manuscript;22 it was not published until 
1980, where it appeared in a Festschrift 
dedicate to Curry. Motivated by Curry’s 
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Brouwer founded intuitionism, and 
Heyting and Kolmogorov formalized 
intuitionistic logic and developed the 
interpretation in the 1920s and 1930s. 
Realizability, introduced by Kleene 
in the 1940s, is based on a similar 
interpretation.

Given the intuitionistic reading of 
proofs, it hardly seems surprising that 
intuitionistic natural deduction and 
lambda calculus should correspond 
so closely. But it was not until Howard 
that the correspondence was laid out 
clearly, in a way that allowed working 
logicians and computer scientists to 
put it to use.

Howard’s paper22 divides into two 
halves. The first half explains a corre-
spondence between two well-understood 
concepts, the propositional connec-
tives &, ∨, ⊃ on the one hand and the 
computational types ´, +, → on the 
other hand. The second half extends 
this analogy, and for well-understood 
concepts from logic proposes new 
concepts for types that correspond to 
them. In particular, Howard proposes 
that the predicate quantifiers " and $ 
corresponds to new types we now call 
“dependent types.”

With the introduction of depen-
dent types, every proof in predicate 
logic can be represented by a term 
of a suitable typed lambda calculus. 
Mathematicians and computer scien-
tists proposed numer ous systems based 
on this concept, including de Bruijn’s 
Automath,13 Martin- Löf’s type theory,26 
Bates and Constable’s PRL and nuPRL,2 
and Coquand and Huet’s Calculus of 
Constructions,9 which developed into 
the Coq proof assistant.

Applications include CompCert, 
a certified compiler for the C program-
ming language verified in Coq; a com-
puter-checked proof of the four-color 
theorem also verified in Coq; parts 
of the Ensemble distributed system 
verified in NuPRL; and 20,000 lines of 
browser plug-ins verified in F*.

de Bruijn’s work was independent of 
Howard’s, but Howard directly inspired 
Martin-Löf and all the other work listed 
earlier. Howard was (justly!) proud of his 
paper, citing it as one of the two great 
achievements of his career.34

Intuitionistic Logic
In Gilbert and Sullivan’s The Gondoliers, 
Casilda is told that as an infant she 

was married to the heir of the King of 
Batavia, but that due to a mix-up no one 
knows which of two individuals, Marco 
or Giuseppe, is the heir. Alarmed, she 
wails, “Then do you mean to say that I 
am married to one of two gondoliers, 
but it is impossible to say which?” To 
which the response is “Without any 
doubt of any kind whatever.”

Logic comes in many varieties, and 
one distinction is between “classical” 
and “intuitionistic.” Intuitionists, 
concerned by cavalier assumptions 
made by some logicians about the 
nature of infinity, insist upon a con-
structionist notion of truth. In par-
ticular, they insist that a proof of A ∨ 
B must show which of A or B holds, 
and hence they would reject the claim 
that Casilda is married to Marco or 
Giuseppe until one of the two was 
identified as her husband. Perhaps 
Gilbert and Sullivan anticipated intu-
itionism, for their story’s outcome 
is that the heir turns out to be a third 
individual, Luiz, with whom Casilda is, 
conveniently, already in love.

Intuitionists also reject the law of 
the excluded middle, which asserts 
A ∨ ¬A for every A, since the law gives 
no clue as to which of A or ¬A holds. 
Heyting formalized a variant of 
Hilbert’s classical logic that captures 
the intuitionistic notion of provability. 
In particular, the law of the excluded 
middle is provable in Hilbert’s logic, 
but not in Heyting’s. Further, if the 
law of the excluded middle is added 
as an axiom to Heyting’s logic, then it 
becomes equivalent to Hilbert’s.

Propositions as Types was first for-
mulated for intuitionistic logic. It is 
a perfect fit, because in the intuition-
ist interpretation the formula A ∨ B 
is provable exactly when one exhibits 
either a proof of A or a proof of B, so the 
type corresponding to disjunction is a 
disjoint sum.

Other Logics, Other Computation
The principle of Propositions as Types 
would be remarkable even if it applied 
only to one variant of logic and one vari-
ant of computation. How much more 
remarkable, then, that it applies to a wide 
variety of logics and of computation.

Quantification over propositional 
variables in second-order logic corre-
sponds to type abstraction in second-
order lambda calculus. For this reason, 

the second-order lambda calculus was 
discovered twice, once by the logician 
Girard16 and once by the computer sci-
entist Reynolds.33 And for the same 
reason, a similar system that supports 
principle type inference was also dis-
covered twice, once by the logician 
Hindley20 and once by the computer 
scientist Milner.27 Building on the cor-
respondence, Mitchell and Plotkin28 
observed existential quantification in 
second-order logic corresponds pre-
cisely to data abstraction, an idea that 
now underpins much research in the 
semantics of programming languages. 
The design of generic types in Java 
and C# draws directly upon Girard–
Reynolds, while the type systems of 
functional languages, including ML and 
Haskell, are based on Hindley–Milner. 
Philosophers might argue as to whether 
mathematical systems are “discovered” 
or “devised,” but the same system aris-
ing in two different contexts argues that 
here the correct word is “discovered.”

Two major variants of logic are intu-
itionistic and classical. Howard’s origi-
nal paper observed a correspondence 
with intuitionistic logic. Not until 
two decades later was the correspon-
dence extended to also apply to clas-
sical logic, when Griffin19 observed 
that Peirce’s Law in classical logic 
provides a type for the call/cc oper-
ator of Scheme. Murthy31 went on to 
note that Kolmogorov and Gödel’s 
double-negation translation, widely 
used to relate intuitionistic and clas-
sical logic, corresponds to the contin-
uation-passing style transformation 
widely used by both semanticists and 
implementers of lambda calculus. 
Parigot,32 Curien and Herbelin,10 and 
Wadler39 introduced various computa-
tional calculi motivated by correspon-
dences to classical logic.

Modal logic permits propositions to 
be labeled as “necessarily true” or “pos-
sibly true.” Clarence Lewis introduced 
modal logic in 1910, and his 1938 text-
book25 describes five variants, S1–S5. 
Some claim each of these variants has 
an interpretation as a form of compu-
tation via Propositions as Types, and a 
down payment on this claim is given by 
an interpretation of S4 as staged com-
putation due to Davies and Pfenning,12 
and of S5 as spatially distributed com-
putation due to Murphy et al.30

Moggi29 introduced monads as a 
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We begin with the details of natural 
deduction as defined by Gentzen15; the 
proof rules are shown in Figure 1. To 
simplify our discussion, we consider 
just two of the connectives of natural 
deduction. We write A and B as place-
holders standing for arbitrary formu-
las. Conjunction is written A & B, and 
implication is written A ⊃ B.

We represent proofs by trees, where 
each node of the tree is an instance of a 
proof rule. Each proof rule consists of 
zero or more formulas written above a 
line, called the “premises,” and a single 
formula written below the line, called 
the “conclusion.” The interpretation 
of a rule is that when all the premises 
hold, then the conclusion follows.

The proof rules come in pairs, with 
rules to introduce and to eliminate each 
connective, labeled -I and -E, respectively. 
As we read the rules from top to bottom, 
introduction and elimination rules do 
what they say on the tin: The first “intro-
duces” a formula for the connective, 
which appears in the conclusion but not 
in the premises; the second “eliminates” 
a formula for the connective, which 
appears in a premise but not in the con-
clusion. An introduction rule describes 
under what conditions we say the con-
nective holds—how to define the connec-
tive. An elimination rule describes what 
we may conclude when the connective 
holds—how to use the connective.

The introduction rule for conjunc-
tion, &-I, states that if formula A holds 
and formula B holds, then the for-
mula A & B must hold as well. There 
are two elimination rules for conjunc-
tion. The first, &-E1, states that if the 
formula A & B holds, then the formula 
A must hold as well. The second, &-E2, 
concludes B rather than A.

The introduction rule for impli-
cation, ⊃-I, states that if from the 
assumption that formula A holds we 
may derive the formula B, then we may 
conclude the formula A ⊃ B holds and 
discharge the assumption. To indicate 
that A is used as an assumption zero, 
once, or many times in the proof of B, 
we write A in brackets and tether it to 
B via ellipses. A proof is complete only 
when every assumption in it has been 
discharged by a corresponding use of 
⊃-I, which is indicated by writing the 
same name (here x) as a superscript 
on each instance of the discharged 
assumption and on the discharging 

technique to explain the semantics of 
important features of programming 
languages such as state, exceptions, and 
input–output. Monads became widely 
adopted in the functional language 
Haskell and later migrated into other 
languages, including Clojure, Scala, 
F#, and C#. Benton et al.3 observed 
that monads correspond to yet another 
modal logic, differing from all of S1–S5.

In classical, intuitionistic, and modal 
logic, any hypothesis can be used an arbi-
trary number of times—zero, once, or 
many. Linear logic, introduced in 1987 
by Girard,17 requires that each hypoth-
esis is used exactly once. Linear logic is 
“resource conscious” in that facts may be 
used up and superseded by other facts, 
suiting it for reasoning about the world 
where situations change. Computational 
aspects of linear logic are discussed by 
Abramsky1 and Wadler,38 among many 
others. Most recently, Session Types, a 
way of describing communication pro-
tocols introduced by Honda,21 have been 
related to intuitionistic linear logic by 
Caires and Pfenning,4 and to classical lin-
ear logic by Wadler.40

Propositions as Types remains a 
topic of active research.

Natural Deduction
We now turn to a more formal develop-
ment, presenting a fragment of natu-
ral deduction and a fragment of typed 
lambda calculus in a style that makes 
clear the connection between the two.

Figure 1. Gerhard Gentzen (1935)—Natural 
Deduction.
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rule. The elimination rule for implica-
tion, ⊃-E, states that if formula A ⊃ B 
holds and if formula A holds, then we 
may conclude formula B holds as well; 
as mentioned earlier, this rule also 
goes by the name modus ponens.

Critical readers will observe we 
use similar language to describe 
rules (“when-then”) and formulas 
(“implies”). The same idea applies at 
two levels, the meta level (rules) and 
the object level (formulas), and in two 
notations, using a line with premises 
above and conclusion below for impli-
cation at the meta level, and the symbol 
⊃ with premise to the left and conclu-
sion to the right at the object level. It is 
almost as if to understand implication 
one must first understand implication! 
This Zeno’s paradox of logic was wryly 
observed by Carroll.5 We need not let it 
disturb us; everyone possesses a good 
informal understanding of implica-
tion, which may act as a foundation for 
its formal description.

A proof of the formula

(B & A) ⊃ (A & B).

is shown in Figure 2; that is, if B and A 
hold, then A and B hold. This may seem 
so obvious as to be hardly deserving 
of proof! However, the formulas B ⊃ A 
and A ⊃ B have meanings that differ, 
and we need some formal way to con-
clude that the formulas B & A and A & B 
have meanings that are the same. This 
is what our proof shows, and it is reas-
suring it can be constructed from the 
rules we posit.

The proof reads as follows. From 
B & A we conclude A, by &-E2, and from 
B & A we also conclude B, by &-E1. From 
A and B we conclude A & B, by &-I. That 
is, from the assumption B & A (used 
twice) we conclude A & B. We discharge 
the assumption and conclude (B & A) ⊃ 
(A & B) by ⊃-I, linking the discharged 
assumptions to the discharging rule by 
writing z as a superscript on each.

Some proofs are unnecessarily 
roundabout. Rules for simplifying 
proofs appear in Figure 3, and an exam-
ple appears in Figure 4. Let us focus on 
the example first.

The top of Figure 4 shows a larger 
proof built from the proof in Figure 2. 
The larger proof assumes as premises 
two formulas, B and A, and concludes 
with the formula A & B. However, rather 

Figure 5. Alonzo Church (1935)—Lambda Calculus.
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´-I, states that if term M has type A and 
term N has type B, then we may form 
the pair term áM, Nñ of product type A 
´ B. There are two elimination rules 
for products. The first, ´-E1, states 
that if term L has type A ´ B, then we 
may form the term p1 L of type A, which 
selects the first component of the pair. 
The second, ´-E2 is similar, save that it 
forms the term p2 L of type B.

The introduction rule for functions, 
→-I, states that if given a variable x of 
type A we have formed a term N of type B, 
then we may form the lambda term lx. 
N of function type A → B. The variable 
x appears free in N and bound in lx. N. 
Undischarged assumptions correspond 
to free variables, while discharged 
assumptions correspond to bound vari-
ables. To indicate that the variable x 
may appear zero, once, or many times 
in the term N, we write x : A in brackets 
and tether it to N : B via ellipses. A term 
is closed only when every variable in it is 
bound by a corresponding l term. The 
elimination rule for functions, →-E, 
states that given term L of type A → B 
and term M of type A we may form the 
application term L M of type B.

For natural deduction, we noted ear-
lier there might be confusion between 
implication at the meta level and at 
the object level. For lambda calculus 
the distinction is clearer, as we have 
implication at the meta level (if terms 
above the line are well typed, then so 
are terms below) but functions at the 
object level (a function has type A → B 
because if it is passed a value of type A  
then it returns a value of type B). 
What previously had been discharge of 
assumptions (perhaps a slightly dif-
fuse concept) becomes binding of vari-
ables (a concept understood by most 
computer scientists).

The reader will have observed a 
striking similarity between Gentzen’s 
rules from the preceding section and 
Church’s rules from this section; ignor-
ing the terms in Church’s rules then 
they are identical if one replaces & by ´ 
and ⊃ by →. The coloring of the rules is 
chosen to highlight the similarity.

A program of type

(B ´ A) → (A ´ B)

is shown in Figure 6. Whereas the differ-
ence between B & A and A & B appears a 
mere formality, the difference between 

than concluding it directly we derive the 
result in a roundabout way, in order to 
illustrate an instance of ⊃-E, modus 
ponens. The proof reads as follows: On 
the left is the proof given previously, 
concluding in (B & A) ⊃ (A & B); on the 
right, from B and A we conclude B & A by 
&-I. Combining these yields A & B by ⊃-E.

We may simplify the proof by apply-
ing the rewrite rules of Figure 3. These 
rules specify how to simplify a proof 
when an introduction rule is immedi-
ately followed by the corresponding 
elimination rule. Each rule shows two 
proofs connected by an arrow, indicat-
ing that the “redex” (the proof on the 
left) may be rewritten, or simplified, to 
yield the “reduct” (the proof on the right). 
Rewrites always take a valid proof to 
another valid proof.

For &, the redex consists of a proof of 
A and a proof of B that combine to yield 
A & B by &-I, which in turn yields A by 
&-E1. The reduct consists simply of the 
proof of A, discarding the unneeded 
proof of B. There is a similar rule, not 
shown, to simplify an occurrence of &-I 
followed by &-E2.

For ⊃, the redex consists of a proof 
of B from assumption A, which yields 
A ⊃ B by ⊃-I, and a proof of A, which 
combine to yield B by ⊃-E. The reduct 
consists of the same proof of B, but 
now with every occurrence of the 
assumption A replaced by the given 
proof of A. The assumption A may be 
used zero, once, or many times in the 
proof of B in the redex, so the proof of 
A may be copied zero, once, or many 
times in the proof of B in the reduct. 
For this reason, the reduct may be 
larger than the redex, but it will be 
simpler in the sense it has removed 
an unnecessary detour via the sub-
proof of A ⊃ B.

We can think of the assumption of A 
in ⊃-I as a debt that is discharged by the 
proof of A provided in ⊃-E. The proof 
in the redex accumulates debt and pays 
it off later; while the proof in the reduct 
pays directly each time the assumption 
is used. Proof debt differs from mon-
etary debt in that there is no interest, 
and the same proof may be duplicated 
freely as many times as needed to pay 
off an assumption, the very property 
that money, by being difficult to coun-
terfeit, is designed to avoid!

Figure 4 demonstrates use of these 
rules to simplify a proof. The first proof 

contains an instance of ⊃-I followed by 
⊃-E and is simplified by replacing each 
of the two assumptions of B & A on the left 
by a copy of the proof of B & A on the right. 
The result is the second proof, which, as 
a result of the replacement, now con-
tains an instance of &-I followed by &-E2, 
and another instance of &-I followed 
by &-E1. Simplifying each of these yields 
the third proof, which derives A & B  
directly from the assumptions A and B 
and can be simplified no further.

It is not difficult to see that proofs 
in normal form satisfy the Subformula 
Principle: Every formula of such a proof 
must be a subformula of one of its undis-
charged assumptions or of its conclu-
sion. The proof in Figure 2 and the 
final proof of Figure 4 both satisfy this 
property, while the first proof of Figure 4 
does not, since (B & A) ⊃ (A & B) is not a 
subformula of A & B.

Lambda Calculus
We now turn our attention to the sim-
ply typed lambda calculus of Church8; 
the type rules are in Figure 5. To sim-
plify our discussion, we take both prod-
ucts and functions as primitive types; 
Church’s original calculus contained 
only function types, with products as 
a derived construction. We now write 
A and B as placeholders for arbitrary 
types, and L, M, N as placeholders for 
arbitrary terms. Product types are writ-
ten A ´ B, and function types are writ-
ten A → B. Now, instead of formulas, 
our premises and conclusions are 
judgments of the form

 M : A

indicating term M has type A.
Like proofs, we represent type deri-

vations by trees, where each node of 
the tree is an instance of a type rule. 
Each type rule consists of zero or more 
judgments written above a line, called 
the “premises,” and a single judgment 
written below the line, called the “con-
clusion.” The interpretation of a rule is 
that when all the premises hold, then 
the conclusion follows.

Like proof rules, type rules come in 
pairs. An introduction rule describes 
how to define or construct a term of the 
given type, while an elimination rule 
describes how to use or deconstruct a 
term of the given type.

The introduction rule for products, 
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B ´ A and A ´ B is easier to appreciate; 
converting the latter to the former 
requires swapping the elements of the 
pair, which is precisely the task per-
formed by the program corresponding 
to our former proof.

The program reads as follows. From 
variable z of type B ´ A we form term p2 z  
of type A by ´-E2 and also term p1 z of 
type B by ´-E1. From these two terms we 
form the pair áp2 z, p1 zñ of type A ´ B by 
´-I. Finally, we bind the free variable z to 
form the lambda term lz. áp2 z, p1 zñ of 
type (B ´ A) → (A ´ B) by →-I, connecting 
the bound typings to the binding rule by 
writing z as a superscript on each. The 
function accepts a pair and swaps its ele-
ments, exactly as described by its type.

A program may be evaluated by 
rewriting. Rules for evaluating pro-
grams appear in Figure 7, and an 
example appears in Figure 8. Let us 
focus on the example first.

The top of Figure 8 shows a larger 
program built from the program in 
Figure 6. The larger program has two 
free variables, y of type B and x of type 
A, and constructs a value of type A ´ B.  
However, rather than constructing 
it directly we reach the result in a 
roundabout way, in order to illustrate 
an instance of →-E, function applica-
tion. The program reads as follows: 
On the left is the program given previ-
ously, forming a function of type (B ´ 
A) → (A ´ B). On the right, from B and 
A we form the pair áy, xñ of type B ´ A by 
´-I. Applying the function to the pair 
forms a term of type A ´ B by →-E.

We may evaluate this program by 
applying the rewrite rules of Figure 
7. These rules specify how to rewrite 
a term when an introduction rule is 
immediately followed by the corre-
sponding elimination rule. Each rule 
shows two derivations connected by 
an arrow, indicating the “redex” (the 
term on the left) may be rewritten, or 
evaluated, to yield the “reduct”(the 
term on the right). Rewrites always 
take a valid type derivation to another 
valid type derivation, ensuring 
rewrites preserve types, a property 
known as “subject reduction” or 
“type soundness.”

For ´, the redex consists of term 
M of type A and term N of type B that 
combine to yield term áM, Nñ of type 
A ´ B by ´-I, which in turn yields term 
p1 áM, Nñ of type A by ´-E1. The reduct 

consists simply of term M of type A, 
discarding the unneeded term N of 
type B. There is a similar rule, not 
shown, to rewrite an occurrence of ´-I 
followed by ´-E2.

For →, the redex consists of a deri-
vation of term N of type B from variable 
x of type A, which yields the lambda 
term lx. N of type A → B by →-I, and 
a derivation of term M of type A, which 
combine to yield the application (lx. 
N) M of type B by →-E. The reduct con-
sists of the term N[M/x], which replaces 
each free occurrence of the variable x 
in term N by term M. Further, if in the 
derivation that N has type B we replace 
each assumption that x has type A by 
the derivation that M has type A, we get 
a derivation showing N[M/x] has type B. 
Since the variable x may appear zero, 
once, or many times in the term N, the 
term M may be copied zero, once, or 
many times in the reduct N[M/x]. For 
this reason, the reduct may be larger 
than the redex, but it will be simpler in 
the sense it has removed a subterm of 
type A → B. Discharge of assumptions 
thus corresponds to applying a func-
tion to its argument.

Figure 8 demonstrates use of these 
rules to evaluate a program. The first 
program contains an instance of →-I 
followed by →-E, and is rewritten 
by replacing each of the two occur-
rences of z of type B ´ A on the left 
by a copy of the term áy, xñ of type B 
´ A on the right. The result is the sec-
ond program, which, as a result of 
the replacement, now contains an 

instance of ´-I followed by ´-E2, and 
another instance of ´-I followed by 
´-E1. Rewriting each of these yields 
the third program, which derives the 
term áx, yñ of type A ´ B, and can be 
evaluated no further.

Hence, simplification of proofs cor-
responds exactly to evaluation of 
programs, in this instance demon-
strating that applying the function to 
the pair indeed swaps its elements.

Conclusion
Proposition as Types informs our view 
of the universality of certain program-
ming languages.

The Pioneer spaceship includes a 
plaque designed to communicate with 
aliens, if any should ever intercept it (see 
Figure 9). They may find some parts of 
it easier to interpret than others. A 
radial diagram shows the distance of 14 
pulsars and the center of our galaxy from 
Sol. Aliens are likely to determine the 
length of each line is proportional to the 
distances to each body. Another diagram 
shows humans in front of a silhouette 
of Pioneer. If Star Trek gives an accurate 
conception of alien species, they may 
respond, “They look just like us, except 
they lack pubic hair.” However, if the 
aliens’ perceptual system differs greatly 
from our own, they may be unable to 
decipher these squiggles.

What would happen if we tried to 
communicate with aliens by transmit-
ting a computer program? In the movie 
Independence Day, the heroes destroy the 
invading alien mothership by infecting 

Figure 9. Plaque on Pioneer spaceship.
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it with a computer virus. Close inspec-
tion of the transmitted program shows 
it contains curly braces; it is written in a 
dialect of C! It is unlikely that alien spe-
cies would program in C and unclear 
that aliens could decipher a program 
written in C if presented with one.

What about lambda calculus? Pro-
positions as Types tell us lambda calcu-
lus is isomorphic to natural deduction. 
It seems difficult to conceive of alien 
beings who do not know the funda-
mentals of logic, and we might expect 
the problem of deciphering a program 
written in lambda calculus to be closer 
to the problem of understanding 
the radial diagram of pulsars than of 
understanding the image of a man and 
a woman on the Pioneer plaque.

We might be tempted to conclude 
lambda calculus is universal, but first 
ponder the suitability of the word 
“universal.” These days, the multiple-
worlds interpretation of quantum 
physics is widely accepted. Scientists 
imagine that in different universes 
one might encounter different funda-
mental constants (such as the strength 
of gravity or the Planck constant). But 
easy as it may be to imagine a universe 
where gravity differs, it is difficult 
to conceive of a universe where fun-
damental rules of logic fail to apply. 
Natural deduction, and hence lambda 
calculus, should not only be known 
by aliens throughout our universe 
but also throughout others. So we 
may conclude it would be a mistake 
to characterize lambda calculus as a 
universal language, because calling it 
universal would be too limiting.
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