
Proof Pearl: Revisiting the Mini-rubik in Coq

Laurent Théry

Marelle Project INRIA, France
Laurent.Thery@inria.fr

Abstract. The Mini-Rubik is the 2x2x2 version of the famous Rubik’s
cube. How many moves are required to solve the 3x3x3 cube is still un-
known. The Mini-Rubik, being simpler, is always solvable in a maximum
of 11 moves. This is the result that is formalised in this paper. From this
formalisation, a solver is also derived inside the Coq prover. This rather
simple example illustrates how safe computation can be used to do state
exploration in order to derive non-trivial properties inside a prover.

1 Introduction

A recent paper [5] has shown that 26 moves are sufficient to solve Rubik’s cube.
This is the best-known upper bound (the exact value is conjectured to be around
20 moves). It uses some clever approximation of the problem but relies mainly
on heavy parallel computations: 8000 CPU hours are needed to get the result.
In this paper, we tackle the more elementary Mini-Rubik. Instead of 26 small
cubes, the Mini-Rubik is composed of 8 small cubes only. It is a well-known
result that it is always solvable in a maximum of 11 moves [1]. This is the result
we formalise in this paper.

In Coq [8], there is no native data-structure. All basic types such as inte-
ger, boolean, string are tree-like structures built using the standard Inductive
command. For example, the natural numbers use Peano representation with two
constructors S and O. The natural number 3 is then internally represented as
(S (S (S O))). Although this is perfectly adequate for proofs (for example, the
usual inductive principle is given for free), Peano numbers are useless for com-
puting. With a binary representation, the situation gets slightly better but is
still not satisfactory. In [7], a generic mechanism is proposed for associating a
dedicated data-structure for computing to the standard one for proving while
preserving all the nice properties of the type system. This mechanism is applied
to integer arithmetic in the following way. First, a special type Int31 is de-
fined that contains a single constructor with a list of 31 booleans as arguments.
This is the reference data-structure. Then, this type is associated to the internal
31-bit Ocaml integers1 in a straightforward manner. So, computing within the
Int31 type directly benefits from the processor arithmetic with the correspond-
ing speed-up. For example, the Int31 type was used in [9] to get the primality
of some large numbers using elliptic curves.
1 In Ocaml [6], the last bit of a word indicates if it should be interpreted as either a

value or a pointer, the arithmetic has then only 32 - 1 bits.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 310–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proof Pearl: Revisiting the Mini-rubik in Coq 311

In this paper, we are going to use the Int31 type in a slightly different manner.
The Mini-Rubik has 3,674,160 possible configurations. In order to get our final
result, we need to visit all these configurations while recording those which have
already been encountered. It amounts to manipulating subsets of a set of size
3,674,160. In order to use as little memory as possible, we use the Int31 type
to encode subsets of small sets of size 31. We then represent a subset of the
configurations with 118,522, i.e. 3,674,160/31, of these Int31. This capability
of encoding small subsets in a single word is the key aspect that makes our
formalisation work.

The paper is organised as follows. In Section 1, we present a naive formalisation
that is used to get the basic properties of the problem. In Section 2, we introduce
a second formalisation whose main concern is memory consumption. The main
result is obtained from this second formalisation. Finally, in Section 3, we give
more details about our formalisation.

2 Direct Formalisation

To represent the Mini-Rubik inside Coq, we have chosen a model that is par-
ticularly well-suited for the computation we need to perform. If we believe that
one can relatively easily get convinced that we have modelled the Mini-Rubik
faithfully, ultimately we should also provide a more intuitive model and formally
prove the equivalence with our model.

In our model, the front-upper-left corner remains fixed. So, a configuration
needs to take into consideration 7 small cubes only. Information about a small
cube is split in two: its position and its orientation. Small cubes are numbered
from 1 to 7. The cube on the left of Figure 1 shows which ordering has been
used to label the small cubes: the fixed cube and cubes 1,2, 3 compose the front
face. Small cubes are represented by elements of the enumerate type cube:

Inductive cube: Set := C1 | C2 | C3 | C4 | C5 | C6 | C7.

Each small cube is rigid and has 3 coloured faces only. Choosing arbitrarily the
vertical direction, in any configuration, a small cube has exactly one face that
belongs to either the top face or the bottom face. Knowing the colour of this
face is sufficient to deduce the colours of the other faces. This means that a
cube has only 3 possible orientations that can be represented by elements of the
enumerate type orientation:

Inductive orientation: Set := O1 | O2 | O3.

Note that in the following we really manipulate positions and orientations as if
they were natural numbers. We have not been using directly natural numbers for
efficiency reason only. With enumerate types, checking if a position is C7 is done
by one elementary pattern matching, while checking if a number is 7, i.e. (S (S
(S (S (S (S (S O))))))), requires a more expensive pattern matching.

A configuration of the Mini-Rubik is represented by a constructor State with
7 positions and 7 orientations:

312 L. Théry

1
23

1
7 4

1
2

4
5 3

23

1
1 1

2
3

3
2

Fig. 1. Positions and Orientations of the Mini-Rubik

Inductive state: Set :=

State (p1 p2 p3 p4 p5 p6 p7: cube) (o1 o2 o3 o4 o5 o6 o7: orientation).

where pi indicates which small cube is at position i and oi gives its orientation.
We define the initial orientation in such a way that the initial state of the cube
is represented as:

Definition init_state = State C1 C2 C3 C4 C5 C6 C7 O1 O1 O1 O1 O1 O1 O1.

The front-upper-left corner being fixed, there are only three elementary rotations
of the cube: right, back and down. Following Figure 1, cubes 1-4-5-2 compose
the right face, cubes 4-5-6-7 the back face and cubes 2-5-6-3 the bottom face.
Note that our decision to have the front-upper-left corner fixed means that in our
model a rotation of the left face (resp. front and up) is simulated by a rotation in
the opposite direction of the right face (resp. back and down). Also, half-turns
and anti-clockwise rotations are obtained by iterating twice, resp. thrice, the
respective elementary rotation. All this is rather standard.

Orientations are the less intuitive part of our model. The cube on the right
of Figure 1 tries to explain how orientations work. Orientations are numbered
from 1 to 3 following the clockwise order. For each cube, we arbitrarily decide
that it is the face that belongs to the top face (or the bottom face) that holds
the orientation. So, from the definition of init_state, it follows that initially
the top and bottom faces contain only 1, i.e O1.

After a rotation, the orientation of a cube is either unaffected, modified in a
clockwise manner, or modified in an anti-clockwise manner. Clockwise and anti-
clockwise changes are represented by the functions up and down respectively:

Definition up o = match o with O1 ⇒ O2 | O2 ⇒ O3 | O3 ⇒ O1 end.

Definition down o = match o with O1 ⇒ O3 | O2 ⇒ O1 | O3 ⇒ O2 end.

The three elementary rotations are modelled as functions from State to State:

Definition rright s := match s with
State p1 p2 p3 p4 p5 p6 p7 o1 o2 o3 o4 o5 o6 o7 ⇒
State p2 p5 p3 p1 p4 p6 p7 (up o2) (down o5) o3 (down o1) (up o4) o6 o7

end.

Proof Pearl: Revisiting the Mini-rubik in Coq 313

Definition rback s := match s with

State p1 p2 p3 p4 p5 p6 p7 o1 o2 o3 o4 o5 o6 o7 ⇒
State p1 p2 p3 p5 p6 p7 p4 o1 o2 o3 (up o5) (down o6) (up o7) (down o4)

end.

Definition rdown s := match s with

State p1 p2 p3 p4 p5 p6 p7 o1 o2 o3 o4 o5 o6 o7 ⇒
State p1 p3 p6 p4 p2 p5 p7 o1 o3 o6 o4 o2 o5 o7

end.

Note that our decision to use the top and bottom faces to read orientations is
reflected by the fact that the down rotation does not modify any orientation.

A state is reachable if it can be reached from the initial state using the three
elementary rotations. This is easily defined inductively by:

Inductive reachable: state → Prop :=

reach0: reachable init_state

| reachr: ∀s, reachable s → reachable (rright s)

| reachb: ∀s, reachable s → reachable (rback s)

| reachd: ∀s, reachable s → reachable (rdown s).

The fact that 11 moves are sufficient to solve the Mini-Rubik is true for the
half-turn metric. This means that not only elementary rotations need to be
considered but also anti-clockwise rotations and half turns. This is done in the
move relation:

Definition move (s1 s2: state) :=

s2 = rright s1 ∨ s2 = rright (rright s1) ∨ s2 = rright (rright (rright s1))

∨ s2 = rback s1 ∨ s2 = rback(rback s1) ∨ s2 = rback(rback(rback s1))

∨ s2 = rdown s1 ∨ s2 = rdown(rdown s1) ∨ s2 = rdown(rdown(rdown s1)).

Once moves are defined, the reachability in n moves is defined inductively as:

Inductive nreachable: nat → state → Prop :=

nreach0: nreachable 0 init_state

| nreachS: ∀n s1 s2, nreachable n s1 → move s1 s2 → nreachable (S n) s2.

We also define the property of being reachable in less than n moves and the
property of being reachable in exactly n moves:

Definition nlreachable n s := ∃m, m ≤ n ∧ nreachable m s.

Definition nsreachable n s :=

nreachable n s ∧ ∀m, m < n → ¬ nreachable m s.

Now, the theorem we want to prove can be expressed as:

Lemma reach11: ∀s, reachable s → nlreachable 11 s.

Turning this lemma into a computational problem is quite direct. For each n, we
are going to compute the states that are reachable in less than n moves and the
states that are reachable in exactly n moves. We represent states by a simple
list of states. On such a list, the function in_states checks if a state belongs to
the list. We first define the list of all possible moves

314 L. Théry

Definition movel :=
rright :: rright o rright :: rright o rright o rright ::
rback :: rback o rback :: rback o rback o rback ::
rdown :: rdown o rdown :: rdown o rdown o rdown :: nil.

All the states that are reachable in exactly n+1 states are included in the states
that are within one move of states that are reachable in exactly n states. This is
the basic idea of the algorithm. The function nexts does this computation for a
single state:

Definition nexts (ps: states * states) s :=

fold_left

(fun (ps: states * states) f ⇒
let (states, nstates) := ps in

let s1 := f s in

if in_states s1 states then ps else (s1 :: states, s1 :: nstates))

movel ps.

where fold_left is the tail recursive version of the usual iterative fold function
on lists. For each state s1 that is one move from s, the nexts function checks if
s1 has already been visited. If not, it is added to the list of visited states (the
first element of the pair) and to the list of the new states (the second element
of the pair). Finally, to get the states that are reachable in less than n moves
and the states that are reachable in exactly n moves, we just need to iterate the
nexts function starting from the lists composed of the initial state only:

Function iters_aux n (ps: states * states) :=

match n with

O ⇒ ps

| S n1 ⇒ let (m,p) := ps in iters_aux n1 (fold_left nexts p (m,nil))

end.

Definition iters n := iters_aux n (init_state::nil, init_state::nil).

It is relatively easy to show that if the second element of the pair returned by
(iters n) is the empty list, the Mini-Rubik is solvable in n-1 moves. This is
formally stated by the following theorem:

Lemma iters_final: ∀n,
match iters n with

(_, nil) ⇒ ∀s, reachable s → nlreachable (pred n) s

| _ ⇒ True

end.

It is by applying this theorem that we turn the proof of the theorem reach11
into computing (iters 12).

3 Optimising Memory Consumption

The implementation of iters is far too naive to let us prove the reach11
theorem. Computing (iters 5), which involves 12,224 states only, is already

Proof Pearl: Revisiting the Mini-rubik in Coq 315

impossible inside Coq. Nevertheless, iters is useful as a reference implemen-
tation to which our optimised version is going to be proved equivalent. What
iters actually does is to compute the diameter of the Cayley graph of the
group generated by the three elementary rotations. As explained in [1], having
a compact representation in memory of the graph is mandatory to perform this
computation. If we go back to how configurations have been encoded, the values
of the 14 arguments of State are strongly constrained. First of all, the seven
arguments (p1, ..., p7) which represent positions must be a permutation of
(C1, C2, C3, C4, C5, C6, C7). Also, the orientation of the last cube can be
guessed from the orientations of the other cubes. These constraints are captured
by the predicate valid_state:

Definition valid_state s := match s with

State c1 c2 c3 c4 c5 c6 c7 o1 o2 o3 o4 o5 o6 o7 ⇒
perm (C1::C2::C3::C4::C5::C6::C7::nil) (c1::c2::c3::c4::c5::c6::c7::nil)

∧ o1 ⊕ o2 ⊕ o3 ⊕ o4 ⊕ o5 ⊕ o6 ⊕ o7 = O1

end.

where perm is the permutation predicate between two lists and ⊕ is the projection
of the addition modulo 3 to the orientation, i.e. adding On is done by applying
the function up n − 1 times. The valid_state predicate is proved to hold for
the initial state and to be preserved by the reachability predicate. So, we have:

Lemma reachable_valid: ∀s, reachable s → valid_state s.

Note that this theorem already indicates that there are at most 7!36 = 3,674,160
configurations (7! is the contribution of the permutations, and the 36 corresponds
to the fact that the value of the last orientation is determined by the value of the
other orientations). Later, we explain how we formally prove that this is actually
the exact number of configurations.

An accurate encoding of permutations of length n should take into considera-
tion the facts that the first element of the permutation has n possible values, the
second element n − 1 and so on. This is done with the following two functions
that manipulate permutations as lists:

Function encode_aux l p :=

match l with

nil ⇒ nil

| m :: l1 ⇒ (if p <c m then downc m else m) :: encode_aux l1 p

end.

Function encode l n:=

match l, n with

m :: l1, (S n1) ⇒ m :: encode (encode_aux l1 m) n1

| _ , _ ⇒ nil

end.

where <c and downc are the projections of the comparison and the predecessor
functions from the natural numbers to the enumerate type cube, i.e. C2 <c C3
and downc C3 = C2. For the definition of the encode function, as the recursion is

316 L. Théry

not structural, an extra argument n is required to ensure termination. It bounds
the length of the resulting list. With this encoding on a permutation of length
n, the ith element is ensured to be in {C1, C2, . . . , Cn−i+1}. In particular, the last
element is always C1 and can be discarded. If n is the length of the permuta-
tion we want to encode, the extra argument of the encode function is n − 1.
For example, if we consider the permutation of the initial configuration, its en-
coding is computed by (encode (C1::C2::C3::C4::C5::C6::C7::nil) 6) and
evaluates to C1::C1::C1::C1::C1::C1::nil. To sum up, the information about
positions in a state can be encoded by 6 elements of type cube (p′1, p′2, p′3,
p′4, p′5, p′6) with p′i ∈ {C1, C2, . . . , C8−i} and the information about orientations
can be encoded by 6 elements of type orientation (o′1, o′2, o′3, o′4, o′5, o′6).
Furthermore, as the iters function intensively uses encoding and decoding of
permutations, we actually use co-inductive types, which are evaluated lazily, to
get the memoisation of these operations. This speeds up our computation by a
factor of 2.

We use decision trees to represent sets of states. The 12 elements that encode a
state (p′1, p′2, p′3, p′4, p′5, p′6, o′1, o′2, o′3, o′4, o′5, o′6) are used to denote
a path to a boolean leaf in the decision tree. If this leaf is true, the state is in the
set. In Coq, a constructor with n arguments allocates (n + 1) 32-bit words. It
is then better to have the elements with the largest number of arguments at the
bottom of the tree structure. This is why the reordering of the path (p′6, o′1,
o′2, o′3, o′4, o′5, o′6, p′5, p′4, p′3, p′2, p′1) is favoured. Furthermore, instead
of boolean leaves, we can use elements of the Int31 type to encode sets of 31
elements with the usual convention that the ith element of the set is present if and
only if the ith bit is set to one. In our path, p′2 has 6 possible values and p′3 has
5 possible values, this means that the pair (p′2, p

′
3) has 30 possible values which

can be effectively represented by a single Int31 element (a single bit is then
unused). The actual path that is used is then (p′6, o′1, o′2, o′3, o′4, o′5, o′6,
p′5, p′4, p′1, 5(index(p′2)−1)+index(p′3)−1) where index is the function that
maps elements of the type cube to natural numbers, i.e. index(C5) = 5. With
this encoding, the last element of a path is always a natural number strictly less
than 30. Two functions encode_state and decode_state are defined to relate
states and paths and their composition is proved to be the identity on valid
states. With this representation, a set of states requires a maximum of 295,001
32-bit words which means 2.6 bits per configuration.

It is also possible to derive a solver by slightly modifying the iters program.
This follows from the observation that, given a state s that is reachable in n
moves, the states which are one move from s are reachable in n − 1, n, or n + 1
moves. Out of all these states, a solver just needs to be capable to pick one state
that is reachable in n − 1 move. Since for any n, (n − 1) mod 3, n mod 3, and
(n + 1) mod 3 are always 3 distinct values, it is sufficient to be able to associate
for each state s the two-bit value n mod 3 where n is the number of moves that
are necessary to reach s. For this, we just need to split in two the states that
are reachable in less than n moves to get the two-bit information. The modified
version iter2s of the function iters for the solver is the following:

Proof Pearl: Revisiting the Mini-rubik in Coq 317

Definition next2s m (ps: states * states * states) s :=

fold_left

(fun (ps: state * states * states) f ⇒
let (states1, states2, nstates) := ps in

let s1 := f s in

if (in_states s1 states1 || in_states s1 states2) then ps

else match m with

0 ⇒ (s1::states1, states2, s1::nstates)

| 1 ⇒ (states1, s1::states2, s1::nstates)

| _ ⇒ (s1::states1, s1::states2, s1::nstates)

end)

movel ps.

Function iter2s_aux (n m: nat) (ps: states * states * states) :=

match n with

O ⇒ ps

| S n1 ⇒ let (ps1,ps2,ps3) := ps in

iter2s_aux n1 ((m+1) mod 3) (fold_left (next2s m) ps3 (ps1,ps2,nil))

end.

Definition iter2s n :=

iter2s_aux n 1 (init_state::nil, nil, init_state::nil).

4 Running the Solver

The complete formalisation is available at
ftp://ftp-sop.inria.fr/marelle/Laurent.Thery/Rubik.zip

It is composed of 7000 lines of code: 3000 lines for the naive formalisation, 4000
for the optimised version. On a Pentium 4 with 1 Gigabyte of RAM, getting
the reach11 theorem takes 260 seconds. Most of the time is spent in computing
(iters 12). Note that, once this computation has been performed, it can also
be used to get another interesting result:

Lemma valid11: ∀s, valid_state s → reachable s.

This proves that the number of configurations of the Mini-Rubik is exactly
3,674,160. This is done by checking that the first element of the pair computed
by (iters 12) with the optimised version has all its leaves equal to 230 − 1.

The solver returns the list of moves in the half-turn metric that leads to the
initial state. We use co-inductive types and memoisation to compute only once
the table that associates each state with its index of reachability modulo 3. So,
the first time the solver is called, the table is actually computed:

Time Eval compute in solve init_state.
= nil

Finished transaction in 384. secs (384.562537u,0.292956s)

The next invocations are then immediate. For example, we can try to swap two
adjacent corners

ftp://ftp-sop.inria.fr/marelle/Laurent.Thery/Rubik.zip

318 L. Théry

Time Eval compute in solve (State C2 C1 C3 C4 C5 C6 C7 O1 O1 O1 O1 O1 O1 O1).

= Right::Back−1::Down2::Right−1::Back::Right−1::Back−1::Right::Down2::

Right::Back::nil

Finished transaction in 0. secs (0.00100000000009u,0.s)

or two opposite corners

Time Eval compute in solve (State C7 C2 C3 C4 C5 C6 O1 O1 O1 O1 O1 O1 O1 1).

= Right::Back−1::Right2::Back−1::Right−1::Down−1::Right::Down2::Back::

Down−1::Back::nil

Finished transaction in 0. secs (0.00100000000009u,0.s)

5 Conclusions

Proof systems like Coq are not well-suited for dealing with state exploration.
Mike Gordon has already shown in [3] how one can benefit from an external link
to a Bdd package to solve a solitaire game inside the Hol prover [4]. In our work,
everything has been done withing the theorem prover using safe computation.
The main contribution of this paper is to show that we can actually use this
safe computation to effectively model problems of relatively large size like the
Mini-Rubik. As in [3], what we really gain by doing this inside a prover is the
formal connection between what we want to prove (the model) and what we
actually compute.

The key aspect of the formalisation is its memory consumption. Most of the
issues we have addressed here is not specific to theorem proving and can also
be found in the model checking community. For example, in [10], the author
shows how a careful design is necessary to be able to solve this problem with
Bdds. Having a certified formalisation in a purely functional setting that uses 2.6
bits only per configuration is rather satisfactory. The 260 seconds to complete
the exploration are less satisfactory but it is difficult to see how we could go
significantly faster in a programming language without side-effects. Finally, if
our decision trees are for the moment ad-hoc for the specific configurations of
the Mini-Rubik, deriving a generic library that uses Int31 to represent large
finite sets could be useful for other formalisations.

A natural continuation of this work would be to tackle the full Rubik’s cube.
Obviously, formalising results like [5] is outside reach but getting simpler bounds
like the one of 52 moves [2] seems feasible.

References

1. Cooperman, G., Finkelstein, L.: New Methods for Using Cayley Graphs in Inter-
connection Networks. Discrete Applied Mathematics 37(38), 95–118 (1992)

2. Frey, A.H., Singmaster, D.: Handbook of Cubik Math. Enslow Publishers (1982)
3. Gordon, M.J.C.: Reachability Programming in HOL98 using BDDs. In: Aagaard,

M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 179–196. Springer,
Heidelberg (2000)

Proof Pearl: Revisiting the Mini-rubik in Coq 319

4. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher-order logic. Cambridge University Press, Cambridge (1993)

5. Kunkle, D., Cooperman, G.: Twenty-Six Moves Suffice for Rubik’s Cube. In: ISSAC
2007, pp. 235–242 (2007)

6. Leroy, X.: Objective Caml (1997), http://pauillac.inria.fr/ocaml/
7. Spiwack, A.: Efficient Integer Computation in Type Theory, Draft paper (2007)
8. The Coq development team. The Coq Proof Assistant Reference Manual v7.2.

Technical Report 255, INRIA (2002), http://coq.inria.fr/doc
9. Théry, L., Hanrot, G.: Primality proving with elliptic curves. In: Schneider, K.,

Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 319–333. Springer, Heidel-
berg (2007)

10. Valmari, A.: What the small Rubik’s cube taught me about data structures, infor-
mation theory, and randomisation. International Journal for Software Tools Tech-
nology 8(3), 180–194 (2006)

http://pauillac.inria.fr/ocaml/
http://coq.inria.fr/doc

	Proof Pearl: Revisiting the Mini-rubik in Coq
	Introduction
	Direct Formalisation
	Optimising Memory Consumption
	Running the Solver
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

