
On Synthetic Undecidability in Coq,
with an Application to the Entscheidungsproblem

Yannick Forster
Saarland University

Saarbrücken, Germany
forster@ps.uni-saarland.de

Dominik Kirst
Saarland University

Saarbrücken, Germany
kirst@ps.uni-saarland.de

Gert Smolka
Saarland University

Saarbrücken, Germany
smolka@ps.uni-saarland.de

Abstract
We formalise the computational undecidability of validity,
satisfiability, and provability of first-order formulas follow-
ing a synthetic approach based on the computation native
to Coq’s constructive type theory. Concretely, we consider
Tarski and Kripke semantics as well as classical and intu-
itionistic natural deduction systems and provide compact
many-one reductions from the Post correspondence prob-
lem (PCP). Moreover, developing a basic framework for syn-
thetic computability theory in Coq, we formalise standard
results concerning decidability, enumerability, and reducibil-
ity without reference to a concrete model of computation.
For instance, we prove the equivalence of Post’s theorem
with Markov’s principle and provide a convenient technique
for establishing the enumerability of inductive predicates
such as the considered proof systems and PCP.

CCS Concepts • Theory of computation→ Logic;

Keywords synthetic undecidability, Entscheidungsproblem,
Coq, Post’s theorem, Markov’s principle, first-order logic

ACM Reference Format:
Yannick Forster, Dominik Kirst, and Gert Smolka. 2019. On Syn-
thetic Undecidability in Coq, with an Application to the Entschei-
dungsproblem. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’19), January 14–
15, 2019, Cascais, Portugal. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3293880.3294091

1 Introduction
Every function definable in constructive type theory is com-
putable. Thus, standard notions from computability theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6222-1/19/01. . . $15.00
https://doi.org/10.1145/3293880.3294091

like decidability, enumerability, and reductions are avail-
able without reference to a concrete model of computation
such as Turing machines, general recursive functions, or
the λ-calculus. For instance, representing a given decision
problem by a predicate p on a type X , a function f : X → B
with ∀x .p x ↔ f x = tt is a decision procedure, a function
д : N → X with ∀x .p x ↔ (∃n.дn = x) is an enumer-
ation, and a function h : X → Y with ∀x .p x ↔ q (h x)
for a predicate q on a type Y is a many-one reduction from
p to q. Working formally with concrete models instead is
cumbersome, given that every defined procedure needs to
be shown representable by a concrete entity of the model.
To avoid this tedium, many presentations resort to informal
arguments regarding the algorithmic properties at the core
of their constructions.

Enabling the outlined synthetic approach to computability
as explored by Richman [36] and Bauer [2, 3], constructive
type thoery is well-suited for formalising positive statements
about decision problems. Turning to negative statements like
undecidability and non-enumerability, however, the situation
becomes more intricate. Typical formulations of construc-
tive type theory such as Martin-Löf type theory (MLTT) or
Coq’s underlying calculus of inductive constructions (CIC)
are consistent with the assumption that every predicate is de-
cidable, so proving a concrete decision problem undecidable
is not outright possible. A potential way out would be to roll
back to a concrete model and establish negative results w.r.t.
the modelled computation – again producing unwelcome
technical overhead. The preferable solution, employed in
this work, is to verify a synthetic reduction from a problem
informally known to be undecidable – establishing negative
results relative to the chosen base in a transparent way.
The base we choose is the Post correspondence problem

(PCP), an easy to formulate combinatorial problem concern-
ing matching sequences of strings. Proven undecidable by
Post in 1946 [34], PCP became a powerful tool in computabil-
ity theory, often admitting elegant reductions. In previous
work [12], we formalised a reduction from the halting prob-
lem of Turing machines to PCP in Coq, hence providing
reliable evidence that the assumption that PCP is undecid-
able in the synthetic sense can be safely added to constructive
type theory. Concretely, (locally) assuming that PCP is not
co-enumerable implies that every problem it reduces to is
not co-enumerable and hence undecidable.

38

https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294091

CPP ’19, January 14–15, 2019, Cascais, Portugal Yannick Forster, Dominik Kirst, and Gert Smolka

In this work, we use the outlined strategy to address an-
other seminal decision problem in computability theory,
namely the Entscheidungsproblem. Asking for a decision pro-
cedure for the validity of first-order formulas, it was pro-
grammatically posed by Hilbert and Ackermann in 1928 [11]
and famously answered to the negative by Turing [44] and
Church [8]. We verify a simple reduction following Floyd
and Manna [31] from PCP to the Entscheidungsproblem for
formulas in the universal-implicative fragment of first-order
logic over a small signature. Furthermore, we give similar
reductions to related problems such as intuitionistic and clas-
sical variants of natural deduction systems and satisfiability
of formulas including negation. To this end, we develop the
metatheory of first-order logic to an extent necessary to ver-
ify the reductions, including soundness and a generalised
double negation translation. We refrain from a comprehen-
sive account covering further standard results like complete-
ness since they do not yield shorter undecidability proofs
and (mostly) rely on additional assumptions.

As we formalise our results using the Coq proof assistant
based on CIC, which comes with an impredicative universe
of propositions, we deviate in some aspects from a develop-
ment using alternative provers such as Agda based on pure
MLTT. Most importantly, CIC allows for a propositional ver-
sion of existence that hides witnesses from elimination into
the computational fragment. Thus, an operation definable
in Coq1 we call guarded minimisation computing minimal
witnesses for satisfiable decidable predicates on enumerable
types is crucial for our results surrounding Post’s theorem.

Contributions Our main contribution is a compact Coq
formalisation2 of elementary synthetic computability (900
lines of code), various decision problems in first-order logic
(750 loc), and their respective undecidability (550 loc). All
definitions and propositions in the PDF version of this paper
are hyperlinked with the corresponding statements in the
browsable HTML version of the formalisation. We elaborate
on some formalisation tricks like tagged inductive types for
fragments of syntax and deduction systems and an enumer-
ability technique using cumulative lists in the discussion.

As mathematical results, we examine synthetic renderings
of standard notions in computability theory such as decidabil-
ity, enumerability, and many-one reductions and prove basic
results culminating in the observed equivalence of Post’s
theorem and Markov’s principle. Moreover, we give short
reductions from PCP to every problem under consideration
and verify their correctness purely constructively.
Finally, the text on its own functions as a surveying ac-

count of synthetic computability and undecidability in first-
order logic, providing a compact presentation of the chosen
reductions and an extensive discussion of related work.

1Variants of this operation can be found in common Coq libraries.
2https://www.ps.uni-saarland.de/extras/fol-undec

Outline The technical part of this paper is organised in two
sections. First, in Section 2, we develop the basics of synthetic
computability theory addressing decidability and enumer-
ability, many-one reductions, Post’s theorem and Markov’s
principle, the Post correspondence problem, and infinite data
types. Secondly, in Section 3, we apply the synthetic frame-
work to proving the undecidability of validity, provability,
satisfiability, their intuitionistic counterparts, and classical
provability of first-order formulas. We conclude in Section 4
with general comments as well as some remarks concerning
the Coq formalisation, related work, and future work.

2 Elementary Synthetic Computability
We work in a constructive type theory providing a hierarchy
of predicative universes T of computational types, an impred-
icative universe P of propositions, and a general scheme for
inductive types subject to pattern matching and structural
recursion. We employ the standard notation for (dependent)
products, (dependent) sums, and logical connectives placed
in P. The inductive type of booleans is defined as B := tt | ff,
the unit type is defined as 1 := ∗, and the natural numbers
are defined as N := 0 | Sn for n : N.

We define the option type over a typeX asO(X) := ∅ | ⌜x⌝
for x : X . Moreover, the type of lists over X is defined as
L(X) := [] | x :: A for x : X andA : L(X). WewriteA++B for
concatenation, x ∈ A formembership, andA ⊆ B for inclusion.
Finally, we write [f x | x ∈ A] formap, [x ∈ A | p x] for filter
and A[n] : O(X) for element access.

2.1 Decidability and Enumerability
We begin by defining the standard notions of decidability
and enumerability in the synthetic setting.

Definition 2.1. Given a type X , a predicate p : X → P is
• decidable if there is a decider f : X → B such that
∀x .p x ↔ f x = tt.
• enumerable if there is an enumerator f : N→ O(X)
such that ∀x .p x ↔ ∃n. f n = ⌜x⌝.

The complementp is defined asp := λx .¬px and we say thatp
is co-enumerable if p is enumerable and that p is co-decidable
if p is decidable. These definitions generalise to predicates with
more than one argument as one would expect.

Since every function definable in a constructive type the-
ory is inherently computable, there is no need to demand
additional representations of deciders and enumerators in
some explicit model of computation.

Fact 2.1 (Informative deciders). From a decider forp : X → P
one can obtain a function of type ∀x .p x +¬p x and vice versa.

Proof. Given a decider f : X → B we easily establish a deci-
sion d x : p x + ¬p x via case distinction on f x . Conversely,
given a decision d x : p x + ¬p x the function defined by
f x := if d x then tt else ff is a decider for p. □

39

https://www.ps.uni-saarland.de/extras/fol-undec
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#decidable
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#decidable_iff

On Synthetic Undecidability in Coq CPP ’19, January 14–15, 2019, Cascais, Portugal

Fact 2.2. Decidable predicates are closed under conjunction,
disjunction, and complement.

Proof. Routine by deciding the logical connectives using their
boolean equivalents. □

Note that the converse directions do not hold in general.
For instance, the notions of decidability and co-decidability
only coincide using classical assumptions.

Definition 2.2. A type X is
• enumerable if there is an enumerator f : N→ O(X)
such that ∀x . ∃n. f n = ⌜x⌝.
• discrete if there is an equality decider for λxy : X . x = y.
• a data type if it is both enumerable and discrete.

Fact 2.3. Decidable predicates on enumerable types are enu-
merable and co-enumerable.

Proof. Let fp : X → B be a decider for a predicate p : X → P
on a type X with enumerator fX : N→ O(X). Then

f n := match fX nwith ⌜x⌝ ⇒ if fp x then ⌜x⌝ else ∅ | ∅ ⇒ ∅

is an enumerator for p. That decidable predicates are also
co-enumerable follows with Fact 2.2. □

Fact 2.4. B, N, and N × N are data types.

Proof. Establishing B and N as data types as well as the dis-
creteness ofN×N are routine. Concerning the enumerability
of N × N, one first defines a function L : N→ L(N × N) by

L 0 := [] L (Sn) := Ln ++[(k, l) | k, l ∈ [0, . . . ,n]].

Then f n := (Ln)[n] enumerates N × N. □

Note that the function L in the previous proof is cumula-
tive in the sense that Ln is a prefix of L (Sn) for all n. This
enumeration technique can be generalised as follows.

Fact 2.5 (List enumerators). Given a type X and a function
L : N→ L(X), one can obtain a function f : N→ O(X) such
that ∀x . (∃n. f n = ⌜x⌝) ↔ (∃n. x ∈ Ln) and vice versa.
Proof. Given an enumerator д for N × N and L : N→ L(X)

f n := match дn with ⌜(k, l)⌝ ⇒ (Lk)[l] | ∅ ⇒ ∅

defines f as claimed. Conversely, given f : N→ O(X)

Ln := match f n with ⌜x⌝ ⇒ [x] | ∅ ⇒ []

defines L as claimed. □

Note that every function L : N → L(X) can trivially
be made cumulative, so in particular we can assume every
list enumerator to be cumulative. Employing list enumera-
tors yields a convenient technique for establishing closure
properties for enumerability regarding types and predicates.

Lemma 2.6. If L is cumulative, then Ln ⊆ Lm if n ≤ m.

Proof. By straightforward induction on n ≤ m. □

Fact 2.7. Enumerable types, discrete types, and data types are
all closed under products, sums, options, and lists.

Proof. The closure properties for discreteness are routine.
Concerning enumerability, let LX be a list enumerator for X .
We exemplarily define a list enumerator for L(X):

LL(X) 0 := [[]]
LL(X) (Sn) := LL(X) n ++[x :: A | x ∈ LX n,A ∈ LL(X) n]

The proof that ∀A : L(X). ∃n.A ∈ LL(X) n is by induction on
A. The case A = [] is trivial. Thus consider x :: A. We know
that x ∈ LX n1 and by IH that A ∈ LL(X) n2 for some n1,n2.
By Lemma 2.6 we know that x ∈ LX (1 + n1 + n2) and that
A ∈ LL(X) (1+n1+n2) and thusx :: A ∈ LL(X) (1+n1+n2). □

Fact 2.8. Enumerable predicates

(1) are closed under disjunction.
(2) on discrete types are closed under conjunction.

Proof.

(1) Let Lp and Lq be list enumerators forp andq, respectively.
Then Ln := [x | x ∈ Lp n]++[x | x ∈ Lq n] is a list
enumerator for λx .p x ∨ q x .

(2) Let Lp and Lq be list enumerators forp andq, respectively.

L 0 := [] L (Sn) := Ln ++[x | x ∈ Lp n,x ∈ Lq n]

is a list enumerator for λx .p x ∧ q x . The discreteness of
the domain of p and q is employed in the second equation
to filter all x ∈ Lp n that are also in Lq n. □

The last fact in this section states that domain and range
of enumerable binary relations are enumerable.

Fact 2.9 (Projection). Let p : X → Y → P be an enumerable
predicate. Then λx . ∃y.p x y and λy. ∃x .p x y are enumerable.

Proof. Assume an enumerator for pairs (x ,y) such that p x y.
Projecting out x and y yields enumerators for λx . ∃y.p x y
and for λy. ∃x .p x y, respectively □

Note that most of the previous and upcoming statements
can be simplified when only considering data types. For
instance, enumerable predicates on data types are closed
under disjunction and conjunction. We give the stronger
statements for the sake of generality but remark that usual
decision problems such as the ones in first-order logic ad-
dressed in this work are defined on enumerable and discrete
domains. In Section 2.5, we show that these domains can in
fact be encoded using the standard data type N.

2.2 Many-One Reductions
Definition 2.3. Given predicates p : X → P and q : Y → P
we call a function f : X → Y a (many-one) reduction from
p to q if ∀x .p x ↔ q (f x). We say that p reduces to q and
write p ≼ q if there is a reduction from p to q.

40

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#dec_compl
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#enumerable__T
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#dec_count_enum
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#discrete_bool
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#enum_count
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#cum_ge
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#discrete_prod
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#enumerable_disj
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#enumerable_conj
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.DecidableEnumerable.html#projection
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Reductions.html#reduces

CPP ’19, January 14–15, 2019, Cascais, Portugal Yannick Forster, Dominik Kirst, and Gert Smolka

Again, this synthetic definition of reductions does not
refer to a concrete model of computation but instead relies
on the computability of definable functions in constructive
type theory.

The next two facts establish that reducibility is a pre-order
on predicates and that decidability and co-decidability trans-
port along reductions.

Fact 2.10. Reducibility is reflexive and transitive.

Proof. Given a predicate p : X → P, the identity function
idX := λx . x witnessesp ≼ p. Given a reduction f fromp toq
and a reductionд from q to r , compositionд◦ f := λx .д (f x)
witnesses p ≼ r . □

Fact 2.11. Let p ≼ q. Then p ≼ q and p is decidable if q is.

Proof. The same function witnessing p ≼ q witnesses p ≼ q.
Moreover, given a reduction f from p to q and a decider д
for q the function д ◦ f is a decider for p. □

Enumerability of predicates does not in general trans-
port along reductions. We show a proposition stating the
necessary conditions and remark that the statement again
simplifies when only considering data types.

Lemma 2.12. Let p ≼ q such that the domain of p is enumer-
able and the domain of q is discrete. Then p is enumerable if q
is enumerable.

Proof. Let f : X → Y be a reduction from p to q such that
∀x .p x ↔ q (f x) and д : N→ O(Y) be an enumerator for q
with ∀y.qy ↔ ∃n.дn = ⌜y⌝. So ∀x .p x ↔ ∃n.дn = ⌜ f x⌝
and since X is enumerable and Y is discrete we can apply
Fact 2.9 to derive that λx . ∃n.дn = ⌜ f x⌝ and hence p is
enumerable. □

Note that Fact 2.11 and Lemma 2.12 imply that p is also co-
enumerable ifq is co-enumerable under the stated conditions.
The previous facts are summarised by the following re-

duction theorem providing the standard strategy to establish
the undecidability of decision problems used in Section 3.

Theorem 2.13 (Reduction). Let p ≼ q such that the domain
of p is enumerable and p is not co-enumerable. Then:
(1) q is neither decidable nor co-decidable.
(2) q is not co-enumerable if the domain of q is discrete.

Proof. (1) follows with Facts 2.11, and 2.3 and (2) follows with
Facts 2.11 and 2.12. □

2.3 Post’s Theorem and Markov’s Principle
Recall that Fact 2.3 establishes that decidable predicates on
data types are enumerable and co-enumerable. The converse
direction, stating that predicates on data types are decidable
if they are enumerable and co-enumerable, i.e. Post’s theorem,
is not provable constructively (cf. Section 4.5.3 in Troelstra
and van Dalen [43] and [10]).

To precisely analyse the classical content of Post’s theo-
rem, we first establish a constructively provable but logically
weaker statement. Its justification already contains the main
algorithmic insight based on guarded linear search and par-
allel enumeration.
In this section, we call a predicate p : X → P logically

decidable if ∀x .p x ∨ ¬p x and bi-enumerable if both p and p
are enumerable.

Lemma 2.14 (Guarded minimisation). Let p : N → P be
decidable. Then there is a function µ : (∃n.p n) → N such
that p (µ h) for all proofs h of ∃n.p n. In particular, µ can be
constructed such that it yields the least witness for p.

Proof. We outline a proof variant for the first claim from
the Coq standard library3. Let f : N → B be a decider
for p. We define an inductive predicate A : N→ P with a
proof constructor of type ∀n. (f n = ff → A (Sn)) → An.
One first shows that ∀n.p (n + k) → Ak by induction on k
and then constructs a function µ ′ : ∀n.An → Σm.pm via
recursion on the proof of An, exploiting that A is subject to
singleton elimination. Then µ is obtained by composing the
parts. Concerning the second claim, we show that µ ′ yields
the least witnessm above n using the full induction lemma
for A with dependency on the proof of An. □

Lemma 2.15. Logically decidable bi-enumerable predicates
on discrete types are decidable.

Proof. Let X be discrete, p : X → P be logically decidable, f
be an enumerator for p, and д be an enumerator for p. We
construct a function ∀x . p x + ¬p x (suffices by Lemma 2.1).
Fix x . From the assumptions we obtain ∃n. f n = ⌜x⌝ ∨

дn = ⌜x⌝. Since X is discrete, the predicate λn. f n = ⌜x⌝ ∨
дn = ⌜x⌝ is decidable, and thus Lemma 2.14 gives us a
number n such that H : f n = ⌜x⌝ ∨ дn = ⌜x⌝. We now
distinguish five cases using the equality decider for X .
• f n = ∅ and дn = ∅. Contradiction with H .
• f n = ⌜x⌝. Then p x since f is an enumerator for p.
• f n = ⌜y⌝ and x , y. Then ¬p x by H since д is an
enumerator for p.
• дn = ⌜x⌝. Then ¬p x since д is an enumerator for p.
• дn = ⌜y⌝ and x , y. Then p x by H since f is an
enumerator for p. □

We now show that the additionally assumed logical de-
cidability is exactly equivalent to Markov’s principle. We call
propositions P and predicates p : X → P stable if ¬¬P → P
and∀x .¬¬p x → p x , respectively. Note that stability is trans-
ported along reductions:

Fact 2.16. If p ≼ q and q is stable, then p is stable.

Proof. Let f be a reduction from p to q. Then for every x,
the claim ¬¬p x → p x is equivalent to ¬¬q (f x) → q (f x),
which holds since q is stable. □

3https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html

41

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Reductions.html#reduces_transitive
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Reductions.html#red_comp
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Reductions.html#enumerable_red
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Reductions.html#not_decidable
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Reductions.html#not_coenumerable
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#mu_least
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#weakPost
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#stable_red
https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html

On Synthetic Undecidability in Coq CPP ’19, January 14–15, 2019, Cascais, Portugal

We state Markov’s principle as stability of the satisfiability
of boolean sequences:

MP := ∀f : N→ B.¬¬(∃n. f n = tt) → ∃n. f n = tt

Note that excluded middle (EM := ∀P . P ∨ ¬P) implies
that every proposition is stable, so it particularly impliesMP.
Moreover, it is well-known thatMP is strictly weaker than
EM (e.g. [20]). We first consider some alternative characteri-
sations of MP.

Fact 2.17. The following propositions are equivalent:
(1) MP.
(2) Satisfiability of decidable predicates over N is stable.
(3) Satisfiability of enumerable predicates is stable.

Proof. (1) → (2) is straightforward.
(2) → (3). We need to show that ∃x . ∃n. f n = ⌜x⌝ is

stable. Holds since ∃n. ∃x . f n = ⌜x⌝ is stable by (2).
(3) → (1). Let f : N→ B. So λn. f n = tt is decidable and

hence enumerable by Fact 2.3. Thus ∃n. f n = tt is stable. □

Next, we establish the following consequence of MP:

Fact 2.18. AssumingMP, enumerable predicates on discrete
types are stable.

Proof. We need to show that ∃n. f n = ⌜x⌝ is stable. Follows
with (2) of Fact 2.17 since λn. f n = ⌜x⌝ is decidable. □

Finally, we show thatMP is exactly the assumption nec-
essary to establish Post’s theorem.

Fact 2.19. MP is equivalent to the logical decidability of bi-
enumerable predicates on discrete types.

Proof. (→). Let f be an enumerator forp andд be an enumer-
ator for p. It suffices to show ∀x . ∃n. f n = ⌜x⌝ ∨ дn = ⌜x⌝.
So fix x and note that λn. f n = ⌜x⌝ ∨ дn = ⌜x⌝ is de-
cidable as the domain of p is discrete. By MP and (2) of
Fact 2.17 we just show ¬¬∃n. f n = ⌜x⌝ ∨ дn = ⌜x⌝. Hence
we assume H : ¬∃n. f n = ⌜x⌝ ∨ дn = ⌜x⌝ and derive a
contradiction. Since ¬¬(p x ∨ ¬p x) is provable, we can as-
sume p x ∨ ¬p x . But then the enumerators f and д yield
(∃n. f n = ⌜x⌝) ∨ (∃n.дn = ⌜x⌝), which contradicts H .
(←). Applying (2) of Fact 2.17, we show that every de-

cidable predicate on numbers is stable. So let p : N→ P
and H : ¬¬∃n.p n. We show ∃n.p n, for which it suffices to
show that λm. ∃n.p n is logically decidable. Now given (2)
one just needs to justify that λm. ∃n.p n is bi-enumerable.
The enumerability of λm. ∃n.p n = λm. ∃n. (λmn.p n)mn
follows with Fact 2.9. The co-enumerability of λm. ∃n.p n
follows from ¬(∃n.p n) ↔ ⊥, which follows with H . □

Theorem 2.20. Post’s theorem is equivalent to MP.

Proof. Assuming Post’s theorem, we know that every bi-
enumerable predicate on a discrete type is decidable. In par-
ticular, such predicates are logically decidable and thusMP
follows from Fact 2.19. Conversely, Fact 2.19 and Lemma 2.15
together yield that MP implies Post’s theorem. □

2.4 The Post Correspondence Problem
Wenow define the Post correspondence problem, the starting
point for the reductions in the present work. In this context,
a string s is a list over B, a card s/t is a pair of strings, and a
stack S is a list of cards.

Definition 2.4. We define the derivability S ▷ s/t of cards s/t
from a stack S and the Post correspondence problem PCP on
the the type S := L(L(B) × L(B)) of stacks inductively:

s/t ∈ S

S ▷ s/t

S ▷ u/v s/t ∈ S

S ▷ s ++u/t ++v

S ▷ s/s

PCP S

Informally, the argument stack S fixes a set of cards for
which any solution constitutes an arrangement of arbitrarily
many uses of cards such that the upper and lower trace agree.

The main result of a previous paper [12] is a formal reduc-
tion from the halting problem for Turing machines to PCP,
with a more traditional definition of PCP by

λS . ∃A ⊆ S .A , [] ∧A1 = A2

where A1 is the upper and A2 the lower trace of a stack
defined recursively by

[s1/t1, . . . , sk/tk]
1 := s1 ++ . . .++ sk ,

[s1/t1, . . . , sk/tk]
2 := t1 ++ . . .++ tk .

The more traditional definition is equivalent to our inductive
characterisation:

Lemma 2.21. S ▷ s/t → ∃A ⊆ S .A , [] ∧A1 = s ∧A2 = t

Proof. By induction on the derivation S ▷ s/t . □

Fact 2.22. (∃A ⊆ S .A , [] ∧A1 = A2) ↔ PCP S

Proof. Suppose S has a solution A ⊆ S with A , [] and
A1 = A2. By induction onAwe can reconstruct the derivation
S ▷A1/A2. The other direction follows from Lemma 2.21. □

We now examine PCP from the computational perspective
developed in the previous sections. On the positive side, PCP
ranges over a computational domain and is enumerable.

Fact 2.23. S is a data type.

Proof. S = L(L(B) × L(B)) is a data type since B is a data
type (Fact 2.4) and since data types are closed under lists and
products (Fact 2.7). □

Lemma 2.24. λS(s, t). S ▷ s/t is enumerable.

Proof. Let LS be the list enumerator for S from the previous
fact. The wanted list enumerator is then defined as follows:

L 0 := []
L (Sn) := Ln ++ [(S, (x ,y)) | S ∈ LS n, (x ,y) ∈ S]

++ [(S, (x ++u,y ++v)) | (S, (u,v)) ∈ Ln, (x ,y) ∈ S]

□

Fact 2.25. PCP is enumerable.

42

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#MP_to_decMP
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#decMP_to_eMP
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#eMP_to_MP
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#MP_enum_stable
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#MP_Post
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.MarkovPost.html#Post_MP
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.PCP.html#BPCP
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.PCP.html#derivable_BPCP
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.PCP.html#BPCP_derivable
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.PCP.html#stack_discrete
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.PCP.html#enum_PCP'
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.PCP.html#enumerable_PCP

CPP ’19, January 14–15, 2019, Cascais, Portugal Yannick Forster, Dominik Kirst, and Gert Smolka

Proof. λS(s, t). S ▷ s/t is enumerable by the previous lemma.
Moreover, λS(s, t). s = t is decidable, has enumerable domain,
and is thus enumerable by Fact 2.3. By closure of enumerabil-
ity under conjunction (Fact 2.8 (2)) and projection (Fact 2.9)
it follows that PCP is enumerable. □

On the negative side, a classical standard result states that
PCP is undecidable. However, given that constructive type
theory is consistent with the assumption that every predicate
is decidable in the sense of Definition 2.1, this undecidability
result is not provable in our setting. A way to still get a
meaningful technique for establishing negative results is to
postulate the undecidability of a concrete problem. Using
such a base, further problems can be shown undecidable
utilising the usual means of computable reductions.
For instance, we believe that it is consistent to assume

that PCP is not co-enumerable, even in the context ofMP or
EM. We denote this undecidability assumption by UA and
state the strategic consequences as follows:

Lemma 2.26. Assuming UA, PCP and every predicate PCP
reduces to are undecidable.

Proof. Follows with Fact 2.3 and Theorem 2.13. □

2.5 Infinite Data Types
Explicit models of computation usually operate on a fixed
domain such as natural numbers (general recursive func-
tions), strings (Turing machines), or syntactic encodings
(λ-calculus). In the implicit approach chosen for this paper,
however, the considered problems range over several infinite
data types like stacks (in the case of PCP) or logical formu-
las (in the case of FOL). The purpose of this section is to
illustrate that all such infinite data types can generally be
reduced to the concrete case of natural numbers.

A type X is infinite if there is an injection F : N→ X and
generating if for every list A : L(X) there is some x with
x < A. We first establish that both notions are equivalent
over data types.

Fact 2.27. Every data type is infinite iff it is generating.

Proof. LetX be a data type and let F : N→ X be an injection.
Then for every list A the list [F n | n ∈ [0, . . . , |A|]] contains
an element not in A, so X is generating.
Conversely, suppose that X is generating. First note that

we can assume the enumerator fX forX to have typeN→ X
given thatX is clearly inhabited. Using guardedminimisation
(Lemma 2.14), we obtain a function д : L(X) → X such that
дA < A for all A. We then set

L 0 := [] L (Sn) := Ln ++[д (Ln)] F n := д (Ln)

and show that F is an injection. So let F n = F n′ and suppose
w.l.o.g. n < n′. Then F n ∈ Ln′ and hence F n′ ∈ Ln′, the
latter contradicting the specification of д. Thus n = n′ is the
only possible case. □

In fact, the injection F : N→ X constructed in the previ-
ous proof is already surjective.

Theorem 2.28. Every infinite data type is in bijection to N.

Proof. Let X be infinite and x be in X , we show that there
is a number n with F n = x for the injection F : N → X
defined as in Fact 2.27. One can show that fX n ∈ L (Sn) by
complete induction for n using the fact that д was defined
by an operation yielding least witnesses. So since there is
n′ with fX n′ = x , we know that x ∈ L (Sn′) and can hence
find some n ≤ n′ with F n = x as desired.

Note that using guarded minimisation again, the sujectiv-
ity of F can be turned into an actual inverse F−1 : X → N
with F (F−1 x) = x and F−1 (F n) = n. □

We exemplarily apply this method to the type S of stacks.

Fact 2.29. S is infinite.

Proof. An injection from N to S can be defined by mapping a
numbern to the stack consisting ofn-times the card tt/tt. □

Corollary 2.30. S is in bijection to N.

This concludes our development of elementary synthetic
computability and we move on to its applications in the
metatheory of first-order logic.

3 Undecidability of First-Order Logic
We consider first-order formulas over a fixed signature con-
taining a constant individual symbol e , two unary function
symbols ftt and fff , a constant proposition symbol Q , and a
binary relation symbol P . Formally, we accommodate terms
as an inductive type T by

τ : T := x | a | e | ftt τ | fff τ

where variables x ,y, z and parameters a,b, c range over N.
Concerning the formulas, we first consider an inductive type
F expressing the universal-implicative fragment:

φ,ψ : F := Q | P τ1 τ2 | φ Û→ψ | Û∀x .φ
Fact 3.1. T and F are infinite data types.

Proof. Discreteness of both types is straightforward and enu-
merability of both types can be shown using a standard
construction via list enumerators. T is infinite because vari-
ables provide an injection from N and for F the function
λn. P n n is a witnessing injection. □

3.1 Validity
We begin by formalising the undecidability of the Entschei-
dungsproblemwhether or not a given formula is valid. There-
fore we establish the standard (Tarski) semantics of formulas
with the next three definitions:

43

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Infinite.html#X_gen
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Infinite.html#inf_quasi_nat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Infinite.html#stack_infinite
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Infinite.html#stack_quasi_nat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.FOL.html#enumT_term

On Synthetic Undecidability in Coq CPP ’19, January 14–15, 2019, Cascais, Portugal

Definition 3.1. An interpretation I consists of a domain
D : T together with a parameter assignment η : N→ D and
symbol interpretations

eI : D QI : P

f Itt , f
I
ff : D → D PI : D → D → P.

Definition 3.2. Given an interpretation I, we extend envi-
ronments ρ : N→ D to term evaluations ρ̂ : T → D by

ρ̂ x := ρ x ρ̂ e := eI

ρ̂ a := η a ρ̂ (fb τ) := f Ib (ρ̂ τ).

Definition 3.3. Given an interpretation I together with an
environment ρ, we define the satisfaction relation ρ |=I φ by

ρ |=I Q := QI ρ |=I φ Û→ψ := ρ |=I φ → ρ |=I ψ

ρ |=I P τ1 τ2 := PI (ρ̂ τ1) (ρ̂ τ2) ρ |=I Û∀x . φ := ∀d : D . ρ[x := d] |=I φ

where ρ[x := d] denotes the environment mapping x to d and
all other variables in accordance to ρ. We say that I satisfies
φ and write |=I φ if ρ |=I φ for all environments ρ. A formula
φ is valid if |=I φ for all interpretations I.

The following simplifies managing multiple assumptions:

Definition 3.4. Prepending a list A of formulas is defined by

[] Û→φ := φ (ψ :: A) Û→φ := ψ Û→(A Û→φ).

Fact 3.2. ρ |=I A Û→φ ↔ ((∀ψ ∈ A. ρ |=I ψ) → ρ |=I φ)

Proof. By induction on A. □

We say that an environment ρ over an interpretation I
satisfies a list A and write ρ |=I A whenever ρ |=I φ for
every φ ∈ A. We use the analogous notation |=I A for inter-
pretations.

We now show that validity of the fragment F of first-order
logic is undecidable by constructing a reduction from PCP.
We follow the proof from the textbook of Manna [31], who
attributes the original proof idea to Floyd. The key idea is to
encode strings and card derivations into first-order language
using the non-logical symbols of the signature. We define
the term encoding s of a string s by:
[]++τ := τ (b :: s)++τ := fb (s ++τ) s := s ++ e

So for instance we have ttff ff tt = ftt (fff (fff (ftt e))).
We now fix a stack S for the remainder of this text. The

cards derivable from S give rise to a standard interpretation
over boolean strings.

Definition 3.5. We define the standard interpretation B with
domain L(B), parameter assignment η a := [], and

eB := [] QB := PCP S

f Bb s := b :: s PB s t := S ▷ s/t .

The following lemma lists some expected properties of B.

Lemma 3.3. Let ρ be any variable environment in B. Then
ρ̂ (s ++τ) = s ++ ρ̂ τ , ρ̂ s = s , and ρ |=B P τ1 τ2 ↔ S ▷ ρ̂ τ1/ρ̂ τ2.

Proof. Immediate by construction. □

Fact 3.4. MP→ ¬¬ρ |=B φ → ρ |=B φ

Proof. It suffices to show that the satisfiability of the atomic
formulasQ and P τ1 τ2 is stable, which follows from Fact 2.18
and the enumerability of PCP and S ▷ s/t . □

Next, we construct a formula φS such that PCP S iff φS is
valid as follows:

φ1 := [P s t | s/t ∈ S]

φ2 := [Û∀xy. P x y Û→P (s ++x) (t ++y) | s/t ∈ S]

φ3 := Û∀x . P x x Û→Q

φS := φ1 Û→φ2 Û→φ3 Û→Q

Note that φ1 contains formulas representing the first con-
structor of the derivability relation S ▷ s/t . Moreover, φ2
represents the second constructor and φ3 represents the sin-
gle constructor of PCP. So an interpretation satisfies φS if
it deems S to admit a solution. Since B correctly interprets
the predicate symbols P andQ as derivability and solvability,
respectively, it satisfies the constructor representations.

Fact 3.5. |=B φ1, |=B φ2, and |=B φ3.

Proof. Let P s t ∈ φ1 for a card s/t ∈ S , then Lemma 3.3 yields
|=B P s t . Similarly, let Û∀xy. P x y Û→P (s ++x) (t ++y) ∈ φ2 for
a card s/t ∈ S . Applying Lemma 3.3, we have to show that
S ▷ (s ++u)/(t ++v) for all strings u and v with S ▷ u/v which
is exactly the second rule for derivability. Finally, we have
to show that ∀s . PB s s → QB . This is a triviality given the
definitions of PB and QB . □

It follows that S admits a solution if B satisfies φS .

Lemma 3.6. ρ |=B φS → PCP S

Proof. Assuming ρ |=B φS and since B satisfies φ1, φ2, and
φ3 by Fact 3.5, we know that ρ |=B Q . Hence PCP S holds by
definition of ρ |=B Q . □

Conversely, we show that φ1 and φ2 correctly axiomatise
derivations in arbitrary interpretations.

Lemma 3.7. S ▷ s/t → ρ |=I φ1 Û→φ2 Û→P s t

Proof. By induction on S ▷ s/t using Fact 3.2. □

It follows that φS exactly expresses that S has a solution.

Theorem 3.8. PCP S iff φS is valid.

Proof. Suppose there is s with S ▷ s/s . Then by Lemma 3.7
ρ |=I φ1 Û→φ2 Û→P s s holds for all environments ρ in all in-
terpretations I. It follows that ρ |=I φ1 Û→φ2 Û→φ3 Û→Q and
hence that φS is valid.
Now suppose that φS is valid. Then in particular B to-

gether with the trivial environment ρ x := [] satisfies φS .
Thus PCP S by Lemma 3.6. □

Corollary 3.9. PCP reduces to validity. Thus, assuming UA,
validity is undecidable and not co-enumerable.

44

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Semantics.html#interp
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Semantics.html#eval
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Semantics.html#sat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.FOL.html#impl
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Semantics.html#impl_sat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#IB
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#IB_prep
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#IB_stable
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#IB_F1
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#IB_F
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#drv_val
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#BPCP_valid
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#valid_red

CPP ’19, January 14–15, 2019, Cascais, Portugal Yannick Forster, Dominik Kirst, and Gert Smolka

3.2 Minimal Provability
It is well-known that validity and provability (in a reasonable
deduction system) of first-order formulas coincide (in a clas-
sical metatheory). So classically, the previously established
undecidability of validity directly implies the undecidability
of provability. However, since we work in constructive type
theory, this strategy is not available and we instead show
that the same reduction as in the previous section directly
yields the undecidability of a minimal (and in fact incom-
plete) natural deduction system.
We denote the list of parameters occuring in a term τ , a

formula φ, or a list A of formulas by P(τ), P(φ), and P(A),
respectively. Moreover, we denote the list of variables in
a term τ by V(τ). We interpret variable lists as finite sets
and admit set-theoretic notation such as P(φ) ∪ P(A) and
V(τ) = ∅. We define the standard capturing substitution φxτ
of a variable x by a term τ recursively:

xxτ := τ Qx
τ := Q

yxτ := y (P τ1 τ2)
x
τ := P (τ1)

x
τ (τ2)

x
τ

axτ := a (φ Û→ψ)xτ := φxτ Û→ψ
x
τ

exτ := e (Û∀x .φ)xτ := Û∀x .φ
(fb τ

′)xτ := fb (τ
′)xτ (Û∀y.φ)xτ := Û∀y.φxτ

Definition 3.6. We define a minimal natural deduction sys-
tem A ⊢ φ for formulas in F inductively by

φ ∈ A

A ⊢ φ
A

φ :: A ⊢ ψ
A ⊢ φ Û→ψ

I I
A ⊢ φ Û→ψ A ⊢ φ

A ⊢ ψ
I E

A ⊢ φxa a < P(φ) ∪ P(A)

A ⊢ Û∀x .φ AI
A ⊢ Û∀x .φ V(τ) = ∅

A ⊢ φxτ
AE

and say that a formula φ is provable if ⊢ φ (short for [] ⊢ φ).

Note thatminimal deduction cannot be complete for Tarski
semantics as it does not contain a classical rule such as
Peirce’s law. A deduction system that could be shown com-
plete (classically) will be defined in Section 3.5.

A key property of any deduction system is soundness w.r.t.
to a chosen semantics. In fact, establishing soundness first
allows for a simple undecidability reduction for provability.
To prepare this strategy, we establish some properties of the
satisfaction relation explaining the side conditions in (AI)
and (AE). In the following, let I[a := d] be the interpretation
obtained by replacing the parameter assignment η of an
interpretation I by η[a := d].

Lemma 3.10. Let φ be a formula and I,I ′ be interpretations
over the same domain only differing in the interpretation of
parameters not inP(φ). Further suppose ρ and ρ ′ are pointwise
equal environments. Then ρ |=I φ iff ρ ′ |=I′ φ.

Proof. By induction on φ using an analogous fact for term
evaluations. □

Lemma 3.11. ρ |=I A↔ ρ |=I[a:=d] A if a < P(A).

Proof. Follows with Lemma 3.10. □

Lemma 3.12. ρ[x := ρ̂ τ] |=I φ ↔ ρ |=I φ
x
τ if V(τ) = ∅.

Proof. By induction on φ with ρ generalised. All cases but
universal quantification are straightforward. Concerning
formulas Û∀y.φ, we distinguish two cases. If x = y, it suffices
to show for all d that

ρ[x := ρ̂ τ][x := d] |=I φ ↔ ρ[x := d] |=I φ
which follows with Lemma 3.10. If x , y, it suffices to show

ρ[x := ρ̂ τ][y := d] |=I φ ↔ ρ[y := d] |=I φxτ
where we replace the right-hand side by ρ ′[x := ρ̂ ′ τ] |=I φ
using the inductive hypothesis for ρ ′ := ρ[y := d]. Now
sinceV(τ) = ∅ we know that ρ̂ ′ τ = ρ̂ τ and thus conclude
the equivalence to the left-hand side with Lemma 3.10. □

Lemma 3.13. ρ[x := d] |=I φ ↔ ρ |=I[a:=d] φ
x
a if a < P(φ).

Proof. Assume a < P(φ). By Lemma 3.12 it suffices to show
ρ[x := d] |=I φ ↔ ρ[x := ρ̂ a] |=I[a:=d] φ. This follows
immediately from Lemma 3.10 given that a < P(φ) and that
ρ̂ a = d in the interpretation I[a := d]. □

The soundness of the minimal natural deduction system
now follows easily.

Fact 3.14. If A ⊢ φ then A Û→φ is valid.

Proof. By induction on the derivation ofA ⊢ φ. The cases (A),
(II), and (IE) are straightforward. Consider a derivation by
(AI), so we have thatA Û→φxa is valid for some a < P(φ)∪P(A)
and want to show that A Û→Û∀x .φ is valid. By Fact 3.2 this
means to show ρ[x := d] |=I φ for all ρ with ρ |=I A.
Now let I ′ := I[a := d], then by Lemma 3.11 we also have
ρ |=I′ A given that a < P(A). Hence, since A Û→φxa is valid
we can derive ρ |=I′ φxa and thus conclude ρ[x := d] |=I φ
with Lemma 3.13 given that a < P(φ).

Now consider a derivation by (AE) where we have that
A Û→Û∀x .φ is valid and want to show thatA Û→φxτ is valid for all
terms τ withV(τ) = ∅. So for any environment ρ satisfying
A we have to show ρ |=I φxτ . Since A Û→Û∀x .φ is valid, in
particular ρ[x := ρ̂ τ] |=I φ. Then ρ |=I φ

x
τ follows from

Lemma 3.12 given thatV(τ) = ∅. □

Corollary 3.15 (Soundness). Every provable formula is valid.

Now consider the formula φS as defined in Section 3.1 and
define the contextAS := φ3 :: φ2 ++φ1 to be the list containing
all premises of φS . Then every encoded card derivation is
provable from AS .

Lemma 3.16. S ▷ s/t → AS ⊢ P s t

Proof. By induction on the derivation S ▷ s/t . In the base
case we have s/t ∈ S and P s t is among the assumptions
in φ1 and hence provable from AS by (A). In the inductive
step we have AS ⊢ P u v as inductive hypothesis and want
to prove AS ⊢ P (s ++u) (t ++v) for a given card s/t ∈ S .

45

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#prv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#sat_ext_p
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#sat_ext_p_list
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#subst_sat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#substconst_sat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#soundness'
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#soundness
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#drv_prv

On Synthetic Undecidability in Coq CPP ’19, January 14–15, 2019, Cascais, Portugal

From the corresponding assumption for s/t in φ2 we get
that AS ⊢ Û∀xy. P x y Û→P (s ++x) (t ++y) by (A). Now we can
use (AE) twice for x := u andy := v and (IE) for the inductive
hypothesis to establish the goal. □

Theorem 3.17. PCP S iff φS is provable.

Proof. Let PCP S , so there is s with S ▷ s/s . After applying
(II) multiple times we have to show AS ⊢ Q . By (A) we have
AS ⊢ Û∀x . P x x Û→Q . Now Lemma 3.16 yieldsAS ⊢ P s s , so we
just have to use (AE) and (IE) to conclude the proof.
Now suppose that φS is provable. By soundness (Corol-

lary 3.15) we know that φS is valid and conclude PCP S by
Theorem 3.8. □

Corollary 3.18. PCP reduces to provability. Thus, assuming
UA, provability is undecidable and not co-enumerable.

On the positive side, provable formulas can be enumerated.

Fact 3.19. Provability is enumerable.

Proof. We show that for all A, the predicate λφ.A ⊢ φ is
enumerable by defining a list enumerator LA as follows:

LA 0 := [φ | φ ∈ A]

LA (Sn) := Ln ++
[
φ Û→ψ | φ ∈ LF n,ψ ∈ Lφ ::A n

]
++

[
ψ | φ ∈ LA n,φ Û→ψ ∈ LA n

]
++ [Û∀x .φ | φ ∈ LF n,x ∈ LN n,a ∈ LN n,

a < P(φ) ∪ P(A) ∧ φxa ∈ LA n]

++ [φxτ | x ∈ LN n,τ ∈ LT n,φ ∈ LF n,

V(τ) = ∅ ∧ Û∀x .φ ∈ LA n]
A ⊢ φ → ∃n.φ ∈ LA n follows by induction on A ⊢ φ.

For the other direction, we prove ∀A.φ ∈ LA n → A ⊢ φ by
induction on n. Thus, L[] enumerates provable formulas. □

3.3 Satisfiability
A formula φ is satisfiable if there is an environment ρ in
an interpretation I such that ρ |=I φ. In the negation-free
fragment F of first-order logic we have considered so far,
every formula is actually satisfied by a trivial interpretation.

Definition 3.7. We define the trivial interpretationU with
domain 1, parameter assignment η a := ∗, and

eU := ∗ QU := ⊤

f Ub s := ∗ PU s t := ⊤.

Fact 3.20. Let φ be a formula of the fragment F . Then |=U φ.

Proof. By induction on φ. □

So satisfiability is trivially decidable in the absence of
negation. We thus switch to an extended representation F⊥
of first-order formulas containing a symbol Û⊥ for falsity

φ,ψ : F⊥ := Û⊥ | Q | P τ1 τ2 | φ Û→ψ | Û∀x .φ
and introduce negation Û¬φ as a notation for φ Û→ Û⊥.

Fact 3.21. F⊥ is an infinite data type.

Proof. Analogous to Fact 3.1. □

Definition 3.8. We extend the relation ρ |=I φ from Defini-
tion 3.3 to F⊥ by setting ρ |=I Û⊥ := ⊥.

Note that ρ |=I Û¬φ is equivalent to ρ ̸ |=I φ as expected.
Hence a connection between validity and satisfiability can
be established as follows:

Lemma 3.22. If φ is valid, then Û¬φ is unsatisfiable.

Proof. Let φ be valid and suppose ρ |=I Û¬φ. So ρ ̸ |=I φ but
since φ is valid also ρ |=I φ holds, contradiction. □

Note that the converse direction relies on classical assump-
tions, so Lemma 3.22 does not yield an immediate reduction
from validity to unsatisfiability. However, given the informa-
tion encoded in the standard interpretation B, we can verify
a reduction from PCP to satisfiability.

Theorem 3.23. PCP S iff Û¬φS is satisfiable.

Proof. Suppose ¬PCP S , we show that ρ |=B Û¬φS where we
pick ρ x := []. Hence assume ρ |=B φS , then Lemma 3.6
yields PCP S , contradiction.

Conversely, suppose that Û¬φS is satisfiable and that PCP S .
ThenφS is valid by Theorem 3.8 but then Lemma 3.22 implies
that Û¬φS is unsatisfiable. □

Corollary 3.24. PCP reduces to satisfiability. Thus, assum-
ing UA, satisfiability is undecidable and not enumerable.

We conclude this section with an observation regarding
the limitations of axiomatising the Post correspondence prob-
lem in first-order logic. To this end, we define an interpreta-
tion that adds a further element to B which is misinterpreted
as a solution for S while φ1 and φ2 are maintained.

Definition 3.9. We define a non-standard interpretation B⊥
with domain O(L(B)), parameter assignment η a := ⌜[]⌝, and

eB⊥ := ⌜[]⌝ QB⊥ := ⊥

f B⊥b ⌜s⌝ := ⌜b :: s⌝ PB⊥ ⌜s⌝ ⌜t⌝ := S ▷ s/t

where f B⊥b and PB⊥ , respectively, return ∅ and ⊤ on input ∅.

At first, B⊥ appears to be a meaningful interpretation
similar to B:

Fact 3.25. Let ρ be any environment in B⊥. Then:

(1) ρ̂ s = ⌜s⌝
(2) ρ |=B⊥ P s t ↔ S ▷ s/t

(3) ρ |=B⊥ φ1
(4) ρ |=B⊥ φ2

Proof. Analogous to Lemma 3.3 and Fact 3.5. □

However, B⊥ deems S to admit a trivial solution even
though S might be an unsolvable instance of the Post corre-
spondence problem.

Fact 3.26. |=B⊥ Û¬ Û∀x . Û¬P x x and in particular |=B⊥ φS .

46

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#BPCP_prv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#prv_red
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#enum_prv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Semantics.html#TM
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Semantics.html#TM_sat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.FOL.html#enumT_form
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Semantics.html#sat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#valid_satis
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#BPCP_satis
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#satis_red
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#NonStan
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#NonStan.IB_enc
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#NonStan.IB_deriv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#NonStan.IB_F1
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#NonStan.IB_F2
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_FOL.html#NonStan.IB_nonstandard

CPP ’19, January 14–15, 2019, Cascais, Portugal Yannick Forster, Dominik Kirst, and Gert Smolka

Proof. Suppose there were a variable environment ρ with
ρ |=B⊥ Û∀x . Û¬P x x . Then ρ[x := ∅] |=B⊥ Û¬P x x , contradict-
ing ρ[x := ∅] |=B⊥ P x x holding trivially by definition. The
claim |=B⊥ φS follows similarly. □

3.4 Intuitionistic First-Order Logic
Having extended the logical fragment F to F⊥ permits two
options for adding an elimination rule for Û⊥ to a deduction
system. In this section, we show that the intuitionistic variant
is undecidable via the same reduction as in Section 3.2.

Definition 3.10. We define the intuitionistic natural deduc-
tion system A ⊢I φ for formulas in F⊥ as an extension of the
minimal deduction system A ⊢ φ by the explosion rule:

A ⊢I Û⊥
A ⊢I φ

E

We say that φ is intuitionistically provable if ⊢I φ.

Fact 3.27. Intuitionistic provability is enumerable.

Proof. By adding [φ | φ ∈ LF⊥ n, Û⊥ ∈ LA n] to the list enu-
merator given in Fact 3.19. □

Fact 3.28. If A ⊢ φ then A ⊢I φ for formulas φ : F .

Proof. By definition of A ⊢I φ. □

Note thatA Û→φ is valid ifA Û→ Û⊥ is valid, soA ⊢I φ is sound
for the Tarski semantics defined in Section 3.1. For the same
reasons as mentioned for the minimal deduction system,
however, A ⊢I φ cannot be complete for Tarski semantics.
Although completeness proofs are not in the scope of this
work, we next consider Kripke semantics (for which A ⊢I φ
could be shown complete) since they give rise to two further
meaningful decision problems.

Definition 3.11. Let I and I ′ be interpretations sharing
the same domain and parameter assignment. We say that I
embeds into I ′ and write I ↪→ I ′ if:

eI = eI
′

QI → QI
′

f Ib d = f I
′

b d PI d d ′→ PI
′

d d ′

Definition 3.12. A Kripke modelM consists of a domain D,
a parameter assignment η : N→ D and the following data:
• A preorder (W , ≤) called accessibility relation.
• A functionW mapping nodesw :W to interpretations
over D and η withWw ↪→Ww ′ wheneverw ≤ w ′.

Definition 3.13. Given a Kripke modelM together with an
environment ρ, we define the forcing relation ρ,w ⊩M φ by

ρ,w ⊩M ⊥ := ⊥
ρ,w ⊩M Q := Qw

ρ,w ⊩M P τ1 τ2 := Pw (ρ̂ τ1) (ρ̂ τ2)

ρ,w ⊩M φ Û→ψ := ∀w ′.w ≤ w ′→ ρ,w ′ ⊩M φ → ρ,w ′ ⊩M ψ

ρ,w ⊩M Û∀x .φ := ∀w ′.w ≤ w ′→ ∀d . ρ[x := d],w ′ ⊩M φ

where Qw is a shorthand for QWw and analogously for P . A
formulaφ is intuitionistically satisfiable if there areM,w and
ρ with ρ,w ⊩M φ and intuitionistically valid if ρ,w ⊩M φ
holds for allM,w and ρ. We denote the latter by ⊩ φ.

As it was the case with Tarski interpretations, the two
new semantic notions are connected in the following sense:

Lemma 3.29. If φ is int. valid then Û¬φ is int. unsatisfiable.

Proof. Analogous as in Lemma 3.22. □

Note that one can turn every interpretation I into an
equivalent Kripke modelMI by settingW := 1, ∗ ⪯ ∗ := ⊤,
andW∗ := I. So Kripke semantics generalise Tarski seman-
tics, which simplifies proving the former undecidable.

Lemma 3.30. ρ |=I φ ↔ ρ, ∗ ⊩MI φ

Proof. By straightforward induction on φ. □

Corollary 3.31. Int. validity implies validity.

Corollary 3.32. Satisfiability implies int. satisfiability.

Soundness w.r.t. the chosen semantics is again a key prop-
erty to verify the reduction from PCP. The soundness proof
for intutiotionistic provability follows the same structure as
the one outlined in Section 3.2, so we omit most of the details
here. In fact, the lemmas needed to establish Corollary 3.15
have direct counterparts in Kripke semantics with analogous
proofs. The only interesting difference is the frequent use
of the characteristic monotonicity of the forcing relation
regarding accessibility:

Lemma 3.33. ρ,w ⊩M φ → w ≤ w ′→ ρ,w ′ ⊩M φ

Proof. By induction on φ with ρ generalised, we exemplar-
ily discuss the case P τ1 τ2. Suppose ρ,w ⊩M P τ1 τ2, so
Pw (ρ̂ τ1) (ρ̂ τ1). SinceWw ↪→ Ww ′ we know that eval-
uation inWw is equal to evaluation inWw ′ and that Pw
is included in Pw

′ . Thus also Pw ′ (ρ̂ τ1) (ρ̂ τ1). □

Fact 3.34. Every int. provable formula is int. valid.

Proof. Analogous to Corollary 3.15. □

After this preparation, we can now easily show that in-
tuitionistic provability as well as the two semantic notions
concerning Kripke models are undecidable.

Theorem 3.35.
(1) PCP S iff φS is int. provable.
(2) PCP S iff φS is int. valid.
(3) PCP S iff Û¬φS is int. satisfiable.

Proof.
(1) The first direction follows from 3.17 and 3.28 and the

converse follows from 3.34, 3.31, and 3.8.
(2) The first direction follows from (1) and 3.34 and the con-

verse follows from 3.31 and 3.8.

47

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#prv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#enum_prv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#MND_IND
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Kripke.html#embedding
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Kripke.html#kmodel
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Kripke.html#ksat
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Kripke.html#kripke_tarski
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Kripke.html#kvalid_valid
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Kripke.html#ksatis_satis
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Kripke.html#ksat_mon
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Kripke.html#ksoundness
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_IFOL.html#BPCP_kprv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_IFOL.html#BPCP_kvalid
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_IFOL.html#BPCP_ksatis

On Synthetic Undecidability in Coq CPP ’19, January 14–15, 2019, Cascais, Portugal

(3) The first direction follows from 3.23 and 3.32 and the
converse follows from (2) and 3.29. □

Corollary 3.36. Assuming UA, int. provability, int. valid-
ity, and int. satisfiability are undecidable. More precisely, int.
provability and int. validity are not co-enumerable and int.
satisfiability is not enumerable.

3.5 Classical Provability
We end by examining the second alternative of accommodat-
ing Û⊥ in a deduction system by using the double negation
rule instead of explosion:

Definition 3.14. We define the classical natural deduction
system A ⊢C φ for formulas in F⊥ as extension of the minimal
deduction system A ⊢ φ by the double negation rule:

A ⊢C Û¬ Û¬φ

A ⊢C φ
DN

We say that φ is classically provable if ⊢C φ.

Fact 3.37. Classical provability is enumerable.

Proof. By adding
[
φ | φ ∈ LF⊥ n, Û¬ Û¬φ ∈ LA n

]
to the enumer-

ator given in Fact 3.19. □

We first establish the connection to the other presented
natural deduction systems.

Fact 3.38. If A ⊢ φ then A ⊢C φ for formulas φ : F .

Proof. By definition of A ⊢C φ. □

Proving the explosion rule (E) admissible for A ⊢C φ and
therefore concluding that classical provability subsumes intu-
itionistic provability relies on the weakening property (B ⊢ φ
whenever A ⊢ φ for A ⊆ B) satisfied by all given systems.
Establishing weakening is an intricate matter because of the
(AI) rule, as the extension B might block more parameters
than A. We could not find a rigorous and directly formalis-
able proof in one of the standard text books and thus sketch
a strategy given by Herbelin and Lee [24] via generalised
weakening using parallel parameter renamings.

We express parallel parameter renamings as functions
θ : N→ N and write t[θ], φ[θ], and A[θ] for the application
of θ to all parameters in the term t , the formula φ and the
context A, respectively. We use the notation θ [a := b] to
update a renaming and [a := b] for a renaming changing a
to b and leaving every other parameter untouched.

Fact 3.39. (φxt)[θ] = (φ[θ])
x
t [θ]

Proof. By induction on φ using a similar fact for terms. □

We can now prove generalised weakening for A ⊢C φ
economically. Note that in the Coq development, the proof
is simultaneous for all deduction systems.

Theorem 3.40. A ⊢C φ → A ⊆ B → B[θ] ⊢C φ[θ]

Proof. By induction on A ⊢C φ with θ and B generalised.
Every case is easy, apart from (AE) and (AI). (AE) follows
directly from Fact 3.39.

For (AI), we haveA ⊢C φxa for a < P(φ)∪P(A),A ⊆ B, and
the inductive hypothesis ∀B θ .A ⊆ B → B[θ] ⊢C (φ

x
a)[θ].

We have to prove B[θ] ⊢C (φ[θ])xb for a fresh parameter b.
Since B[θ] = B′[θ ′] and (φ[θ])xb = (φ

x
a)[θ

′] where we set
B′ := B[a := b] and θ ′ := θ [b := θ a][a := b] we can apply
the inductive hypothesis for B′ and θ ′. It remains to prove
A ⊆ B′, which follows from A ⊆ B and a < P(A). □

Corollary 3.41 (Weakening). A ⊢C φ → A ⊆ B → B ⊢C φ

Fact 3.42. If A ⊢I φ then A ⊢C φ for formulas φ : F⊥.

Proof. By induction on A ⊢I φ. All cases are easy, apart from
(E),where we know A ⊢C Û⊥ and have to prove A ⊢C φ. By
(DN) and (II) it suffices to prove Û¬φ :: A ⊢C Û⊥, which follows
with weakening. □

We now prove the undecidability of classical natural de-
duction using the formula φS from before. One direction of
the reduction follows trivially from previous results:

Lemma 3.43. If PCP S then ⊢C φS .

Proof. ⊢ φS by Lemma 3.16 and thus ⊢C φS by Fact 3.38. □

For minimal and intuitionistic provability, soundness w.r.t.
Tarski and Kripke semantics was key to prove the other
direction of the reduction. For classical natural deduction,
soundness is not constructively provable, because it implies
double negation for all propositions (and hence EM):

Lemma 3.44. ¬¬P → P for all propositions P if we assume
that classical provability implies validity.

Proof. ⊢C ¬¬Q Û→Q is easily provably. Thus, by assumption,
¬¬Q Û→Q is valid. Hence every interpretation assigning P to
Q yields ¬¬P → P . □

To circumvent this issue, we define a translation φQ of for-
mulas by a combination of the Gödel-Gentzen double nega-
tion translation [17, 19] and Friedman’s A-translation [16]
(withQ in the place ofA). The key property of the translation
is that ⊢C φ →⊢I φ

Q . This will allow us to conclude ⊢I φ
Q
S

from ⊢C φS , enabling the use of soundness for ⊢I .

Definition 3.15. We define the translation φQ as follows:

Û⊥Q := Q QQ := Q

(P τ1 τ2)
Q := ((P τ1 τ2) Û→Q) Û→Q (φ1 Û→φ2)

Q := φ1Q Û→φ2
Q

(Û∀x .φ)Q := Û∀x .φQ

Lemma 3.45. A ⊢I (Û¬ Û¬φ)Q Û→φQ

Proof. By induction on the size of φ with A generalised. In
the case of universal quantification one uses |φxa | = |φ |. □

This suffices for the key property of the translation:

48

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_IFOL.html#kvalid_red
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#prv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Deduction.html#enum_prv
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#MND_CND
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Weakening.html#ren_subst
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Weakening.html#gen_weakening
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Weakening.html#Weak
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.Weakening.html#ND_CND
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#BPCP_to_CND
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#cnd_XM
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#trans
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#trans_trans

CPP ’19, January 14–15, 2019, Cascais, Portugal Yannick Forster, Dominik Kirst, and Gert Smolka

Fact 3.46. If A ⊢C φ then AQ ⊢I φ
Q .

Proof. By induction on A ⊢C φ. The only interesting case is
(DN) where we have to proveAQ ⊢I φ

Q givenAQ ⊢I (Û¬ Û¬φ)
Q .

This follows by using (IE) for Lemma 3.45. □

Lemma 3.47. If ⊢C φS then PCP S .

Proof. Assume ⊢C φS . By Fact 3.46 and Fact 3.34 we know
that B |= φQS . Note that φ

Q
S = φ

Q
1 Û→φ

Q
2 Û→φ

Q
3 Û→Q . From the

fact that B satisfies φ1, φ2, and φ3 (Lemma 3.3), we obtain
that B also satisfies φQ1 , φ

Q
2 , and φ

Q
3 by simple calculation.

Thus, we obtain B |= Q , which is equivalent to PCP S by
definition. □

We finally conclude the full reduction theorem:

Theorem 3.48. PCP S iff φS is classically provable.

Proof. Follows with Lemma 3.43 and Lemma 3.47. □

Corollary 3.49. PCP reduces to classical provablity. Thus,
assuming UA, classical provability is undecidable and not enu-
merable.

4 Discussion
The reduction by Floyd and Manna [31], which we use as
basis for all presented undecidability proofs, uses a signature
without the propositional constant Q but a logical fragment
including existential quantification.We circumvent using the
larger fragment by adding Q based on the observation that
(∃x . P x x)Q would be ((∀x .(P x x Û→Q) Û→Q) Û→Q) Û→Q , yield-
ing a slightly sharper result. Note that in principle Q and e
could be eliminated as well via exploiting free variables.

We do not consider completeness proofs in this work since
the direct reductions we gave yield the shorter undecidability
proofs. For intuitionistic natural deduction, completeness is
equivalent to Markov’s principle [28]. Veldman [46] shows
that if Kripke models are extended with so-called exploding
nodes, completeness becomes provable constructively. We
remark that without completeness, we are not able to easily
show that valid formulas are enumerable.
For classical logic, the situation is even more intricate.

Already soundness fails to be provable in a constructive
metalogic, witnessed by Lemma 3.44. One could follow Her-
belin and Ilik [21] in restricting to interpretations validating
all instances of double negation. However, our central stan-
dard model B of boolean strings does not satisfy Û¬ Û¬Q Û→Q
in general as this expresses the stability of PCP. Therefore,
B is in the scope of the restricted semantics as soon as one
assumes Markov’s principle (Fact 3.4). So only accepting ad-
ditional assumptions would simplify maintaining soundness
and at the same time allow for the standard completeness
proofs for classical deduction w.r.t Tarksi semantics [18, 38].
Alternatively, for minimal classical natural deduction, a fully
constructive completeness proof w.r.t. a further adapted no-
tion of Tarksi semantics can be given [4, 29].

4.1 Coq Formalisation
Our formalisation has about 2200 lines of code, with around
40% of specification. The development of elementary syn-
thetic computability theory and PCP needs 800 loc. The def-
initions of first-order syntax, Tarski and Kripke semantics,
and the deduction systems sum up to 800 loc. The reductions
have 460 loc and the weakening proof has 140 loc.

On paper, it is easy to extend an inductive syntax by more
constructors, as we did for F and F⊥. In type theory, extend-
ing by one constructor usually means defining an entirely
new inductive type and a recursive embedding function.
Similarly, extending minimal deduction represented by an
inductive predicate to intuitionistic and classical deduction
is straightforward on paper. In Coq, e.g. proving weakening
for all three systems would require a lot of code duplication.
We circumvent this issue by employing a tagged type of

formulas form(b :B) where we force Û⊥ : formtt. Similarly, we
define a unified inductive predicate ⊢b,b′ where b signals the
inclusion of falsity and b ′ signals whether the explosion rule
or the double negation rule is used. We then define minimal
provability as ⊢ff,ff , intuitionistic as ⊢tt,ff , and classical as ⊢tt,tt.
A parametrised proof of weakening and other statements is
then possible, avoiding any code duplication. In fact, instead
of tagging syntax and deductions systems with booleans, we
use type classes to let Coq automatically infer the correct
tags following a defined priority.

We define interpretations I : interp(D :T),(η:N→N) as type
classes, allowing to write ρ |= φ with I implicit. We use a
standard approach [41] and make the domain type D and the
parameter assignment η in the definition of interpretations
and Kripke models an argument instead of a field. Hence
stating the extensionality of the satisfaction and forcing rela-
tions is convenient and the functor of typeW → interpD,η
in Kripke models can be defined without projections.
We are formalising binders using names, faithful to the

paper presentation. Using explicit parameters as constants,
capturing becomes a non-issue, which considerably simpli-
fies the deduction systems and nearly all proofs concerning
the two semantics. Interestingly, the scalable standard so-
lution of binding via de Bruijn presentation with parallel
renamings as suggested in [33] was not needed in our case.
We found the dependently-typed version of decidability

allowing the usage of proof scripts to be considerably easier
to work with than the definition via boolean deciders. More-
over, defining a type class dec(P : P) allows for writing Dec P
for the decider of P , making the inference of the concrete im-
plementation automatic. We would wish for the inclusion of
such a type class in the upcoming new Coq standard library.

Using the new Coq notation system allowing patterns, we
employed common abbreviations for list functions such as

Notation "[s | p ∈ A ’,’ P]" :=

(map (fun p => s) (filter (fun p => Dec P) A)) (p pattern),

making the definition of list enumerators pleasant.

49

https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#Double'
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#CND_BPCP
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#PCP_CND
https://www.ps.uni-saarland.de/extras/fol-undec/website/Undecidability.BPCP_CND.html#cprv_red

On Synthetic Undecidability in Coq CPP ’19, January 14–15, 2019, Cascais, Portugal

4.2 Related Work
Undecidability of FOL The reductions in this paper are
based on Floyd’s idea in Manna [31]. A detailed analysis
of undecidable fragments of first-order logic is given in [6].
More recently, Kontchakov et al. [27] prove the positive frag-
ment of intuitionistic logic with only two variables, a binary
predicate, and infinitely many unary predicates undecidable.

Formalised FOL O’Connor [33] formalises first-order logic
and Gödel’s incompleteness theorem in Coq. He considers a
classical natural deduction system, but no Tarski semantics.
Herbelin, Kim and Lee [22–24], formalise a cut-free se-

quent calculus for intuionistic first-order logic and prove
weakening, soundness, and completeness. They use name
tracing and consider representations with variables only as
well as with both variables and parameters.

Constructive from classical proofs In Section 3.5 we em-
ployed a generalised double negation translation to obtain
⊢I φ

Q
S from ⊢C φS . Berger et al. [5] show that this technique

can be used for a general class of formulas subsuming our
observation concerning φS . Schwichtenberg and Senjak [39]
use explicit proof transformations to eliminate classical rules
from natural deduction derivations for a similar class.

Synthetic computability Richman [36] relies on the com-
putability of all functions in Bishop style constructive math-
ematics and adds an axiom stating the enumerability of all
enumerable sets. He then gives a purely synthetic proof of
the undecidability of the halting problem.
Bauer [2] works in Hyland’s effective topos [25], where

countable choice, Markov’s principle and Richman’s enu-
meration axiom are valid. He proves that Markov’s principle
implies Post’s theorem and reconstructs further standard re-
sults like Rice’s theorem. In [3], he extends this exploration,
amongst others, to the Kleene-Rogers recursion theorem.

Formalised undecidability Forster and Smolka [15] de-
velop constructive computability in Coq based on the call-
by-value λ-calculus. They prove the equivalence of Markov’s
principle with Post’s theorem for their model. Ciaffaglione
[9] gives a coinductive definition of Turing machines in Coq
and proves the halting problem undecidable. Forster, Heiter,
and Smolka [12] give a Coq formalisation of a reduction
from the halting problem for Turing machines to PCP, string
rewriting, and various problems regarding context-free gram-
mars. Forster and Larchey-Wendling [14] reduce PCP to the
halting problems of binary stack machines and Minsky ma-
chines as well as to intuitionistic linear logic in Coq.

Norrish [32] develops computability theory in HOL, based
on the full λ-caculus. Xu, Zhang, and Urban [47] implement
Turing machines in Isabelle, construct a universal Turing
machine, and prove the halting problem to be undecidable.
Ramos et al. [35] formalise the undecidability of the halting
problem of a simple functional language in PVS.

4.3 Future Work
Since all functions in Coq are computable, we believe that
UA is consistent. Adding strong excluded middle, i.e. that
∀P . {P} + {¬P}, is incompatible with UA, because all predi-
cates, including PCP, become decidable. On the other hand,
we conjecture that the computability of functions on data
types is untouched if only the propositional form of excluded
middle is assumed. To the best of our knowledge, there is no
model for the calculus of inductive construction witnessing
this conjecture. A model validating EM while maintaining
the computability of functions on data types would necessar-
ily invalidate strong excluded middle. In usual computable
functions models, the interpretation of logical and compu-
tational sums coincides. However, we would need a model
where the interpretation of propositions is changed in a way
such that EM holds, but strong excluded middle does not.

Furthermore, we plan to consider completeness proofs for
minimal, classical minimal, intuitionistc and classical natu-
ral deduction, developing a fully-formalised metatheory of
first-order logics. In this context, it would also be interest-
ing to study proof terms and the formalisation of cut-free
completeness proofs, yielding a cut-elimination theorem.
For most inductive types, higher-order abstract syntax

(HOAS) cannot be used in Coq, because of the strict positiv-
ity constraint, and one has to resort to parametric HOAS [7],
de Bruijn, named, or locally nameless representations. For
first-order logic, a HOAS representation is definable in prin-
ciple, because there is no quantification over formulas. We
want to analyse a HOAS implementation to investigate the
connection to the present and to a de Bruijn presentation,
for instance using the Autosubst tool [37].

We further want to study the application of synthetic com-
putability theory to proving axiomatic first-order theories
undecidable, e.g. following Treinen [42]. For instance, PCP is
easily encoded in ZF set theory, so for instance deductive and
semantic consequence of an higher-order axiomatisation of
set theory as studied in [26] are undecidable.

Another directionwould be to formalise the undecidability
of provability for higher-order logics. One possibility could
be to prove inhabitation in System F undecidable, initially
proven by Löb [30] and subsequently simplified by Arts
and Dekkers [1] and Urzyczyn [45]. For full second-order
propositional logic with all quantifiers, there is a reduction
starting at first-order logic by Sørensen and Urzyczyn [40].

Finally, using the techniques from Forster and Kunze [13],
we could prove the computability of all reductions in this
paper in the call-by-value λ-calculus, hence substantiating
that the synthetic approach to undecidability is faithful to
the classical strategy based on a concrete model.
Acknowledgments
We thank Steven Schäfer and Dominique Larchey-Wendling
for fruitful discussions and the anonymous reviewers for
their helpful comments.

50

CPP ’19, January 14–15, 2019, Cascais, Portugal Yannick Forster, Dominik Kirst, and Gert Smolka

References
[1] Thomas Arts and W Dekkers. 1992. Embedding first order predicate

logic in second order propositional logic. Master’s thesis, University of
Njimegen (1992).

[2] Andrej Bauer. 2006. First steps in synthetic computability theory.
Electronic Notes in Theoretical Computer Science 155 (2006), 5–31.

[3] Andrej Bauer. 2017. On fixed-point theorems in synthetic computabil-
ity. Tbilisi Mathematical Journal 10, 3 (2017), 167–181.

[4] Stefano Berardi and Silvio Valentini. 2004. Krivine’s intuitionistic
proof of classical completeness (for countable languages). Annals of
Pure and Applied Logic 129, 1-3 (2004), 93–106.

[5] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. 2002.
Refined program extraction from classical proofs. Annals of Pure and
Applied Logic 114, 1-3 (2002), 3–25.

[6] E. Boerger, E. Grädel, and Y. Gurevich. 1997. The classical decision
problem. Springer.

[7] Adam Chlipala. 2008. Parametric higher-order abstract syntax for
mechanized semantics. In ACM Sigplan Notices, Vol. 43. ACM, 143–
156.

[8] Alonzo Church. 1936. A note on the Entscheidungsproblem. The
journal of symbolic logic 1, 1 (1936), 40–41.

[9] Alberto Ciaffaglione. 2016. Towards Turing computability via coin-
duction. Science of Computer Programming 126 (2016), 31–51.

[10] Thierry Coquand and Bassel Mannaa. 2016. The independence of
Markov’s principle in type theory. arXiv preprint arXiv:1602.04530
(2016).

[11] Hilbert David and Ackermann Wilhelm. 1928. Grundzüge der theo-
retischen Logik. (1928).

[12] Yannick Forster, Edith Heiter, and Gert Smolka. 2018. Verification of
PCP-Related Computational Reductions in Coq. In ITP 2018 (Lecture
Notes in Computer Science), Jeremy Avigad and Assia Mahboubi (Eds.).
Springer, 253–269.

[13] Yannick Forster and Fabian Kunze. 2016. Verified Extraction from Coq
to a Lambda-Calculus. Coq Workshop 2016 (2016).

[14] Yannick Forster and Dominique Larchey-Wendling. 2019. Certified
Undecidability of Intuitionistic Linear Logic via Binary StackMachines
and Minsky Machines. In Proceedings of the 8th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs.

[15] Yannick Forster and Gert Smolka. 2017. Weak call-by-value lambda
calculus as a model of computation in Coq. In ITP 2017. Springer,
189–206.

[16] Harvey Friedman. 1978. Classically and intuitionistically provably
recursive functions. In Higher set theory. Springer, 21–27.

[17] Gerhard Gentzen. 1936. Die Widerspruchsfreiheit der reinen Zahlen-
theorie. Math. Ann. 112, 1 (1936), 493–565.

[18] Kurt Gödel. 1930. Die vollständigkeit der axiome des logischen funk-
tionenkalküls. Monatshefte für Mathematik und Physik 37, 1 (1930),
349–360.

[19] Kurt Gödel. 1933. Zur intuitionistischen Arithmetik und Zahlentheorie.
Ergebnisse eines mathematischen Kolloquiums 4, 1933 (1933), 34–38.

[20] Hugo Herbelin. 2010. An Intuitionistic Logic that Proves Markov’s
Principle. In Proceedings - Symposium on Logic in Computer Science.
50–56.

[21] Hugo Herbelin and Danko Ilik. 2016. An analysis of the constructive
content of Henkin’s proof of Gödel’s completeness theorem. (2016).

[22] Hugo Herbelin, SunYoung Kim, and Gyesik Lee. 2017. Formalizing
the meta-theory of first-order predicate logic. Journal of the korean
Mathematical society 54, 5 (2017), 1521–1536.

[23] HugoHerbelin and Gyesik Lee. 2009. Forcing-based cut-elimination for
gentzen-style intuitionistic sequent calculus. In International Workshop
on Logic, Language, Information, and Computation. Springer, 209–217.

[24] Hugo Herbelin and Gyesik Lee. 2014. Formalizing Logical Meta-theory
– Semantical Cut-Elimination using Kripke Models for first-order Pred-
icate Logic. (2014).

[25] J Martin E Hyland. 1982. The effective topos. In The LEJ Brouwer
centenary symposium, Vol. 110. 165–216.

[26] Dominik Kirst and Gert Smolka. 2018. Categoricity Results and Large
Model Constructions for Second-Order ZF in Dependent Type Theory.
Journal of Automated Reasoning (11 Oct 2018).

[27] Roman Kontchakov, Agi Kurucz, and Michael Zakharyaschev. 2005.
Undecidability of first-order intuitionistic and modal logics with two
variables. Bulletin of Symbolic Logic 11, 3 (2005), 428–438.

[28] Georg Kreisel. 1958. Elementary completeness properties of intuition-
istic logic with a note on negations of prenex formulae. The Journal of
Symbolic Logic 23, 3 (1958), 317–330.

[29] Jean-Louis Krivine. 1996. Une preuve formelle et intuitionniste du
théorème de complétude de la logique classique. Bulletin of Symbolic
Logic 2, 4 (1996), 405–421.

[30] Martin H Löb. 1976. Embedding first order predicate logic in fragments
of intuitionistic logic. The Journal of Symbolic Logic 41, 4 (1976), 705–
718.

[31] Zohar Manna. 2003. Mathematical theory of computation. Dover
Publications, Incorporated.

[32] Michael Norrish. 2011. Mechanised computability theory. In Interna-
tional Conference on Interactive Theorem Proving. Springer, 297–311.

[33] Russell SS O’Connor. 2009. Incompleteness & completeness: formaliz-
ing logic and analysis in type theory. PhD thesis, Radboud University
of Njimegen (2009).

[34] Emil L Post. 1946. A variant of a recursively unsolvable problem. Bull.
Amer. Math. Soc. 52, 4 (1946), 264–268.

[35] Thiago Mendonça Ferreira Ramos, César Muñoz, Mauricio Ayala-
Rincón, Mariano Moscato, Aaron Dutle, and Anthony Narkawicz.
2018. Formalization of the Undecidability of the Halting Problem
for a Functional Language. In International Workshop on Logic, Lan-
guage, Information, and Computation. Springer, 196–209.

[36] Fred Richman. 1983. Church’s thesis without tears. The Journal of
symbolic logic 48, 3 (1983), 797–803.

[37] Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Rea-
soning with de Bruijn terms and parallel substitutions. In International
Conference on Interactive Theorem Proving. Springer, 359–374.

[38] George F Schumm. 1975. A Henkin-style completeness proof for the
pure implicational calculus. Notre Dame Journal of Formal Logic 16, 3
(1975), 402–404.

[39] Helmut Schwichtenberg and Christoph Senjak. 2013. Minimal from
classical proofs. Ann. Pure Appl. Logic 164, 6 (2013), 740–748.

[40] Morten H Sørensen and Paweł Urzyczyn. 2010. A syntactic embedding
of predicate logic into second-order propositional logic. Notre Dame
Journal of Formal Logic 51, 4 (2010), 457–473.

[41] Bas Spitters and Eelis Van der Weegen. 2011. Type classes for mathe-
matics in type theory. Mathematical Structures in Computer Science 21,
4 (2011), 795–825.

[42] Ralf Treinen. 1992. A new method for undecidability proofs of first
order theories. Journal of Symbolic Computation 14, 5 (1992), 437–457.

[43] A.S. Troelstra and D. Van Dalen. 1988. Constructivism in Mathematics.
North-Holland, Amsterdam.

[44] Alan M Turing. 1937. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London mathematical
society 2, 1 (1937), 230–265.

[45] Pawel Urzyczyn. 1997. Inhabitation in typed lambda-calculi (a syntactic
approach). In International Conference on Typed Lambda Calculi and
Applications. Springer, 373–389.

[46] Wim Veldman. 1976. An intuitionistic completeness theorem for
intuitionistic predicate logic. The Journal of Symbolic Logic 41, 1
(1976), 159–166.

[47] Jian Xu, Xingyuan Zhang, and Christian Urban. 2013. Mechanising
turing machines and computability theory in Isabelle/HOL. In Interna-
tional Conference on Interactive Theorem Proving. Springer, 147–162.

51

	Abstract
	1 Introduction
	2 Elementary Synthetic Computability
	2.1 Decidability and Enumerability
	2.2 Many-One Reductions
	2.3 Post's Theorem and Markov's Principle
	2.4 The Post Correspondence Problem
	2.5 Infinite Data Types

	3 Undecidability of First-Order Logic
	3.1 Validity
	3.2 Minimal Provability
	3.3 Satisfiability
	3.4 Intuitionistic First-Order Logic
	3.5 Classical Provability

	4 Discussion
	4.1 Coq Formalisation
	4.2 Related Work
	4.3 Future Work

	Acknowledgments
	References

