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Université de Provence, Marseille

Catherine Nouvet †

Ecole Nationale Supérieure des Télécommunications, Paris
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Abstract

We specify an incremental garbage collection algorithm and we give a formal proof of its cor-
rectness carried out using the proof assistant Coq. The algorithm is represented as an infinite
transition system and we establish safety and liveness properties. This work relies on the ax-
iomatization of Linear Temporal Logic in the Calculus of Inductive Constructions given in [3]
and based on a co-inductive representation of program executions. Although motivated by
integrating the dynamic memory management to the Java Card platform, this study applies
more generally to real-time embedded systems and to devices with virtually infinite memory.

Keywords Formal methods, type theory, temporal logics, co-induction, garbage collectors.

1 Introduction

The Java Card technology offers an interoperable multi-application based smart card
platform and is being broadly deployed. The work presented in this paper is the
result of a collaboration between the University of Provence, Gemplus, and Inria.
It aims at extending the formal description of the Java Card platform taking into
account the dynamic memory management, a feature that will be provided in the
version 3.0 of Java Card. Indeed, the existing SmartCards suffer some limitations,
notably the absence of garbage collector. All the created objects are persistent. Con-
sequently, creating objects is done parsimoniously and this seriously curbs developing
applications. For this reason, SmartCards designers are currently developing modular
generic flexible operating systems, that are capable to evolve during the SmartCards
life and to integrate memory management ([4]). Moreover, as SmartCards support
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highly critical demands, formal specification of their functionalities as well as formal
verification of security and safety properties are a crucial issue which gives rise to
intensive international research.

In this framework, we present a formalization of a tricolor mark-and-sweep garbage
collector (GC) in the Calculus of (Co)-Inductive Constructions [2, 15, 6]. A strong
requirement for a GC to be embedded in SmartCards is to withstand the withdrawal
of the card whatever the state of the process. Moreover in this interactive context
(even though not real time, strictly speaking) the time of handling a command must
be very short (less than one second) to be acceptable to the user (see [4]). Therefore,
the algorithm we deal with has to be incremental. The specification we give is abstract
enough to cover several actual implementations and we do not make any assumption
on the set of memory cells. For these reasons, in spite of the fact it is motivated by
the Java Card technology, this work also applies to other kind of real-time embedded
systems and to devices with virtually infinite memory (such as internet).

The GC is modelled using state transition systems in Linear Temporal Logic (LTL)
and we establish that the program is safe, in the sense that any freed cell is garbage.
We also prove that provided the GC is called infinitely often, any inaccessible cell is
eventually freed. This formal verification relies on a co-inductive axiomatization of
LTL described in [3]. It also involves an axiomatization of finite sets that we compare
with that given in [11] and that is used to count the memory cells of a given color in
order to establish termination properties. All the proofs are carried out in the Coq
proof assistant [18].

This paper is organized as follows. Section 2 is dedicated to describing and modelling
of the garbage collection algorithm. Then, in section 3, we establish the safety prop-
erty, and in section 4 the liveness property. Some aspects of our study are discussed
in section 5 and related work in section 6. We conclude in section 7.

2 Specifying the algorithm

The encoding of the algorithm in the Calculus of Inductive Constructions relies on
a general specification of infinite state systems given in [3]. Before presenting this
encoding, let us describe informally the algorithm.

2.1 The Algorithm

Overview

Our algorithm is a variant of a 3-color mark and sweep algorithm first introduced in
[5]. In this work, the user’s program (the mutator) and the collector are considered
to be running concurrently. In [12], the problem is reformulated assuming a single
thread of control (no concurrency) and assuming that once the collector is invoked,
it executes a whole phase of garbage collection, after which the mutator is resumed.
A crucial question for a memory management system embedded on smart cards is to
withstand the withdrawal of the card whatever the state of the process. So we have
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given higher priority to this aspect to the detriment of garbage collecting efficiency.
Here we present an incremental algorithm designed so that the collector can be inter-
rupted at any time to let the mutator run.

In this kind of algorithm, the memory is modelled by a directed graph (the heap)
with a special node called the root. The nodes represent the memory cells and there
is an edge from a node n to a node m, if n contains a reference to m. In our work, we
do not make any finiteness assumption on the set of cells. Our graph is then (possi-
bly) infinite. However the nodes are colored with four colors instead of three: white,
grey, black, and free. There is always a finite number of “marked” nodes, that is
of white, grey, or black nodes. Only the finite subgraph of “marked” nodes will be
under consideration except when the mutator needs a new cell which is then removed
from the set of the free (unmarked) nodes. The aim of the tracing is to determine
the current marked nodes that are accessible from the root. For that purpose, the
subgraph is traversed from the root and the nodes are colored so that the following
invariant property holds: a node is white when it has not yet been considered, it is
grey when it has been considered but its children have not, and it is black when itself
and its children have been considered. At the end of the marking, there will no longer
remain any grey nodes, and all the reachable nodes will be black.

However, because of the incremental aspect of the garbage collector, the marking ac-
tions are interleaved with mutator actions that can add or remove edges in the graph.
Consequently, these marking actions must be designed carefully in order to preserve
the invariant.

Let us now examine the transitions of our memory management system.

The Transitions

We introduce three control states, namely mutate, mark, and sweep, that indicate
that the current process is either the mutator, the marking process, or the collecting
process.

The mutator can perform four actions. The first three do not change the control state
mutate. These are:

• add edge : it adds an edge between two accessible nodes n and m. Moreover, if
m is white and n is black, then m becomes grey.

• remove edge : it removes an edge between two accessible nodes.

• alloc : it picks out a free node n, removes the edges to its children if any, and
adds n as a new black child of the root.

The mutator transitions should not deal with changing the colors. However, in the
particular case of adding an edge from a black node to a white node, it is mandatory
to change the color of the target and to grey it, for the invariant to be preserved.
This concerns only one node and does not affect the mutator efficiency too much. In
the same way, each new allocated cell is colored in black. Note that, as remove edge
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does not change the colors, certain nodes may become unreachable when being black
or grey. Thus, these unreachable nodes will not be freed during the current cycle of
garbage collecting. We will show that they will eventually be freed in the next cycle.

The fourth action, gc call, makes a call to the marking phase of the garbage collector,
and thus it turns the control to mark. It acts as follows:

• gc call :

– if all the nodes are black or free, then it re-initializes the marking phase
– otherwise, if there exists a grey node, it blackens a grey node and greys its

white children
– otherwise, it frees a white node.

The re-initialization of the marking phase consists in greying the root and whitening
the black nodes. Then all the marked nodes are white, except the root, since this
re-initialization takes place when there are no grey nodes left.

Three transitions are enabled if the control is mark:

• mark node : enabled only if there exists a grey node. It blackens a grey node
and greys its white children. The control remains mark.

• gc free : enabled only if there are no grey nodes and at least one white node.
It frees a white node. The control becomes sweep.

• gc stop : no action is performed. It simply returns to the mutator: the state
becomes mutate.

The last two transitions are related to the collection phase characterized by the control
sweep.

• gc free1 : enabled if there exists a white node. It frees a white node and the
control remains sweep.

• gc end : no action is performed. It simply returns to the mutator: the control
becomes mutate.

One can notice that the marking process as well as the cell collection process can be
interrupted at any time thanks to the transitions gc end and gc stop.

Initial State

To complete the description of the transition system, it remains to define the initial
state. Initially:

– all states but the root are free,
– the root is black,
– there are no edges,
– the control is mutate.
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The algorithm we have designed is a variant of that in [5]. The major difference lies
in the fact that in [5] the number of nodes is finite and the nodes are examined in a
specific order both during the marking phase and during the sweeping phase. This
makes it possible to split the action that re-initializes the marking into finer-grained
actions that can be interleaved with the mutator actions.

2.2 Specification in the Calculus of Constructions

We have given a specification that is general enough to cover several possible imple-
mentations. For example we never make it explicit which node precisely is picked out
to be freed or blackened, nor the way in which the cells are represented.

Data types

Our formal development is parameterized by a set node representing the cells and by
a particular node rt for the root. We set only one axiom: the decidability of the
equality over the set node.

Axiom eq dec node: (∀n,m:node) (n=m)∨(n ̸=m)

The constant heap denotes the type node→node→bool of the incidence matrices
representing the graphs. We choose the relation to range over the set bool of booleans
instead of Prop to be able to decide (in the logical meaning of the word) whether there
exists an edge or not between two nodes. The constant marking stands for the type
node→color. Now, the states of the transition system under consideration are triples
consisting of a heap, a marking, and a control state. In the following, if s is a state,
(hp s),(mk s), and (ctl s) denote each of these three components.

Transitions as inductive relations

Each transition is specified as an inductive binary relation on the states. Let us
consider, for example, the gc free1 transition.

Definition 1 The transition gc free1 is inductively defined as follows. Let s and
t be two states. The formula (gc free1 s t) holds if the following conditions are
satisfied:

– both controls are equal to sweep,
– the heaps are identical,
– the markings differ only for a node n which is white in s and free in t.

Note that the existence of a transition gc free1 between two states s and t requires
a node n to be white in s and free in t, but our specification does not dictate which
particular node n among the white nodes must be picked out to be freed. This is left
to the implementor.

Transitions vs labelled transitions

A label is associated with each transition, say fr for gc free. Let label be the set
of the nine labels. We inductively define a relation
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R :label→state →state→Prop

and write s
l−→t for (R l s t). The relation is defined in such a way that s

fr−→t

stands for (gc free s t). Now s
step−→t means that t is derived from s by any of

the nine transitions. Thus, we obtain an instance of the abstract model for labelled
transition systems, introduced in [3].

Reachability, accessibility

Finally, we define as follows the relations reachable and accessible over the nodes.

Definition 2 Let h be a heap and n be a node. The relation “to be reachable” in h
from n is defined inductively by the two following conditions:

- in h, n is reachable from itself
- every node is reachable from n provided it has a father in h that is also reachable

from n.

Definition 3 A node is accessible in a heap h if and only if it is reachable from
the root rt.

When it is clear from the context, we leave the heap implicit in these accessibility
notions.

We can now tackle the verification of the algorithm, starting with the establishment
of the safety property.

3 The Safety Property

The safety property states that nothing bad will ever happen, and more precisely,
that the garbage collector only collects unreachable objects. One must prove that the
formula “any free node is inaccessible” continuously holds on all the runs.

Lemma 4 (garbage collector safety) The formula defined on all states s by “in
s, all free nodes are inaccessible” is safe.

The lemma is obtained as a corollary of the following stronger result:

Lemma 5 Let I be the conjunction of the five properties below.

1. RtGreyOrBlack: The root is grey or black

2. SweepNoGrey: If the control is sweep, there are no grey nodes

3. NoEdgeBlackWhite: There is no edge from a black node to a white node

4. AccNotFree: If a node is accessible, then it is not free

5. NoGreyAccBlack: If there are no grey nodes, then all accessible nodes are black

I is a safe property.
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In this statement, an identifier in teletype characters is associated with each of the
five properties. In the sequel, it denotes either the state formula or the corresponding
lifted stream formula, depending on the context. Let us give a sketch of the proof.

Proof The proof follows from theorem 2 (safety) in [3]. One can easily be convinced
that I holds on the initial state. As far as invariance is concerned, the first three
properties can be treated independently from each other. Their proofs are performed
by case analysis on the nine possible transitions and do not present any theoretical
difficulty.

However, we cannot prove directly that statements 4 and 5 are maintained by all
transitions. One establishes the following two weaker results.

Lemma 6 Let s and t be two states such that sstep−→t. If s satisfies I, then t satisfies
property AccNotFree (condition 4).

Lemma 7 Let s and t be two states such that sstep−→t. If s satisfies I, then t satisfies
property NoGreyAccBlack (condition 5).

The proofs of these lemmas require the following intermediate result which is proved
by case analysis on all the possible transitions.

Lemma 8 Let s and t be two states such that sstep−→t. Every node which is accessible
in state t is also accessible in state s (except for the allocated cell in the case of the
alloc transition).

Proof of lemma 6. Let s and t be two states, let us consider a transition such that
s

l−→t and let us assume that s satisfies I. If a free node in t was already free in s,
it was not accessible in s by hypothesis. Therefore, from lemma 8, it is not accessible
in t (in the exceptional case of an alloc transition, the allocated node is not free in
t). So a problem is raised only when a white node n in state s becomes free in state
t. This happens in three cases:

• for gc call, when there are no grey nodes in s

• for gc free, which is enabled only if there are no grey nodes in s

• for gc free1, which is enabled only if the control in s is sweep. But then, by
the hypothesis that s satisfies I, and specially condition 2 in I, one can conclude
that there are no grey nodes in s.

In the three cases, there are no grey nodes in s and as s satisfies NoGreyAccBlack
(condition 5), all accessible nodes in s are black. Thus n is not accessible in s and so,
by lemma 8, it is not accessible in t.

Proof of lemma 7. Let s and t be two states, let us consider a transition such that
s

l−→t and let us assume that s satisfies I. When the transition l−→ does not blacken
any grey node in s, and if there are no grey nodes in t, then there are no grey nodes
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in s. So in s, all accessible nodes are black. By lemma 8, an accessible node (say n)
in t is accessible in s (except if it is a newly allocated cell, in which case n is black
in t). Then n is black in s and it remains black in t. As a matter of fact, the only
transition that can change the color of a black node, is gc call, when re-initializing
the marking. But in that case, the root is grey in t, which is inconsistent with the
fact that there are no grey nodes in this state.

The transitions that blacken a grey node (that is mark node or, in certain cases,
gc call) are more difficult. The proof requires the hypothesis that s satisfies condi-
tions 1, 2, 3, and 4 and is performed by induction on the accessibility of the node n.

The whole proof consists of approximatively one hundred and fifty lemmas.

4 The Liveness Property

The proof of the liveness property is awkward. We will try to emphasize the main
points as clearly as possible.

Classically, the termination proof relies on the fact that a “measure” on the set of
states strictly decreases when one applies a transition for which a fairness requirement
is made. The “measure” we have chosen here is the sum of the number of the white
nodes and the number of the grey nodes in a state. So we have to do meticulous work
to prove that there is always a finite number of white nodes, of grey nodes, and of
black nodes and to calculate their number accurately in each state of a run. For this
reason we were led to axiomatize some notions of finite subset cardinality adapted to
our problem.

4.1 Axiomatizing Finite Sets

In [11], G.Huet and G.Kahn define the cardinal of the finite subsets of a set A. The
subsets are represented by their characteristic predicates. Their axiomatization is
based on a relation cardinal of type (A→Prop)→nat→Prop, inductively defined as
follows:

1. (cardinal ∅ O)

2. Let Q be a subset of A and a0 an element of A such that a0 /∈Q. Then for all
natural numbers nb, (cardinal Q nb)→(cardinal Q∪{a0} (nb+1)).

In the first condition, ∅ denotes the empty subset of A and is axiomatized as an in-
ductive type with no constructor. The union of two subsets is also inductively defined.

Our definition is a bit more concrete in the sense that the characteristic predicate
is decomposed into a computational part and a logical part. More precisely, let us
consider two sets A and B and let P be a predicate on B.
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For all programs M:A→B the cardinal of the subset {a∈A| (P (M a))} is specified
by a relation card of type :(B→Prop)→(A→B)→nat→Prop. This relation is defined
inductively by the two conditions below:

1. (∀a∈A ¬(P (M a)))→(card P M O)

2. Let M1 and M2 be two functions of type A→B and let a0 be an element of type A
such that (P (M2 a0)) and ¬(P (M1 a0)). Moreover if M1 and M2 coincide over
A-{a0}, then for all natural numbers nb :
(card P M1 nb)→(card P M2 (nb+1))

An extra hypothesis (∃b:B)¬(P b) is assumed for the relation to be non empty.

Being less abstract and closer to the informal notion of counting objects some at-
tributes of which satisfy a certain predicate, our definition, although less elegant, is
easier to handle in the framework of our study. However, we can prove that these two
approaches are equivalent provided that we assume the extensionality axiom on the
subsets of A (and this is the drawback of the abstract point of view). This axiom is
set as follows:

For all subsets Q1 and Q2 of A, (Q1 ⊆Q2)∧(Q2 ⊆Q1) → Q1= Q2

where = denotes the Leibniz equality.

Having set this axiom, we can then prove the next two results (where P◦M stands for
the composition of P and M):

• (∀nb:nat) (card P M nb) ↔ (cardinal (P◦M) nb)

• For all subset Q of A,(∀nb:nat)(cardinal Q nb) ↔ (card Q λx.x nb)

The second proposition is just a corollary of the first one.

The proofs of both implications in the first result are performed by induction. The
extensionality hypothesis is needed quite naturally to prove the equivalence. As a
matter of fact, let us consider the example of the null cardinality. With our definition
it corresponds to all the predicates (P◦M) that are not satisfied anywhere. Identify-
ing all these terms with the empty set considered in [11] requires the extensionality
condition. This axiom is also applied during the induction step of the reciprocal im-
plication, to prove that a subset Q of A is of the form P◦M.

We establish some classical results such as the unicity of the cardinal as well as the
following inclusion related proposition:

Lemma 9 Let P and Q be two predicates over B and let M and N be two functions of
type A→B. Assuming that (∀a:A) (Q (N a))→ (P (M a)), for all natural numbers
nb such that (card P M nb) there exists a natural number nb’ such that nb’≤nb
and (card Q N nb’).
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We now have at our disposal the logical tools for counting the marked nodes.
In [11], G.Huet and G.Kahn define the cardinal of the finite subsets of a set A. The
subsets are represented by their characteristic predicates. Their axiomatization is
based on a relation cardinal of type (A→Prop)→nat→Prop, inductively defined as
follows:

1. (cardinal ∅ O)

2. Let Q be a subset of A and a0 an element of A such that a0 /∈Q. Then for all
natural numbers nb, (cardinal Q nb)→(cardinal Q∪{a0} (nb+1)).

In the first condition, ∅ denotes the empty subset of A and is axiomatized as an in-
ductive type with no constructor. The union of two subsets is also inductively defined.

Our definition is a bit more concrete in the sense that the characteristic predicate
is decomposed into a computational part and a logical part. More precisely, let us
consider two sets A and B and let P be a predicate on B.

For all programs M:A→B the cardinal of the subset {a∈A| (P (M a))} is specified
by a relation card of type :(B→Prop)→(A→B)→nat→Prop. This relation is defined
inductively by the two conditions below:

1. (∀a∈A ¬(P (M a)))→(card P M O)

2. Let M1 and M2 be two functions of type A→B and let a0 be an element of type A
such that (P (M2 a0)) and ¬(P (M1 a0)). Moreover if M1 and M2 coincide over
A-{a0}, then for all natural numbers nb :
(card P M1 nb)→(card P M2 (nb+1))

An extra hypothesis (∃b:B)¬(P b) is assumed for the relation to be non empty.

Being less abstract and closer to the informal notion of counting objects some at-
tributes of which satisfy a certain predicate, our definition, although less elegant, is
easier to handle in the framework of our study. However, we can prove that these two
approaches are equivalent provided that we assume the extensionality axiom on the
subsets of A (and this is the drawback of the abstract point of view). This axiom is
set as follows:

For all subsets Q1 and Q2 of A, (Q1 ⊆Q2)∧(Q2 ⊆Q1) → Q1= Q2

where = denotes the Leibniz equality.

Having set this axiom, we can then prove the next two results (where P◦M stands for
the composition of P and M):

• (∀nb:nat) (card P M nb) ↔ (cardinal (P◦M) nb)

• For all subset Q of A,(∀nb:nat)(cardinal Q nb) ↔ (card Q λx.x nb)

The second proposition is just a corollary of the first one.
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The proofs of both implications in the first result are performed by induction. The
extensionality hypothesis is needed quite naturally to prove the equivalence. As a
matter of fact, let us consider the example of the null cardinality. With our definition
it corresponds to all the predicates (P◦M) that are not satisfied anywhere. Identify-
ing all these terms with the empty set considered in [11] requires the extensionality
condition. This axiom is also applied during the induction step of the reciprocal im-
plication, to prove that a subset Q of A is of the form P◦M.

We establish some classical results such as the unicity of the cardinal as well as the
following inclusion related proposition:

Lemma 10 Let P and Q be two predicates over B and let M and N be two functions of
type A→B. Assuming that (∀a:A) (Q (N a))→ (P (M a)), for all natural numbers
nb such that (card P M nb) there exists a natural number nb’ such that nb’≤nb
and (card Q N nb’).

We now have at our disposal the logical tools for counting the marked nodes.

4.2 Counting the marked nodes

We define a relation card color in such a way that (card color c m nb) expresses
that there are nb nodes of color c in marking m. We simply use the definition of
card in section 4.1, in which P is instantiated by λc’ :color. (c’= c) and M by
m. A relation measure is inductively defined so that (measure m nb) holds if and
only if, for the marking m, the sum of the white nodes and the grey nodes is equal to nb.

Then we prove 4x9=36 lemmas that express how the numbers of grey, white, and
black nodes of a state evolve as well as the measure of its marking, when each of the
nine transitions is applied.

Some of the proofs are tedious and we do not go into details. Let us just summarize
the results.

Lemma 11 Let us consider a state, the marking of which makes w nodes white, g
nodes grey, b nodes black, let m = w + g and let us apply a transition.

• White nodes
– w is decremented by gc free and gc free1
– w is left unchanged or is decremented by add edge
– w takes the value b-1 when the colors are re-initialized
– w takes the value w-nb when blackening a node and greying its nb white

children
– w is left unchanged by remove edge, alloc, gc stop, gc end.

• Grey nodes
– g is left unchanged or is incremented by add edge
– g takes the value 1 when the colors are re initialized
– g takes the value g+nb-1 when blackening a node and greying its nb white
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children
– g is left unchanged by remove edge, alloc, gc stop, gc end,

gc free, gc free1.

• Black nodes
– b is incremented by alloc and by a marking transition that blackens a

node and greys its nb white children
– b takes the value 0 when the colors are re initialized
– b is left unchanged by add edge, remove edge, gc stop, gc end, gc free,

gc free1.

• Measure
– m is decremented by gc free, gc free1, mark node and, if m ̸=0, by

gc call
– m is left unchanged by the rest of the transitions.

Fairness These statements about the measure make it clear why we require a fair-
ness condition for the labels corresponding to the transitions gc free, gc free1,
gc call, and mark node: they are the transitions that decrease the measure. We
then introduce a predicate fair that is satisfied exactly by these four transitions.

Lemma 12 (Existence of the measure) The finiteness of the sets of the nodes of
color c, c∈{grey, white, black} is a safe property. Therefore, the existence of
the measure is a safe property.

This is straightforward from lemma 11.

4.3 Termination

The aim of this paragraph is to prove that, for all the runs satisfying the justice pro-
cess condition fairstr defined in [3] (a stream σ is a fair stream iff infinitely often
on σ, if a fair transition is enabled, then a fair transition is taken) the measure, and
therefore the number of white nodes and the number of grey nodes, becomes null
infinitely often. For that, we have to prove some intermediate lemmas.

Let us recall the invariant stated in condition 2 of lemma 5: in a state s in which the
control is sweep, there are no grey nodes. This is denoted by: (SweepNoGrey s).

Lemma 13 A fair transition is enabled on every state that satisfies SweepNoGrey
and where the measure exists and is strictly positive.

The proof is performed by case analysis on the control of the state.

Lemma 14 Let σ be a stream such that (fairstr σ) and such that SweepNoGrey
continuously holds on σ. Then σ satisfies (infinitely often P), where the stream
formula P is defined by:
λτ:stream.((∃nb:nat) (measure (mk τ0) nb )∧nb ̸=0) → (τ0

fair−→ τ1)
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Proof We apply a general temporal lemma that results straightforwardly from the
monotonicity of the operator infinitely often (see [3], section 4.2) and that states
that for all stream formulas P, Q, and R:
((∀σ:stream)(✷R σ) → (Q σ) → (P σ)) →
((∀σ:stream)(✷R σ)→(infinitely often Q σ)→(infinitely often P σ))
In this case:
– R will be instantiated by SweepNoGrey,
– Q by “if a fair transition is enabled on the head of the stream, then a fair transition
is taken” (from the definition of fairstr),
– P by the formula P defined in the statement.

Proving lemma 14 now simply amounts to proving that (P σ) holds for all σ satisfy-
ing the following conditions :

– (✷SweepNoGrey σ)
– if a fair transition is enabled in σ0, then a fair transition is taken.

This follows immediately from lemma 13.

The next lemma aims at establishing the conditions under which termination theorem
(theorem 12) in [3] can be applied.

Lemma 15 Let σ be a trace satisfying ✸P. If in the state σ0 the measure exists and
has a positive value v, it remains positive until eventually it takes a value less than v
or it becomes null.

The predicate P under consideration is that defined in lemma 14. The proof is per-
formed by induction on the term (✸P σ) and relies on the fact that if a fair transition
is taken in a state where the measure is positive, the measure strictly decreases (lemma
11).

Lemma 16 Let σ be a trace such that (fairstr σ) and such that the invariant
property I of lemma 5 continuously holds on σ. Then, eventually the measure becomes
null and therefore so do the number of grey nodes and the number of white nodes.

Proof As σ always satisfies SweepNoGrey, one can apply lemma 14 and thus lemma
15. Then, the result follows from theorem 12 (termination theorem) in [3] and relies
on the well-foundedness of the strict ordering on the natural numbers.

Lemma 17 Let σ be a run such that (fairstr σ). Then, infinitely often the mea-
sure becomes null and therefore so does the number of grey nodes and white nodes.

Proof The proof is done by applying lemma 5 in [3]. Then, the result follows
immediately from the previous lemma and the fact that I is a safe property by lemma
5.
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4.4 Liveness

We introduce ten families of state formulas indexed by a node n. They are defined
on a state s as follows. :

(a n s) : n is not accessible

(b n s) : n is free or
– n is not free and
– n is not accessible and
– the number of grey nodes is null

(c n s) : – n is white and
– n is not accessible and
– the number of grey nodes is null

(d n s) : n is free

(e n s) : – n is black and
– n is not accessible and
– the number of grey nodes is null
- the number of white nodes is not null

(f n s) : – n is black and
– n is not accessible and
– the number of grey nodes is null

(g n s) : – n is black and
– n is not accessible and
– the measure is null

(h n s) : – n is white and
– n is not accessible and
– the root is grey, and
– all the nodes, except the root, are white or free.

(k n s) : – n is white and
– n is not accessible and
– and all the ancestors of n are free or white,
– the number of grey nodes is not null.

(k’ n s) : – n is white and
– n is not accessible and

– and all the ancestors of n are free or white

– the number of grey nodes is null.

Let us denote by the corresponding capital letter the lifted stream formulas. For
instance, (A n σ) stands for (a n σ0).

Lemma 18 summarizes the intermediate steps necessary to establish the final liveness
result.
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Lemma 18 Let n be a node and σ a trace such that (✷I σ) where I is the invariant
conjunction introduced in lemma 5.

1. If σ is such that eventually the number of grey nodes becomes null, then (A n
σ)→((A n)U(B n) σ).

2. If σ is such that eventually the number of white nodes becomes null, then (C n
σ)→((C n)U(D n) σ).

3. If σ is such that eventually the number of white nodes becomes null, then (C n
σ)→ (✸(D n) σ).

4. If σ is such that the number of white nodes is always finite and such that it
eventually becomes null, then (E n σ)→((E n)U(G n) σ).

5. If σ is such that the number of white nodes is always finite and such that it
eventually becomes null, then (F n σ)→((F n)U(G n) σ).

6. If σ is such that infinitely often a fair step is taken then
(G n σ)→((G n)U(H n) σ).

7. If σ is such that the number of grey nodes is always finite and such that it
eventually becomes null, then (K n σ)→((K n)U(K’ n) σ).

8. If σ is such that the number of grey nodes is always finite and such that it
eventually becomes null, then (K n σ)→((K n)U(C n) σ).

9. If σ is such that the number of grey nodes eventually becomes null and infinitely
often the number of white nodes becomes null, then
(K n σ)→(✸(D n) σ).

Proof

• Statement 1.
We first prove that for all states s and t such that sstep−→t, any node that is not
free and not accessible in s remains not accessible in t. The proof does not
follow directly from lemma 8 since alloc transition needs a special handling.
A case analysis is necessary. Nevertheless, the other eight cases follow directly
from those considered in lemma 8.

The proof of statement 1 is performed by induction on the hypothesis that,
eventually, the number of grey nodes becomes null.

Base case. In this case, in state σ0, the number of grey nodes is null. Obviously
(b n σ0) holds and then the goal is proved.
Induction Step. Assuming that the statement holds for a trace σ, we have to
prove that it holds for a trace (cons s σ). The proof is done by considering
the cases in which n is free or not free in s. In the former case, we have (b n
s) and therefore, ((A n)U(B n) (cons s σ))holds. In the latter, since (cons
s σ) is a trace:
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– either σ0 = s, and then since n is not accessible in s by hypothesis, neither it
is in σ0, and then, (a n σ0) holds.
– or s

step−→ σ0, and then we know from the preliminary result that n is not
accessible in σ0, and then, (a n σ0) holds .
In both cases the proof is achieved by applying the induction hypothesis on σ.
We obtain ((A n)U(B n) σ), and thus we deduce :
((A n)U(B n) (cons s σ)) by the hypothesis (A n (cons s σ)).

• Statement 2.
We first prove by case analysis on all the possible transitions that for all nodes n,
for all states s and t such that sstep−→t, if s satisfies the predicates SeewpNoGrey
and NoGreyAccBlack defined in lemma 5, then:
(c n s)→(c n t)∨(d n t).

Then, we prove that all traces σ on which SweepNoGrey and NoGreyAccBlack
continuously hold, satisfy statement 2. This is done by induction on the hy-
pothesis stating that eventually the number of white nodes becomes null.

Base case. We have to prove (C n σ)→((C n)U(D n) σ) under the hypoth-
esis that there are no white nodes in the head of σ. This hypothesis and (C n
σ) are contradictory.

Induction step. Assuming that the statement holds for a trace σ, we have to
prove that it holds for a trace (cons s σ). The proof is done by considering
separately the cases in which n is free or not free in σ0. In the former case, (D
n σ) holds and since (C n (cons s σ)) holds by hypothesis, we have proved
((C n)U(D n) (cons s σ)). In the latter, since (cons s σ) is a trace:
– either σ0 = s. In this case, as (c n σ0) holds, we can conclude by applying
the induction hypothesis to σ

– or s
step−→ σ0, and then we know that (c n σ0)∨(d n σ0) holds. If the con-

dition (c n σ0)is satisfied, the proof is achieved by applying the induction
hypothesis. If (d n σ0) holds, we can deduce ((C n)U(D n) (cons s σ)).

• Statement 3. This is an immediate corollary of statement 2.

• Statement 4.
We first prove by case analysis on all the possible transitions that for all nodes n,
for all states s and t such that sstep−→t, if s satisfies the predicates SweepNoGrey
and NoGreyAccBlack then: (e n s)→(f n t).

We now prove that all the traces σ on which SweepNoGrey and NoGreyAccBlack
continuously hold, satisfy statement 4. This is done by induction on the hy-
pothesis stating that eventually the number of white nodes becomes null.

Base case. We have to prove that (E n σ)→((E n)U(G n) σ) under the
hypothesis that there are no white nodes in the head of σ. This hypothesis and
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(E n σ) are contradictory.

Induction step. Assuming that the statement holds for a trace σ, we have to
prove that it holds for a trace (cons s σ). The proof is done by considering
the cases in which the number w of white nodes in s is null or not. In the
former case, (G n (cons s σ)) holds and thus ((E n)U(G n) (cons s σ))
also holds. In the latter, since (cons s σ) is a trace:
– either σ0 = s, then by the hypothesis (E n (cons s σ)), we deduce (E n
σ), and we can conclude by applying the induction hypothesis to σ.
– or s step−→ σ0, and then we know that (f n σ0) holds. If the number of white
nodes of σ0 is not zero, then (E n σ) holds and the proof is achieved by applying
the induction hypothesis. If it is null, from (G n σ) we can deduce ((E n)U(G
n) (cons s σ)).

• Statement 5. It follows straightforwardly from statement 4 by noticing that
(F n σ) is equivalent to (E n σ)∨(G n σ).

• Statement 6.

We prove the following preliminary results.
– (a): For all nodes n, for all states s and t such that s

step−→t, if s satisfies the
predicate NoGreyAccBlack then: (g n s)→(g n s)∨(h n t).
– (b): Let s and t be two states and assume that the measure of s equals 0.
Then, if s fair−→t, the marking of t is obtained by re-initializing the marking of
s.
– (c): Let s and t be two states such that s step−→ t and such that the marking
of t is obtained by re-initializing the marking of s. Then:
(g n s)→(h n t).

The proof of statement 6 is done by induction on the fact that eventually, a
fairstep is taken.

Base case. In this case, we have σ0
fair−→ σ1. Moreover, as (g n σ0)holds, the

measure in σ0 is null. It follows from (b) that the marking of σ1 is obtained by
re-initializing the marking of σ0 and thus, (h n σ1) holds from (c). Thus we
have proved ((G n)U(H n) σ).

Induction step. Assuming that the statement holds for a trace σ, we have to
prove that it holds for a trace (cons s σ). As (cons s σ) is a trace, either
s= σ0 or s

step−→ σ0. In the first case, we conclude by applying the induction
hypothesis, since we know that (g n σ0) is satisfied. In the second case, from
(a) either (g n σ0) holds and we apply the induction hypothesis, or (h n σ0)
holds and as by hypothesis we have (g n s), we deduce ((G n)U(H n)(cons
s σ)).

• Statement 7. We define a predicate p by :
(p n s) : – n is white and

– n is not accessible and
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– and all the ancestors of n are free or white.

Let us notice that, if gr denotes the number of grey nodes in state s:
– (k n s)↔(p n s)∧(gr ̸=0)
– (k’ n s)↔(p n s)∧(gr=0).

We first prove by case analysis on all the possible transitions that for all nodes n,
for all states s and t such that sstep−→t, if s satisfies the predicates SweepNoGrey
and NoGreyAccBlack: (k n s)→(p n t).

Now, the proof proceeds by induction on the fact that the number of grey nodes
eventually becomes null.

Base case. In this case, the number of grey nodes on σ0 is null and by hypoth-
esis (k n σ0) holds. These statements are contradictory.

Induction step. Assuming that the statement holds for a trace σ, we have to
prove that it holds for a trace (cons s σ). Since (cons s σ) is a trace:
– either σ0 = s, then we have (K n σ), and we can conclude by applying the
induction hypothesis to σ

– or s step−→ σ0, and then (p n σ0) holds. Let gr be the number of grey nodes in
σ0. If gr is null, then (k’ n σ0) holds and thus (cons s σ) satisfies (K n)U(K’
n). If gr is not null, we can conclude by applying the induction hypothesis.

• Statement 8. It follows from the fact that obviously, for all streams σ, (K’ n
σ)→(C n σ).

• Statement 9. By applying statement 8 we deduce that σ satisfies the predicate
(K n)U(C n). The proof is then performed by induction on the term ((K
n)U(C n) σ) and by applying statement 3.

The final liveness theorem states that provided the set of fair transitions is not for-
gotten forever, every node that becomes inaccessible will eventually be freed.

Theorem 19 (Liveness) Let σ be a run such that infinitely often a fair transition is
taken. For all nodes n the following property always holds: if n becomes inaccessible,
then eventually it will be freed.

Proof By lemma 5 in [3], it is sufficient to prove that for all the traces σ satisfying
the fairness condition and all the properties that have been proved to be safe, if n is
not accessible in σ0, then it will eventually be freed.

By statement 1 in lemma 18, assuming that n is not accessible, we have a term h1:((A
n)U(B n) σ). We then do an induction on h1. The induction step is immediate. Let
us consider the base case.
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Base case 1. We have to prove that under the hypothesis h:(B n σ) the node n
will be eventually freed. By h, in the state σ0 either n is free, and then the goal is
proved, or n is not free and it is not accessible and the number of grey nodes is null.
Therefore, n is white or black.

• If n is white, (C n σ) holds. The result follows from the statement 3 of lemma
18.

• If n is black, then (F n σ) holds. By statement 5 in lemma 18, we deduce
h2:((F n)U(G n) σ).
Let us do an induction on h2. The induction step is easy.

Base case 2. We have to prove that under the hypothesis h’: (G n σ), even-
tually the node n will be freed. Applying statement 6 in lemma 18, we deduce
h3: ((G n)U(H n) σ).
We do an induction on h3. The induction step is easy.

Base case 3. We have to prove that under the hypothesis h’’: (H n σ),
eventually the node n will be freed. As (H n σ) implies (K n σ), we can
deduce the result from the statement 9 of lemma 18.

This completes the garbage collector certification process.

5 Discussion

Fairness

As far as fairness is concerned, all the statements in lemma 18 have been proved under
the weak fairness condition (called process justice in [13]) expressed by the predicate
fairstr, except statement 6, for which strong fairness is required. As a matter of
fact, a run that loops forever on a state whose measure is null and where the control
is mark or sweep, meets the weak fairness condition since in such a state, no fair
transition is enabled. However, it does not satisfy the liveness property, since in such
a state, certain inaccessible nodes could be black. Strong fairness condition is then
required to ensure that at the end of a cycle of garbage collection, a new cycle will
be processed. Moreover, in the case of our algorithm, strong fairness is equivalent
to requiring transition gc call to be taken infinitely often. Indeed, we have proved
formally that gc call is the only fair transition that can be taken when the measure
is null. Moreover all the non fair transitions leave the measure unchanged. As the
measure becomes null infinitely often and as it remains null until eventually gc call
is taken, gc call is taken infinitely often. One could also notice that once the gc is
called, the other three transitions can occur at most a finite number of times, before
the control returns to the mutator.

Axioms

The whole development contains exactly 3 axioms:
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• the decidability of the equality on the set of nodes,

• the decidability of the equality on the set A on which we define the notion of
cardinal (see section 4.1),

• the decidability of the fact that there exists a node having the color c in m for
all markings m and for all colors c.

The first two hypotheses are required to achieve the proofs in intuitionistic logic and
are satisfied by any “reasonable” set of nodes, such as a finite set or the set of natural
numbers. The third one is used in a proof by cases on whether there exists a grey
node or not. However, since we have established that the number g of grey nodes is
always finite, we could have compared g with 0, and this can be done constructively.

Finite Sets

Our axiomatization of finite sets made it possible not to invoke the extensionality
axiom. Moreover, in [11] the proof of the unicity of the cardinal uses the axiom of
excluded middle whereas we only need the decidability of the equality on the set A
whose elements are being counted. This is not the only advantage of our definition.

Let us recall that the term
(card color c m nb)

expresses that there are nb nodes of color c in marking m. We define:
(card color c0) := (card λc.(c=c0))

This definition is parameterized by a color c0 and is independent of any marking m.
Such a parameterization is rather convenient and is not possible with the definition
of cardinal, as defined in [11], since this notion is expressed by:

(cardinal λn:node.(m n)=c0)

which requires to explicitly refer to a marking m. The “computational” part m and
the logical part “λc.(c=c0)” cannot be separated.

Let us also point out that the conclusion in the type of the second constructor of
card is (card P M2 (nb+1)) whereas, for the predicate cardinal, it is (cardinal
Q∪{a0} (nb+1)). When applying such constructors to a goal, the variables P and M2

can be instantiated easily whereas a term of the form Q∪{a0} can only be unified with
a term of the form Q’∪{a}.

Size, Automatization

The development (without the part related to Linear Temporal Logic), consists of
10000 lines of code shared out among 40 separately-compiled sections. It contains
approximatively 90 definitions and 450 lemmas, a third of which is related to the
safety property, and the rest to the liveness property. Let us point out that this eval-
uation is purely indicative of the proof length since it strongly depends on the proof
development style.
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Certain parts of the proofs have been automatized, using a tactic that implements
a Prolog-like resolution procedure. The drawback is that this hides the trace of the
reasoning (even though it can be retrieved) and above all it slows down the compiling
and the proof replaying, which is a real disadvantage since a slight modification in a
file can require a lot of extra time.

6 Related Work

We have compared in sections 4.1 and 5, our axiomatization of finite sets with that of
Huet and Kahn [11]. In [9] Goulbault-Larrecq proposes another nice axiomatization
of finite sets in Coq, based on trees indexed by binary integers.

As far as mechanically verified garbage collectors are concerned, one of the most re-
cent studies is that of Moreau and Duprat [14]. Their paper describes the verification
of a distributed reference counting algorithm in Coq. No temporal logic is formal-
ized: termination is expressed by the well-foundedness of a “successor” relation on
the states.

Goguen, Brooksby, and Burstall [7] formulate in Coq the incremental tracing pre-
sented in [5]. First, a local presentation of the memory as a labelled pre-graph is
given, then a model of incrementally traced memory is formalized. Considering the
tracing actions between two such pre-graphs as unobservable τ -actions, a behavioral
equivalence between the two models is established. The problem of incremental col-
lecting is not tackled and no liveness property is established. Let us mention that
bisimulations are not specified by means of co-inductive types.

Jackson ([12]) has verified a tricolor mark-and-sweep garbage collection algorithm in
PVS. The algorithm is sequential and not interruptible: once a call to the GC has
been made, this process runs until all the garbage is collected. The proof is much
simpler and as far as the LTL formalization is concerned, executions are classically
represented as functions on the natural numbers.

Russinoff [17] has verified safety and liveness properties of a concurrent garbage col-
lector originally suggested by Ben-Ari [1]. This algorithm is simpler since it only uses
two colors. The proofs are carried out with the Boyer-Moore theorem prover using a
verification system for concurrent programs described in [16].

Havelund and Shankar [10] have verified a safety property of Ben-Ari’s algorithm in
PVS, using a refinement approach. The safety property is formulated as an abstract
algorithm, and the proof is based on refinement mappings. No liveness properties are
considered.

Gonthier proved the safety of a concurrent garbage collector used in Caml-light with
the Larch Prover [8]. The state-transition system involves many transitions and the
safety about 50 invariants. This is due to the fact that the all details of implementa-
tion are considered.
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Finally in [19] Verma, Goubault-Larrecq, Prasad, and Arun-Kumar implement and
certify BDD’s in Coq using reflection. From the proof of correctness of a BDD based
tautology checker, a certified tautology-checker in O’Caml is extracted. Moreover,
the algorithms presented in this work involve a mark-and-sweep garbage collector for
which a safety property is formally established. This amounts to proving that some
well-formedness condition on the current BDD is preserved by a call to the GC. The
GC considered in this paper is sequential and is not incremental. No general temporal
notions are introduced and no liveness considerations are tackled.

7 Conclusion

Proving the correctness of the algorithm we have presented is particularly tricky. The
history of the proofs of the algorithms derived from the seminal work of Dijkstra,
Lamport et al. [5] is recounted in [10] where the many logical traps and flaws in the
paper and pencil proofs are described. Obviously, it is easy to skip reasoning steps in
our proof and even to make errors when specifying the transitions (this is what we
did and discovered later on when trying to prove liveness! Fortunately the mistake
was slight and did not raise major problems in the proofs already done). For these
reasons, a formal mechanized verification was imperative, especially in the context of
software to be embedded on Smart Cards.

First, we were led to design logical tools such as a variant of the axiomatization of
finite sets given in [11] and an embedding of linear temporal logic in the Calculus of
Inductive Constructions [3]. This part of our work is general and therefore is re-usable.

Moreover we have specified the algorithm at an abstract level in order to cover several
possible implementations. Consequently, our work applies to a whole class of concrete
algorithms. This non trivial case study is a good illustration of the feasibility and the
advantages of our methodology for treating elegantly the temporal aspects by means
of inductions or co-inductions on temporal operators. Our approach also makes clear
why and where specific fairness conditions are necessary. We think that this study
can be useful for people interested in certifying garbage collectors and more generally
in temporal reasoning.
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