
Coq and Hardware Verification: A Case Study

Solange Coupet-Grimal and Line Jakubiec*

Laboratoire d'Informatique de Marseille - URA CNRS 1787
39, rue F. Joliot-Curie 13453 Marseille France

e-mail:{Solange.Coupet,Line.Jakubiec}@lim.univ-mrs.fr

A b s t r a c t . We present several approaches to verifying a class of circuits
with the Coq proof-assistant, using the example of a left-to-right com-
parator. The large capacity of expression of the Calculus of Inductive
Constructions allows us to give precise and general specifications. Using
Coq's higher order logic, we state general results useful in establishing
the correctness of the circuits. Finally, exploiting the constructive aspect
of the logic, we can show how a certified circuit can be automatically
synthesized from its specification.

1 Introduction

During the past decade, intensive research has developed in designing mecha-
nized theorem provers, resulting in a great deal of new proof assistants. Hardware
verification was one of the original motivations and main application of this area.
Two of the earliest and most significant achievements were the work of Gordon
using HOL [14, 6] and the work of Hunt [17] using Nqthm [5]. On the one hand,
using general purpose theorem provers to state circuit correctness has several
advantages over ad hoc tools. These include the precision of the specifications,
enhancing the reliability of the verification process, and an increased generality
leading to reusable methodologies and libraries. Now, on the other hand, meeting
the requirements of the hardware verification community has been a stimulat-
ing challenge for logicians, mostly for those working in computer-aided proof-
checking. Thus, despite the fact that existing theorem provers are high-level and
general-purpose and cover fields of application much wider than hardware verifi-
cation, verifying hardware remains a challenging domain of experiences. Among
recent investigations, let us quote the verification with PVS [19] of a part of a
pipelined microprocessor, the AAMP5 [25] and various uses of the prover LP to
verify circuits [2, 24].
In this paper, a case study allows us presenting the capabilities of Coq in veri-
fying and synthesizing hardware.
Coq is a proof tool developed at INRIA-Rocquencourt and ENS-Lyon [9]. It pro-
vides a very rich and expressive typed language and a higher order constructive
logic. Moreover it offers the possibility of extracting automatically functional
programs from the algorithmic content of the proofs.

* This work was supported by the GDR-Programmation; it was partially done during
a six-month visit of Solange Coupet-Grimal at ENS-Lyon, in the Coq group.

126

A lot of significant developments have been performed with Coq. They can
be found in the library of the users' contributions delivered with the Coq re-
lease. However, few investigation has been done to verify circuits. A multiplier
first introduced by M.Gordon in [13] has been proven in [11], later extended
by C. Paulin-Morhing in [23] to a more general proof of this circuit, using a
codification of streams in type theory as infinite objects.[3] is a verification of a
multiplier specified at the bit vector level.
The first part of the research presented here is most similar to the work done
by K. Hanna, N. Daeche and M. Longley with Veritas + [16]. We follow their
approach, as exemplified by a comparator studied in their paper, to specifying
and proving a circuit, by making heavy use of dependent types and higher order
logic. We have produced several reusable Coq modules, providing expressive and
precise specifications as well as general theorems applicable to a whole class of
circuits.
Several other researchers have been investigating the use of dependent types
for reasoning about hardware. For example, interesting results using Nuprl have
been produced [1, 18]. Like Coq, and unlike to Veritas +, Nuprl relies on an in-
tuitionistic logic. Until now, however, the intuitionistic aspect of the underlying
logic has not been exploited (at least, we are not aware of any work in this direc-
tion). For us, filling this gap is worthwhile and is the aim of the second part of
our study. Indeed, working with a constructive logic presents some difficulties,
since it disallows the excluded-middle principle. To begin with, it may require an
effort of the user who is used to classical reasoning. That is the reason invoked
by Hanna for choosing classical logic for Veritas + [16]. But the computational
aspect of the proofs is a valuable asset that !can be used. In our opinion, this
highly compensates the drawbacks, if any, of this kind of logic. In this paper,
we present a methodology for synthesizing a circuit from its specification, using
the Coq program extractor. As an alternative, we also give a methodology, using
the tactic "program" [20], which can be seen as a mid-point between proving
that a circuit is correct with respect to its specification (both being expressed in
the Coq language) and "blindly" extracting the circuit as a ML function from
a proof of a theorem which, roughly, states the existence of an object verifying
the specification. This method consists in giving the prover both the functional
description of the circuit and its specification. Thus, the proof process is guided
by the knowledge of the term extracted from the proof.
The rest of this paper is organized as follows. Section 2 briefly introduces Coq.
Section 3 deals with the description and the verification of the comparator. In
Section 4, we present our two approaches to synthesizing the circuit. We con-
clude with an analysis of our results and of the performances of Coq.

2 A n O v e r v i e w o f C o q

The Coq system is a tactic oriented proof-checker, in the style of LCF [15]. De-
velopments can be split into various parameterized modules to be separately

127

verified. Thus, several developments can share modules that , being compiled
once and for all, are loaded fast.
Coq's language implements a higher order typed lambda-calculus, the Calculus
of Constructions [7, 8], enriched with inductive definitions [22].
Coq's logic is a higher order constructive logic and relies on the propositions-
as-types correspondence. In Coq, a proposition is a type and a proof is a term
inhabiting this type. Such a system provides an elegant unifying framework,
since there is no fundamental difference between proofs and data, nor between
propositions and datatypes. Therefore, proving amounts to type-checking.
However, there are two sorts of types : propositions are of sort Prop and sets are
of sort Set. From a logical point of view, this distinction is not necessary, but it
makes the system less confusing for the user. On the contrary, this distinction is
highly significant when extracting programs from proofs, as we will show in the
following.

N o t a t i o n s .
- (A B) denotes the application of a functional object A to B.
- [x : A]B denotes the abstraction of B with respect to a variable x of type A,
(usually writ ten)~x E A.B).
- (x : A) B as a term of type Set, denotes the cartesian product I] B. As a

xEA
proposition, it corresponds to Vx E A.B. Moreover, if x does not occur in B,
A ~ B is a shorter notation for the type of functions from A to B, or for a
logical implication, depending on the sorts of A and B.

Induc t io n and Recurs ion.
Selected parts of Coq specifications are depicted in Fig.1. The section depen-
dent_lists is parameterized with respect to a term A of sort Set.
In this section is given a typical inductive definition involving dependent types,
namely the definition of list. For each term n of type nat, (list n) is a type of sort
Set, depending on the term n. (list n) denotes the type of the lists of elements
of A whose length is n. This type is defined by means of two constructors, nil
and cons. The type of cons expresses that it is a function which, given a natural
number n, an element of A, and a length-n list, returns a length-(n q- 1) list.
Moreover, Coq automatically generates the induction principle corresponding to
the type list.
When the section is closed, the parameter A is discharged in the sense that all
the terms depending on A are abstracted with respect to A. Outside the section,
the type of polymorphic length-n lists will be)~A : Set (list A n) .
Numerals are defined in the section numerals which requires the module depen-
dent_lists. The word Local introduces local definitions of the current section.
In the Coq syntax, given a set A and a predicate P on A, {x : AI(P x)} denotes
the subtype of A corresponding to the elements for which the property P holds.
Terms of this type are pairs consisting of an element x of A and a proof of (P x).
The function Inj, taking such a pair as argument, erases its logical component
and returns x. This function is parameterized with respect to A and P. For ex-

128

Section dependent_lists .
Variable A:Set.
Inductive list :hat->Set:= nil:(list 0) I

cons:(n:nat)A->(list n)->(list

End dependent_lists.

Section numerals.
Require dependent_lists.

Definition BT:={b:natl(it 0 b)}.
Variable BASE:BT.
Definition base:=(Inj nat [b:nat](it 0 b) BASE).
Definition digit:={x:natl(it x base)}.
Definition val:digit->nat:=(Inj nat [x:nat](it x base)).
Definition num:=(list digit).
Local Cons:=(cons digit).
Local Nil:=(nil digit).

Fixpoint Val[n:nat;X:(num n)]:nat:=<[m:nat]nat>Case X of
(*X=Nil*) 0
(*X=(Cons p d D)*) [p:nat] [d:digit] [D: (hum p)]

(plus (mult (val d) (exp base p))

End numerals.

(S n)) .

(Val p D)) end.

Fig. 1. "DependentJists" and "Numerals" Sections

ample, the variable B A S E is a pair of the form (base, p) where base is a natm:al
number and p is a proof of base > 0. The function Inj, taking as arguments the
set nat, the predicate Ab.b > 0, and the pair BASE, returns base.
We use subtypes to give precise specifications for systems of numeration such as
base or digit definitions. For example, the type digit describes the set of natural
numbers less than the base. The value (val d) of a digit d is the natural number
obtained by keeping only the first component of its specification. A numeral is
a list of digits, the length of which is specified.
On each concrete type inductively specified by constructors, it is possible to de-
fine functions recursively, by case analysis. The function Val is defined in such
a way. Taking as arguments a natural number n and a length-n numeral X, it
returns a natural number representing its value.
The expressions (*X=Nil*) and (*X=(Cons p d D)*) are just comments. The last
line of the definition means that if X is the list whose length is p + 1, whose head
is d and whose tail is D then the function returns (val d) * base p + (Val p D)
(note the recursive call in this last expression).

129

After this short presentation, we can move to the description and the verification
of the comparator.

3 V e r i f i c a t i o n

The particular example we choose is given in [16] as an illustration of an elegant
and general methodology for specifying and proving iterative structures. As a
first stage, it appeared to be an excellent benchmark in order to s tudy the
feasibility in Coq of already tested methods. But Coq's particular features lead
us towards more powerful original approaches.

O'

Yn-1 Yn-2 YO

Fig. 2. A Comparator

The comparator (Fig.2) is a hardware device that accepts two numerals and
determines their relative magnitude. It is composed of identical cells intercon-
nected by a carry wire accepting comparison data in a 3-valued type. Each cell,
from left to right, outputs a value that depends on the incoming carry and on
the result of the comparison of two digit inputs.

3.1 Specifications

First of all, at the top level of genericity, there is the type list of dependent
polymorphic lists presented in the previous section. It allows us to get high-level
abstract specifications, more general than those in [16]. This type is particularly
suitable in the framework of hardware specification where linear structures are
prevalent. Numerals for example have been defined as particular lists. We have
thus given in the dependent_lists section some additional definitions and prop-
erties that are not displayed on Fig.1 and that can be reused for any instance
of lists. At this point, we do not go into more details about the contents of this
module. A generic definition for connections of identical four ports cells is given
in the linear_structures section (Fig. 3). It is parameterized with respect to the
types A, B, C of the ports and to the relation cell implemented by the cells. Fol-
lowing the same idea as for the numerals, the type of a connection depends on a

t30

Section linear_structures.

Require Dependent_lists.

Variables A,B,C:Set.
Variable cell:A->B->C->A->Prop.

Inductive connection :(n:nat)A->(list B n)->(list C n)->A->Prop:=
C_O:(a:A)(connection 0 a (nil B) (nil C) a) l
C_Sn:(n:nat)(a,al,a':A)(b:B)(c:C)(ib:(list B n))(ic:(list C n))

(cell a b c al)->
(connection nal ib ic a')->

(connection (S n) a (cons B n bib) (cons C n cic) a').

End linear_structures.

Fig. 3. The "linear_structures" Section

natural number n representing the number of cells involved in the device. It also
takes as arguments the input and the output carries of type A and two length-n
lists of elements in A and B respectively. The term connection is inductively
defined, in a typed Prolog style. With this analogy, the type of the constructors
corresponds to the body of two Prolog rules (with reversed arrows) labeled C_O
and C_Sn. The type of C_O states that , for all ~ in A, a connection with zero cells
is just a wire carrying a. In this case, the two lists are the empty lists (nil B) and
(nil C). The type of C_Sn states that any length-(n + 1) connection is obtained
from a length-n connection whose port al is connected to an additional cell.
Figure 4 partially depicts a file in which various notions for comparing naturM

Inductive order:Set:=L:orderIE:orderIG:order.

Definition comparison:=[vl,v2:nat]<order> Case (Lt_eq_Gt vl v2) of
[_ : (l t v l v2)] L
[_: vl=v2] E
[_:(gtvl v2)] G end.

Fig. 4. A Part of the "Compare_nat" Module

numbers are given. The set order = {L, E, G} is denoted by the enumerated
type order. The function comparison returns the value L, E or G depending on
the relative magnitude of the natural numbers v l and v2 it takes as arguments.
This function is defined by case analysis on the term (Lt_eq_Gt vl v2) which has
been built before. This term is a proof of (vl < v2) or (vl = v2) or (vl > v2).

131

The second line of the definition of comparison must be interpreted by "given a
proof of (vl < v2), return L". After that , several properties of comparison are
established that are not shown on the figure.
All these tools having been defined, we are now able to describe the implemen-
tation and the expected behavior of the device. The section describing the com-

Section comparator.
(*system of numeration*)
Variable BASE: BT.
Local Digit:=(digit BASE).
Local ValB:=(Val BASE).
Local Num:=(num BASE).

(*semantics of the cells*)
Local f_cell:order->Digit->Digit->order: =
[o,x,y]<order>Case o of
(*o=L*) L
(*o=E*) (comparison (valB x) (valB y))

(*o=G*) G end.

Definition cell:order->Digit->Digit->order->Prop: =
[o, x, y, o'] o'=(f_cell o x y).

(*structure of the comparator*)

Local Connection:=(connection order Digit Digit cell).
Local Comparator:=[n:nat][o:order][X,Y:(Num n)](Connection n E X Y o).

(*behavior of the comparator*)

Local Specif:(n:nat)(inf n)->(inf n)->order:=[n,X,Y]
(comparison (val_inf n X) (val_inf n Y)).

Fig. 5. Implementation and Behavior of the Comparator

parator (Fig. 5) requires the section numerals. The first argument of the terms
digit, n u m and Val is instantiated with the current base, given as a parameter
B A S E . The functional specification of a cell is given by the function]_cell,
taking three arguments o, x, and y and defined by case analysis on the value of
o. The local notion of connection is specified by the general term connection in
which the types of the ports are A = order and B = C -- Digit . Let us point out
that (in] n) denotes the interval [0, n[and that val_in] is the natural injection
of type (n : na t) (in] n) -~ nat. It is worth noting that the circuit has only two
inputs (the numerals to be compared) since the carry input value is constrained
to be E.

132

Local f_circ:(n:nat)order->(Num n)->(Numn)->order:=

[n,o,X,Y]<order>Case o of

(*o=L*) L

(*o=E*) (comparison (ValB n X) (ValB n Y))

(*o=G*) G end.

Lemma general_correct:(n:nat)(X,Y:(Num n)) (o , o ' : o r d e r)
(Connection n o X Y o')->o'=(f_circ n o X Y).

Induction i. (*Induction on (Connection n o X Y o')*)

Clear H o' o Y X n. (*Erasing the useless hypothesis*)

Intros o;Case o;Simpl;Auto. (*base case, case analysis on o*)

Apply sym_equal;Auto.

Clear H o' o Y X n.

Intros n o ol o' x y X Y H_cell H_n H_rec.

Inversion_clear H_cell.

Rewrite -> H_rec;Rewrite -> H.

Cut (eq ? o o);Auto.

Pattern 2 3 o ;Case o;Intros e;Rewrite -> e;Unfold f_cell ;

Unfold f_circ ;Auto.

(Cut (eq ? (comparison (valB x) (valB y))

(comparison (valB x) (valB y)));Auto).

Pattern 2 3 (comparison (valB x) (valB y)) }

Case (comparison (valB x) (valB y));Intros C;Apply sym_equal;

Unfold ValB ;Unfold Digit ;Auto.

Save.

Lemma correctness:(n:nat)(X,Y:(Num n)) (o :order)
(Comparator n o X Y)->
o=(Specif (exp base n) (Val_bound n X) (Val_bound n Y)).

(Unfold Comparator ;Unfold Specif).

Intros n X Y o H.Rewrite -> (general_correct n X Y E o H).

Auto. (*automated resolution of the current goal*)

Save.

Fig. 6. Proofs of Correctness

3.2 P r o v i n g t h e c o r r e c t n e s s o f t h e c i rcu i t

The theorem correctness in Fig.6 establishes that the implementation is correct
with respect to the intended behavior and can be informally stated as follows :

133

For all n in nat, for all o in order , for all length-n numerals X and Y , if (com-
parator n o X Y) then o = (Spec i f base n X Y) where X is the value of the
numeral X considered as a natural number o/ the interval [0, basen[.

However, because of the constant value of the input carry, the proof requires a
generalization. Therefore a lemma general_correct is first established which sets
forth the correct behavior of a connection, whatever value is given to the input
carry. It is proven by induction on (Connection n o X Y o'). Fig.6 gives an idea
of the length and the complexity of the proofs that have not to be read in detail.

4 Towards Synthesis

4.1 The Factor izat ion T h e o r e m

A more general approach oriented to verification as well to synthesis of 1-
dimension ari thmetic circuits is given in [16]. One can observe that , given a
base b, each cell of the compara tor implements a modulo-b version of the overall
structure. This is also the case of right-to-left comparators, incrementors, cir-
cuits performing the multiplication of a numeral by a given natural number d,
and so forth. Each cell of the latter, for example, performs the multiplication by
d of a digit.
Let R be a relation of type: (n : nat)A -+ (i n f n) -+ (i n f n) -~ A --~ Prop.
We say tha t R is proper if

Vn • nat Va • A (R 1 a 0 0 a).

We say tha t R is factorizable if the relation holds on two natural numbers x and
x p as soon as it holds on the quotients and the remainders of the division of x
and x p by any natural number n. More accurately, let n, m, x, x ~ be natural
numbers such that:

x = n q + r ; x ' = n q ' + r ' ; x , x ' •[O, ran[; q,q' •[O, m [; r , r ' • [0 , n[

R is factorizable if

Va, a l ,a ' e A (R m a q q ' al) --~ (R n a l r r' a') --~ (R m n a x x ' a').

The approaches presented in this section and in the following one apply to all
linear s t ructures whose cells implement such proper and factorizable ari thmetic
relation. The theorem of factorization states forth tha t for every relation R tha t
is proper and factorizabIe, (R b n) is implemented by a connection of n cells im-
plementing (R b) :

For all proper and factorizable relation R, for all natural number n, for all length-
n numerals X and Y, for all a and a' in A, if (Connection n a X Y a') then
(R b ~ a X Y at).

134

The theorem is easily proven by induction on (Connection n a X Y a'). The
proof of the comparator boils down to proving that the corresponding relation
is proper and factorizable. This is done by case analysis on the variables a, a l
and a ~ occurring in the definition of factorizable and by using properties of the
function comparison.
Indeed, this method is more general than that given in the previous section.
However, although it is synthesis oriented, we have not really synthesized the
circuit. We have established that a given linear structure satisfies a specification,
but we have not obtained this structure from the specification. We show, in the
following subsection, how to take advantage of the Coq proof extractor in an
effective synthesis process.

4.2 Extrac t ing the Circuit from its Specif ication

So far, we have used Coq as a powerful and expressive proof-checker. We intend
now to take advantage of the constructive aspect of its logic.

O u t l i n e o f t h e C o q Extract ion Process Due to the Curry-Howard isomor-
phism, in Coq, proofs are),-terms. They are thus objects of the underlying lan-
guage, that can be displayed on the screen, stored, reused, exploited in various
ways. Moreover, as),-terms, proofs are nothing but functional programs.
In intuitionistic logic, a proof of a proposition of the form

V x E A 3 y E B (P x y)

necessarily contains an algorithm computing a function f of type A --+ B and
a logical part certifying that for all x in A and y in B, if y = (f x) then the
proposition (P x y) is verified. The Coq system involves a mechanism that is
able to extract from such a proof a ML program computing the function f . By
construction, this program is correct with respect to its specification P.
The distinction between the computational part and the logical part of a proof
relies on the sorts, namely Prop and Set, in which the types are declared. A term
is called informative if its type is of sort Set and non-informative if its type is
of sort Prop. Analogously to program comments that are not taken into account
by compilers, non-informative parts of the proof are erased during the extraction
process. Moreover, all terms resulting from an extraction are terms in the system
F~ [12]. Informally, this means that the dependencies, if any, between types and
terms, are lost during the extraction. For example, the term extracted from a
"dependent" length-n list, as defined in this paper, is a usual list l, but with an
additional parameter n of type nat. But l and n are not connected any more.
Of course, the user gives the specifications and develops his proof in accordance
to the term he wishes to obtain after extraction. As we mentioned in the section
2, the sorts Prop and Set are perfectly symmetrical and interchangeable. Let us
outline, with an example, how the extraction works.
Let P be a predicate on the set of natural numbers. The proposition

3x E nat (P x)

135

can be expressed in any of the three following terms T1, T2 or T3:

- T1 = (ex nat P) of sort Prop, with P : nat --+ Prop

- T2 -- {x : nat[(P x)} of sort Set, with P : nat ~ Prop

- T3 = {x : nat & (P x)} of sort Set, with P : nat ~ Set.

Now, what is the result of the extraction process on terms t l : T1, t2 : T2 and
t3 :T3?

- t l being non informative, it is erased by the extractor.
- As mentioned in section 2, t2 is a pair consisting of a "witness" n of type

nat and a non-informative proof of (P n). The extracted te rm is n.
- For t3, the result of the extraction is a pair (n, b) where b comes from the

proof of (P n) which, this time, is informative. For example, if (P x) is a
disjunction, b is the boolean true if the left part of the disjunction has been
proven and fa lse in the other case.

This is a very short and informal presentation. For more details, one can refer
to [21].

S y n t h e s i z i n g t h e C o m p a r a t o r The extraction principles presented in the
previous pa ragraph leads us to a new version of the factorization theorem, tha t
can be s ta ted as follows:

For all proper and factorizable relation R, for all natural number n, for all length-
n numerals X and Y, for all a in A, there exists a' in A such that (R b '~ a X Y a').

It is organized so that a function f will be extracted from its proof. This func-
tion will take as arguments an element a of type A, a natural number n and two
length-n numerals X and Y. It will return an element a ~ of type A. The function
f is certified to be such that (R b '~ a X Y al). At this point, it is necessary to
give a functional specification of the relation R, tha t is to say to state which are
the input ports and the output ports of a circuit implementing R. This is done
by defining the relation R as follows:

(R n a x y a ~) i f a n d o n l y i f a ' = (F R n a x y)
where F R is of type:

F R : (n : nat)A --~ (in f n) -~ (i n f n) -+ A.

The function f will be defined by an algorithm which depends on the way the
proof is developed. Here, we make an induction on n.

- If n = 0, we give the witness a t -- a and prove tha t (R 1 a 0 0 a) using the
fact tha t R is proper.

136

- Let us now consider a an element of type A, n a natural number and two
length-(n + 1) numerals X = (Cons d D) and Y = (Cons d' D'). Let
al be (FR b a d d'). By induction hypothesis, there exists a' such that
(R b ~ al D D' a'). The relation being factorizable we can deduce that

(R b (n+l) a (Cons d D) (Cons d' D') a').

The type list extracted from the type (n : nat)(list A n) is nearly the usual
inductively defined type for polymorphic lists (the constructors take an addi-
tional argument of type nat). From FR a function f r of type nat -~ A --+ nat --+
nat --+ A is obtained. Note that there are no dependencies between types and
terms any longer and that the logical content of (inf n) has disappeared. The
extraction process, on the proof of the theorem, results in the function f of type
nat --~ A --+ list --+ list -+ A defined by

- (f O a D D ') = a
- (f (n + 1) a (Cons d D) (Cons d' D')) = (f n al D D')

w h e r e a l = (f r b a d d')

From the extracted term, a ML program can be automatically generated. It
produces the expected result, when taking as inputs a natural number n and
two length-n numerals X and Y. If one of the numerals is shorter than n, an
exception is returned. Numerals longer than n are truncated.
Synthesizing the comparator is now extremely simple. It is sufficient to apply
this theorem with the particular relation cell implemented by the cells of the
comparator and defined in Fig.5.

4.3 A M i x e d A p p r o a c h u s i n g t h e Tact ic " P r o g r a m "

In the previous section, we showed how the user develops his proof according to
the program he has in mind and he wants to synthesize. The Program tactic
just implements the idea that the program to be extracted contains informatibn
about the s tructure of the proof and thus that it can be used as a guide during
the proof process. This methodology can be viewed as dual to the extraction.
Let us consider the function Impl defined by :

(Impl 0 a X Y) = a

and

(Impl (n + 1) a X Y) -- (Impl n (FR b a (Hd X) (Hd Y)) (Tl X) (T l Y))

In these equations Hd and Tl denote respectively the functions head and tail.
This program is associated with the theorem

For all proper and factorizable relation R, for all natural number n, for all length-
n numerals X and Y, for all a in A, there exists a' in A such that (R b n a X Y a')

137

to be proven by the command Realizer. Then the tactic Program_aU gen-
erates sequences of introduction, application and elimination tactics on every
subgoal depending on the syntax of the program Impl. In particular, the induc-
tion scheme is found out by the system. Although the proof process is not fully
automated, it is highly simplified.

5 Summary and Conclusions

Our aim in this paper was to demonstrate the capabilities of Coq in the field of
hardware verification. We have given a general and illustrated presentation of the
prover and we have investigated how to reap the greatest benefit of its particular
features not only for proving circuit correctness but also for effectively synthe-
sizing devices at the algorithmic level. Our results apply to arithmetic linear
structures the cells of which implement proper and factorizable relations (in-
crementor, comparators, multipliers, . . .) . To sum up, precise and general spec-
ifications have been expressed in a natural way. Several reusable modules have
been developed (for handling lists, numerals, repetitive arithmetic structures)
in which generic properties and theorems have been proven. Several approaches
have been investigated (verification of a particular circuit, verification of a class
of circuits, synthesis of a class of circuits, intermediate approach). The synthesis
methodology relies on the constructive aspect of the logic and, in practice, on the
Coq extractor. A functional description of an implementation is automatically
extracted from a proof of a statement of the form

Vy E A 3x • B (P x y).

P is a relation between the input x and the output y and represents the expected
behavior (specification) of the circuit. In a third intermediate approach, specifi-
cation and implementation are both given to the prover. As the proof process is
guided by the syntactical structure of the implementation, it is more automated
and thus easier to use.
Relying on the Curry-Howard isomorphism, Coq provides an elegant unifying
framework for specifying and proving. Proof-checking and type-checking are the
same process (in PVS for example a type checking step must precede the classical
proof process). Let us also mention that, unlike in Nuprl, type-checking in Coq
is decidable. Undoubtedly, Coq is a powerful tool, with advanced features, the
most futuristic of them being the synthesis of certified programs. The drawback,
in our point of view, is the lack of user friendliness and automation. Exploiting
all Coq subtleties still requires skill and expertise.
However, various works are now in progress that will make Coq much easier to
use in the future. A nice interface, CtCoq, is already available [4]. Moreover,
a tool is being developed that, from the script of a Coq proof, automatically
generates a text in natural mathematical language [10]. It will be of interest
for analyzing, simplifying, and debugging proofs. New approaches are also being
studied for improving the extraction process and the modularity. Finally, arith-
metic decision procedures are about to be integrated in the system.

138

6 Acknowledgments

We would like to thank all the members of the Coq group at ENS- Lyon and
INRIA-Rocquencourt for their stimulating seminar. We are particularly grateful
to Cristina Cornes, Catherine Parent and Christine Paulin-Mohring for helpful
discussions. Our thanks go also to the reviewers for their constructive comments.

References

1. M. Aagaard and M. Leeser. A Methodology for Reusable Hardware Proofs. In
International Workshop on Higher Order Logic Theorem Proving and its Applica-
tions, 1992.

2. M. Allemand. Moddlisation Formelle et Preuve de Circuits avec LP. PhD thesis,
Universit6 de Provence, July 1995.

3. L. Arditi. Formal Verification of Microprocessors : a First Experiment with the
Coq Proof Assistant. Research Report I3S/Universit6 de Nice - Sophia Antipolis.
RR-96-31, 1996.

4. J. Bertot and Y. Bertot. Ctcoq : a System Presentation. In CADE-13, 1996.
5. R. S. Boyer and J. S. Moore. A computational logic handbook. Academic Press

Inc., 1988.
6. A. Camilleri, M. Gordon, and T. Melham. Hardware Verification Using Higher

Order Logic. In From HDL Descriptions to Guaranteed Correct Circuit Designs.
Elsevier Scientific Publishers, 1987.

7. T. Coquand. Une Thdorie des Constructions. PhD thesis, Universit~ Paris 7,
Janvier 1989.

8. T. Coquand and G. Huet. Constructions : A Higher Order Proof System For
Mechanizing Mathematics. In EUROCAL'85, number 203 in LNCS. Springer-
Verlag, 1985.

9. C. Cornes, J. Courant, J.-C. Filligtre, G. Huet, P. Manoury, C. Mufioz, C. Murthy,
C. Parent, C. Paulin-Mohring, A. Sai~i, and W. Benjamin. The Coq Proof Assis-
tant Reference Manual. Technical report, INRIA-Rocquencourt, CNRS-ENS Lypn,
Feb. 1996.

10. Y. Coscoy, G. Kahn, and L. Th6ry. Extracting Text from Proof. In Typed Lambda-
Calculi and Applications, number 905 in LNCS. Springer-Verlag, April 1995.

11. S. Coupet-Grimal and L. Jakubiec. V6rification FormeUe de Circuits avec COQ.
In Journdes du GDR Programmation, Sept. 1994.

12. J.-Y. Girard. The System F of Variable Types, Fifteen Years Later. Theoretical
Computer Science 45, 1986.

13. M. Gordon. LCF-LSM. Technical Report 41, University of Cambridge, 1984.
14. M. Gordon. Why Higher-Order Logic is a Good Formalism for Specifying and Ver-

ifying Hardware. Technical Report 77, University of Cambridge Computer Labo-
ratory, 1986. edited by G.Milne and P. A. Subrahmanyam, North Holland.

15. M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF : A Mechanized Logic
of Computation, volume 78 of LNCS. Sringer-Verlag, Department of Computer
Science, University of Edinburgh, 1979.

16. F. Hanna, N. Daeche, and M. Longley. Specification and Verification Using De-
pendent Types. IEEE Transactions on Software Engineering, 16(9):949-964, Sept.
1990.

139

17. W. A. Hunt. Microprocessor Design Verification. Journal of Automated Reason-
ning, 5(4):429-460, 1989.

18. M. Leeser. Using Nuprl for the Verification and Synthesis of Hardware. In C. A. 1%.
Hoare and M. J. C. Gordon, editors, Mechanized Reasoning and Hardware Design,
International Series on Computer Science. Prentice Hall, 1992.

19. S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial on Using PVS for
Hardware Verification. In Pnd International Conference on Theorem Provers in
Circuit Design, number 901 in LNCS, pages 258-279. Springer Verlag, Sept. 1994.

20. C. Parent. Synth~se de Preuves de Programmes dans le Catcul des Constructions
Inductives. PhD thesis, Ecole Normale Sup~rieure de Lyon, Janvier 1995.

21. C. Paulin. Extraction de Programmes dans Coq. PhD thesis, Universit~ Paris 7,
Janvier 1989.

22. C. Paulin-Mohring. Inductive Definitions in the System Coq: Rules and Properties.
Research Report 92-49, Ecole Normale Sup~rieure de Lyon, 1992.

23. C. Paulin-Mohring. Circuits as Streams in Coq. Verification of a Sequential Mul-
tiplier. Basic Research Action "Types", Juillet 1995.

24. J. B. Saxe, S. J. Garland, J. V. Guttag, and J. J. Horning. Using Transformations
and Verification in Circuit Design. Formal Methods in System Design, (3):181-209,
Dec. 1993.

25. M. K. Srivas and S. P. Miller. Applying Formal Verification to a Commercial Mi-
croprocessor. IFIP International Conference on Computer Hardware Description
Languages, Aug. 1995.

