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A b s t r a c t .  We present several approaches to verifying a class of circuits 
with the Coq proof-assistant, using the example of a left-to-right com- 
parator. The large capacity of expression of the Calculus of Inductive 
Constructions allows us to give precise and general specifications. Using 
Coq's higher order logic, we state general results useful in establishing 
the correctness of the circuits. Finally, exploiting the constructive aspect 
of the logic, we can show how a certified circuit can be automatically 
synthesized from its specification. 

1 Introduction 

During the past decade, intensive research has developed in designing mecha- 
nized theorem provers, resulting in a great deal of new proof assistants. Hardware 
verification was one of the original motivations and main application of this area. 
Two of the earliest and most significant achievements were the work of Gordon 
using HOL [14, 6] and the work of Hunt [17] using Nqthm [5]. On the one hand, 
using general purpose theorem provers to state circuit correctness has several 
advantages over ad hoc tools. These include the precision of the specifications, 
enhancing the reliability of the verification process, and an increased generality 
leading to reusable methodologies and libraries. Now, on the other hand, meeting 
the requirements of the hardware verification community has been a stimulat- 
ing challenge for logicians, mostly for those working in computer-aided proof- 
checking. Thus, despite the fact that  existing theorem provers are high-level and 
general-purpose and cover fields of application much wider than hardware verifi- 
cation, verifying hardware remains a challenging domain of experiences. Among 
recent investigations, let us quote the verification with PVS [19] of a part  of a 
pipelined microprocessor, the AAMP5 [25] and various uses of the prover LP to 
verify circuits [2, 24]. 
In this paper, a case study allows us presenting the capabilities of Coq in veri- 
fying and synthesizing hardware. 
Coq is a proof tool developed at INRIA-Rocquencourt and ENS-Lyon [9]. It pro- 
vides a very rich and expressive typed language and a higher order constructive 
logic. Moreover it offers the possibility of extracting automatically functional 
programs from the algorithmic content of the proofs. 

* This work was supported by the GDR-Programmation; it was partially done during 
a six-month visit of Solange Coupet-Grimal at ENS-Lyon, in the Coq group. 
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A lot of significant developments have been performed with Coq. They can 
be found in the library of the users' contributions delivered with the Coq re- 
lease. However, few investigation has been done to verify circuits. A multiplier 
first introduced by M.Gordon in [13] has been proven in [11], later extended 
by C. Paulin-Morhing in [23] to a more general proof of this circuit, using a 
codification of streams in type theory as infinite objects.[3] is a verification of a 
multiplier specified at the bit vector level. 
The first part of the research presented here is most similar to the work done 
by K. Hanna, N. Daeche and M. Longley with Veritas + [16]. We follow their 
approach, as exemplified by a comparator studied in their paper, to specifying 
and proving a circuit, by making heavy use of dependent types and higher order 
logic. We have produced several reusable Coq modules, providing expressive and 
precise specifications as well as general theorems applicable to a whole class of 
circuits. 
Several other researchers have been investigating the use of dependent types 
for reasoning about hardware. For example, interesting results using Nuprl have 
been produced [1, 18]. Like Coq, and unlike to Veritas +, Nuprl relies on an in- 
tuitionistic logic. Until now, however, the intuitionistic aspect of the underlying 
logic has not been exploited (at least, we are not aware of any work in this direc- 
tion). For us, filling this gap is worthwhile and is the aim of the second part of 
our study. Indeed, working with a constructive logic presents some difficulties, 
since it disallows the excluded-middle principle. To begin with, it may require an 
effort of the user who is used to classical reasoning. That is the reason invoked 
by Hanna for choosing classical logic for Veritas + [16]. But the computational 
aspect of the proofs is a valuable asset that !can be used. In our opinion, this 
highly compensates the drawbacks, if any, of this kind of logic. In this paper, 
we present a methodology for synthesizing a circuit from its specification, using 
the Coq program extractor. As an alternative, we also give a methodology, using 
the tactic "program" [20], which can be seen as a mid-point between proving 
that a circuit is correct with respect to its specification (both being expressed in 
the Coq language) and "blindly" extracting the circuit as a ML function from 
a proof of a theorem which, roughly, states the existence of an object verifying 
the specification. This method consists in giving the prover both the functional 
description of the circuit and its specification. Thus, the proof process is guided 
by the knowledge of the term extracted from the proof. 
The rest of this paper is organized as follows. Section 2 briefly introduces Coq. 
Section 3 deals with the description and the verification of the comparator. In 
Section 4, we present our two approaches to synthesizing the circuit. We con- 
clude with an analysis of our results and of the performances of Coq. 

2 A n  O v e r v i e w  o f  C o q  

The Coq system is a tactic oriented proof-checker, in the style of LCF [15]. De- 
velopments can be split into various parameterized modules to be separately 
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verified. Thus, several developments can share modules that ,  being compiled 
once and for all, are loaded fast. 
Coq's language implements a higher order typed lambda-calculus, the Calculus 
of Constructions [7, 8], enriched with inductive definitions [22]. 
Coq's logic is a higher order constructive logic and relies on the propositions- 
as-types correspondence. In Coq, a proposition is a type and a proof is a term 
inhabiting this type. Such a system provides an elegant unifying framework, 
since there is no fundamental difference between proofs and data, nor between 
propositions and datatypes. Therefore, proving amounts to type-checking. 
However, there are two sorts of types : propositions are of sort Prop and sets are 
of sort Set. From a logical point of view, this distinction is not necessary, but it 
makes the system less confusing for the user. On the contrary, this distinction is 
highly significant when extracting programs from proofs, as we will show in the 
following. 

N o t a t i o n s .  
- (A B) denotes the application of a functional object A to B. 
- [x : A]B denotes the abstraction of B with respect to a variable x of type A, 
(usually writ ten )~x E A.B).  
- (x : A ) B  as a term of type Set, denotes the cartesian product  I ]  B. As a 

xEA 
proposition, it corresponds to Vx E A.B. Moreover, if x does not occur in B, 
A ~ B is a shorter notation for the type of functions from A to B, or for a 
logical implication, depending on the sorts of A and B. 

Induc t io n  and Recurs ion.  
Selected parts  of Coq specifications are depicted in Fig.1. The section depen- 
dent_lists is parameterized with respect to a term A of sort Set. 
In this section is given a typical inductive definition involving dependent types, 
namely the definition of list. For each term n of type nat, (list n) is a type of sort 
Set, depending on the term n. (list n) denotes the type of the lists of elements 
of A whose length is n. This type is defined by means of two constructors, nil 
and cons. The  type of cons expresses that  it is a function which, given a natural 
number n, an element of A, and a length-n list, returns a length-(n q- 1) list. 
Moreover, Coq automatically generates the induction principle corresponding to 
the type list. 
When the section is closed, the parameter A is discharged in the sense that  all 
the terms depending on A are abstracted with respect to A. Outside the section, 
the type of polymorphic length-n lists will be )~A : Set (list A n ) .  
Numerals are defined in the section numerals which requires the module depen- 
dent_lists. The word Local introduces local definitions of the current section. 
In the Coq syntax, given a set A and a predicate P on A, {x : AI(P x)} denotes 
the subtype of A corresponding to the elements for which the property P holds. 
Terms of this type are pairs consisting of an element x of A and a proof of (P  x). 
The function Inj, taking such a pair as argument, erases its logical component 
and returns x. This function is parameterized with respect to A and P.  For ex- 
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Section dependent_lists . 
Variable A:Set. 
Inductive list :hat->Set:= nil:(list 0) I 

cons:(n:nat)A->(list n)->(list 

End dependent_lists. 

Section numerals. 
Require dependent_lists. 

Definition BT:={b:natl(it 0 b)}. 
Variable BASE:BT. 
Definition base:=(Inj nat [b:nat](it 0 b) BASE). 
Definition digit:={x:natl(it x base)}. 
Definition val:digit->nat:=(Inj nat [x:nat](it x base)). 
Definition num:=(list digit). 
Local Cons:=(cons digit). 
Local Nil:=(nil digit). 

Fixpoint Val[n:nat;X:(num n)]:nat:=<[m:nat]nat>Case X of 
(*X=Nil*) 0 
(*X=(Cons p d D)*) [p:nat] [d:digit] [D: (hum p)] 

(plus (mult (val d) (exp base p)) 

End numerals. 

(S n) ) .  

(Val p D)) end. 

Fig. 1. "DependentJists" and "Numerals" Sections 

ample, the variable B A S E  is a pair of the form (base, p) where base is a natm:al 
number and p is a proof of base > 0. The function Inj,  taking as arguments the 
set nat, the predicate Ab.b > 0, and the pair BASE,  returns base. 
We use subtypes to give precise specifications for systems of numeration such as 
base or digit definitions. For example, the type digit describes the set of natural 
numbers less than the base. The value (val d) of a digit d is the natural  number 
obtained by keeping only the first component of its specification. A numeral is 
a list of digits, the length of which is specified. 
On each concrete type inductively specified by constructors, it is possible to de- 
fine functions recursively, by case analysis. The function Val is defined in such 
a way. Taking as arguments a natural number n and a length-n numeral X,  it 
returns a natural  number representing its value. 
The expressions (*X=Nil*) and (*X=(Cons p d D)*) are just comments. The last 
line of the definition means that  if X is the list whose length is p +  1, whose head 
is d and whose tail is D then the function returns (val d) * base p + (Val p D) 
(note the recursive call in this last expression). 
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After this short presentation, we can move to the description and the verification 
of the comparator.  

3 V e r i f i c a t i o n  

The particular example we choose is given in [16] as an illustration of an elegant 
and general methodology for specifying and proving iterative structures. As a 
first stage, it appeared to be an excellent benchmark in order to s tudy the 
feasibility in Coq of already tested methods. But Coq's particular features lead 
us towards more powerful original approaches. 

O' 

Yn-1 Yn-2 YO 

Fig. 2. A Comparator 

The comparator  (Fig.2) is a hardware device that  accepts two numerals and 
determines their relative magnitude. It is composed of identical cells intercon- 
nected by a carry wire accepting comparison data in a 3-valued type. Each cell, 
from left to right, outputs a value that  depends on the incoming carry and on 
the result of the comparison of two digit inputs. 

3.1 Specifications 

First of all, at the top level of genericity, there is the type list of dependent 
polymorphic lists presented in the previous section. It allows us to get high-level 
abstract specifications, more general than those in [16]. This type is particularly 
suitable in the framework of hardware specification where linear structures are 
prevalent. Numerals for example have been defined as particular lists. We have 
thus given in the dependent_lists section some additional definitions and prop- 
erties that  are not displayed on Fig.1 and that  can be reused for any instance 
of lists. At this point, we do not go into more details about the contents of this 
module. A generic definition for connections of identical four ports cells is given 
in the linear_structures section (Fig. 3). It is parameterized with respect to the 
types A, B, C of the ports and to the relation cell implemented by the cells. Fol- 
lowing the same idea as for the numerals, the type of a connection depends on a 
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Section linear_structures. 

Require Dependent_lists. 

Variables A,B,C:Set. 
Variable cell:A->B->C->A->Prop. 

Inductive connection :(n:nat)A->(list B n)->(list C n)->A->Prop:= 
C_O:(a:A)(connection 0 a (nil B) (nil C) a) l 
C_Sn:(n:nat)(a,al,a':A)(b:B)(c:C)(ib:(list B n))(ic:(list C n)) 

(cell a b c al)-> 
(connection nal ib ic a')-> 

(connection (S n) a (cons B n bib) (cons C n cic) a'). 

End linear_structures. 

Fig. 3. The "linear_structures" Section 

natural  number n representing the number of cells involved in the device. It also 
takes as arguments the input and the output  carries of type A and two length-n 
lists of elements in A and B respectively. The term connection is inductively 
defined, in a typed Prolog style. With this analogy, the type of the constructors 
corresponds to the body of two Prolog rules (with reversed arrows) labeled C_O 
and C_Sn. The type of C_O states that ,  for all ~ in A, a connection with zero cells 
is just a wire carrying a. In this case, the two lists are the empty lists (nil B) and 
(nil C). The type of C_Sn states that  any length-(n + 1) connection is obtained 
from a length-n connection whose port  al  is connected to an additional cell. 
Figure 4 partially depicts a file in which various notions for comparing naturM 

Inductive order:Set:=L:orderIE:orderIG:order. 

Definition comparison:=[vl,v2:nat]<order> Case (Lt_eq_Gt vl v2) of 
[ _ : ( l t  v l  v2)] L 
[_: vl=v2] E 
[_:(gtvl v2)] G end. 

Fig. 4. A Part of the "Compare_nat" Module 

numbers are given. The set order = {L, E, G} is denoted by the enumerated 
type order. The function comparison returns the value L, E or G depending on 
the relative magnitude of the natural numbers v l  and v2 it takes as arguments. 
This function is defined by case analysis on the term (Lt_eq_Gt vl  v2) which has 
been built before. This term is a proof of (vl  < v2) or (vl  = v2) or (vl  > v2). 
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The second line of the definition of comparison must be interpreted by "given a 
proof of (vl  < v2), return L". After that ,  several properties of comparison are 
established that  are not shown on the figure. 
All these tools having been defined, we are now able to describe the implemen- 
tation and the expected behavior of the device. The section describing the com- 

Section comparator. 
(*system of numeration*) 
Variable BASE: BT. 
Local Digit:=(digit BASE). 
Local ValB:=(Val BASE). 
Local Num:=(num BASE). 

(*semantics of the cells*) 
Local f_cell:order->Digit->Digit->order: = 
[o,x,y]<order>Case o of 
(*o=L*) L 
(*o=E*) (comparison (valB x) (valB y)) 

(*o=G*) G end. 

Definition cell:order->Digit->Digit->order->Prop: = 
[o, x, y, o'] o'=(f_cell o x y). 

(*structure of the comparator*) 

Local Connection:=(connection order Digit Digit cell). 
Local Comparator:=[n:nat][o:order][X,Y:(Num n)](Connection n E X Y o). 

(*behavior of the comparator*) 

Local Specif:(n:nat)(inf n)->(inf n)->order:=[n,X,Y] 
(comparison (val_inf n X) (val_inf n Y)). 

Fig. 5. Implementation and Behavior of the Comparator 

parator (Fig. 5) requires the section numerals. The first argument of the terms 
digit, n u m  and Val is instantiated with the current base, given as a parameter  
B A S E .  The functional specification of a cell is given by the function ]_cell, 
taking three arguments o, x, and y and defined by case analysis on the value of 
o. The local notion of connection is specified by the general term connection in 
which the types of the ports are A = order and B = C -- Digit .  Let us point out 
that  ( in]  n) denotes the interval [0, n[ and that val_in] is the natural injection 
of type (n : na t ) ( in ]  n) -~ nat. It is worth noting that  the circuit has only two 
inputs (the numerals to be compared) since the carry input value is constrained 
to be E.  
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Local f_circ:(n:nat)order->(Num n)->(Numn)->order:= 

[n,o,X,Y]<order>Case o of 

(*o=L*) L 

(*o=E*) (comparison (ValB n X) (ValB n Y)) 

(*o=G*) G end. 

Lemma general_correct:(n:nat)(X,Y:(Num n ) ) ( o , o ' : o r d e r )  
(Connection n o X Y o')->o'=(f_circ n o X Y). 

Induction i. (*Induction on (Connection n o X Y o')*) 

Clear H o' o Y X n. (*Erasing the useless hypothesis*) 

Intros o;Case o;Simpl;Auto. (*base case, case analysis on o*) 

Apply sym_equal;Auto. 

Clear H o' o Y X n. 

Intros n o ol o' x y X Y H_cell H_n H_rec. 

Inversion_clear H_cell. 

Rewrite -> H_rec;Rewrite -> H. 

Cut (eq ? o o);Auto. 

Pattern 2 3 o ;Case o;Intros e;Rewrite -> e;Unfold f_cell ; 

Unfold f_circ ;Auto. 

(Cut (eq ? (comparison (valB x) (valB y)) 

(comparison (valB x) (valB y)));Auto). 

Pattern 2 3 (comparison (valB x) (valB y)) } 

Case (comparison (valB x) (valB y));Intros C;Apply sym_equal; 

Unfold ValB ;Unfold Digit ;Auto. 

Save. 

Lemma correctness:(n:nat)(X,Y:(Num n)) (o :order)  
(Comparator n o X Y)-> 
o=(Specif (exp base n) (Val_bound n X) (Val_bound n Y)). 

(Unfold Comparator ;Unfold Specif ). 

Intros n X Y o H.Rewrite -> (general_correct n X Y E o H). 

Auto. (*automated resolution of the current goal*) 

Save. 

Fig. 6. Proofs of Correctness 

3.2 P r o v i n g  t h e  c o r r e c t n e s s  o f  t h e  c i rcu i t  

The theorem correctness  in Fig.6 establishes that the implementation is correct 
with respect to the intended behavior and can be informally stated as follows : 
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For all n in nat,  for all o in order , for all length-n numerals X and Y ,  if (com- 
parator  n o X Y) then o = (Spec i f  base n X Y )  where X is the value of the 
numeral X considered as a natural number o/ the interval [0, basen[. 

However, because of the constant value of the input carry, the proof requires a 
generalization. Therefore a lemma general_correct is first established which sets 
forth the correct behavior of a connection, whatever value is given to the input 
carry. It  is proven by induction on (Connection n o X Y o'). Fig.6 gives an idea 
of the length and the complexity of the proofs that  have not to be read in detail. 

4 Towards Synthesis  

4.1 The  Factor izat ion  T h e o r e m  

A more general approach oriented to verification as well to synthesis of 1- 
dimension ari thmetic circuits is given in [16]. One can observe that ,  given a 
base b, each cell of the compara tor  implements a modulo-b version of the overall 
structure. This is also the case of right-to-left comparators,  incrementors, cir- 
cuits performing the multiplication of a numeral by a given natural  number  d, 
and so forth. Each cell of the latter,  for example, performs the multiplication by 
d of a digit. 
Let R be a relation of type: (n : nat )A  -+ ( i n f  n) -+ ( i n f  n) -~ A --~ Prop. 
We say tha t  R is proper if 

Vn • nat  Va • A (R 1 a 0 0 a). 

We say tha t  R is factorizable if the relation holds on two natural  numbers x and 
x p as soon as it holds on the quotients and the remainders of the division of x 
and x p by any natural  number n. More accurately, let n, m, x, x ~ be natural  
numbers such that:  

x = n q + r ;  x ' = n q '  + r ' ;  x , x '  •[O, ran[; q,q' •[O, m [ ;  r , r ' • [ 0 ,  n[ 

R is factorizable if 

Va, a l ,a '  e A ( R m a q q '  al) --~ ( R n a l  r r' a') --~ ( R m n a x x '  a'). 

The approaches presented in this section and in the following one apply to all 
linear s t ructures  whose cells implement such proper and factorizable ari thmetic 
relation. The  theorem of factorization states forth tha t  for every relation R tha t  
is proper and factorizabIe, (R b n) is implemented by a connection of n cells im- 
plementing (R b) : 

For all proper and factorizable relation R, for all natural number n, for all length- 
n numerals X and Y,  for all a and a' in A, if (Connection n a X Y a') then 
(R b ~ a X Y at). 
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The theorem is easily proven by induction on (Connection n a X Y a'). The 
proof of the comparator  boils down to proving that  the corresponding relation 
is proper and factorizable. This is done by case analysis on the variables a, a l  
and a ~ occurring in the definition of factorizable and by using properties of the 
function comparison. 
Indeed, this method is more general than that  given in the previous section. 
However, although it is synthesis oriented, we have not really synthesized the 
circuit. We have established that  a given linear structure satisfies a specification, 
but  we have not obtained this structure from the specification. We show, in the 
following subsection, how to take advantage of the Coq proof extractor  in an 
effective synthesis process. 

4.2 Extrac t ing  the  Circuit from its Specif ication 

So far, we have used Coq as a powerful and expressive proof-checker. We intend 
now to take advantage of the constructive aspect of its logic. 

O u t l i n e  o f  t h e  C o q  Extract ion Process  Due to the Curry-Howard isomor- 
phism, in Coq, proofs are ),-terms. They are thus objects of the underlying lan- 
guage, that  can be displayed on the screen, stored, reused, exploited in various 
ways. Moreover, as ),-terms, proofs are nothing but functional programs. 
In intuitionistic logic, a proof of a proposition of the form 

V x E A 3 y E B  ( P x y )  

necessarily contains an algorithm computing a function f of type A --+ B and 
a logical part  certifying that  for all x in A and y in B, if y = ( f  x) then the 
proposition (P  x y) is verified. The Coq system involves a mechanism that  is 
able to extract  from such a proof a ML program computing the function f .  By 
construction, this program is correct with respect to its specification P.  
The distinction between the computational part and the logical part of a proof 
relies on the sorts, namely Prop and Set, in which the types are declared. A term 
is called informative if its type is of sort Set and non-informative if its type is 
of sort Prop. Analogously to program comments that  are not taken into account 
by compilers, non-informative parts of the proof are erased during the extraction 
process. Moreover, all terms resulting from an extraction are terms in the system 
F~ [12]. Informally, this means that  the dependencies, if any, between types and 
terms, are lost during the extraction. For example, the term extracted from a 
"dependent" length-n list, as defined in this paper, is a usual list l, but  with an 
additional parameter  n of type nat. But l and n are not connected any more. 
Of course, the user gives the specifications and develops his proof in accordance 
to the term he wishes to obtain after extraction. As we mentioned in the section 
2, the sorts Prop and Set are perfectly symmetrical and interchangeable. Let us 
outline, with an example, how the extraction works. 
Let P be a predicate on the set of natural numbers. The proposition 

3x E nat (P x) 
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can be expressed in any of the three following terms T1, T2 or T3: 

- T1 = (ex nat  P)  of sort Prop, with P : nat --+ Prop 

- T2 -- {x :  nat[ (P  x)} of sort Set, with P :  nat ~ Prop 

- T3 = {x  : nat  & (P x)} of sort Set, with P : nat ~ Set. 

Now, what  is the result of the extraction process on terms t l  : T1, t2 : T2 and 
t3 :T3? 

- t l  being non informative, it is erased by the extractor. 
- As mentioned in section 2, t2 is a pair consisting of a "witness" n of type  

nat and a non-informative proof of ( P  n). The extracted te rm is n. 
- For t3, the result of the extraction is a pair (n, b) where b comes from the 

proof  of ( P  n) which, this time, is informative. For example, if ( P  x) is a 
disjunction, b is the boolean true if the left part  of the disjunction has been 
proven and fa lse  in the other case. 

This is a very short and informal presentation. For more details, one can refer 
to [21]. 

S y n t h e s i z i n g  t h e  C o m p a r a t o r  The extraction principles presented in the 
previous pa ragraph  leads us to a new version of the factorization theorem, tha t  
can be s ta ted as follows: 

For all proper and factorizable relation R, for all natural number n, for all length- 
n numerals X and Y, for all a in A,  there exists a' in A such that (R b '~ a X Y a'). 

It  is organized so that  a function f will be extracted from its proof. This func- 
tion will take as arguments an element a of type A, a natural  number  n and two 
length-n numerals X and Y. It  will return an element a ~ of type A. The function 
f is certified to be such that  (R b '~ a X Y al). At this point, it is necessary to 
give a functional specification of the relation R, tha t  is to say to state which are 
the input ports  and the output  ports  of a circuit implementing R. This is done 
by defining the relation R as follows: 

( R n a x y a  ~ ) i f a n d o n l y i f a ' = ( F R  n a x y )  
where F R  is of type: 

F R  : (n :  nat )A  --~ ( in f  n) -~ ( i n f  n) -+ A. 

The function f will be defined by an algorithm which depends on the way the 
proof is developed. Here, we make an induction on n. 

- If n = 0, we give the witness a t -- a and prove tha t  (R 1 a 0 0 a) using the 
fact tha t  R is proper. 
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- Let us now consider a an element of type A, n a natural  number and two 
length-(n + 1) numerals X = (Cons d D) and Y = (Cons d' D'). Let 
al  be (FR b a d d'). By induction hypothesis, there exists a' such that  
(R b ~ al D D' a'). The relation being factorizable we can deduce that  

(R b (n+l) a (Cons d D) (Cons d' D') a'). 

The type list extracted from the type (n : nat)(list A n) is nearly the usual 
inductively defined type for polymorphic lists (the constructors take an addi- 
tional argument of type nat). From FR a function f r  of type nat -~ A --+ nat --+ 
nat --+ A is obtained. Note that  there are no dependencies between types and 
terms any longer and that  the logical content of ( inf  n) has disappeared. The 
extraction process, on the proof of the theorem, results in the function f of type 
nat --~ A --+ list --+ list -+ A defined by 

- ( f O a D D ' ) = a  
- ( f  ( n +  1) a (Cons d D) (Cons d' D')) = ( f  n al D D') 

w h e r e a l = ( f r  b a d d') 

From the extracted term, a ML program can be automatically generated. It 
produces the expected result, when taking as inputs a natural  number n and 
two length-n numerals X and Y. If one of the numerals is shorter than n, an 
exception is returned. Numerals longer than n are truncated. 
Synthesizing the comparator is now extremely simple. It is sufficient to apply 
this theorem with the particular relation cell implemented by the cells of the 
comparator  and defined in Fig.5. 

4.3 A M i x e d  A p p r o a c h  u s i n g  t h e  Tact ic  " P r o g r a m "  

In the previous section, we showed how the user develops his proof according to 
the program he has in mind and he wants to synthesize. The  Program tactic 
just  implements the idea that  the program to be extracted contains informatibn 
about  the s tructure of the proof and thus that  it can be used as a guide during 
the proof process. This methodology can be viewed as dual to the extraction. 
Let us consider the function Impl defined by : 

(Impl 0 a X Y) = a 

and 

(Impl (n + 1) a X Y) -- (Impl n (FR b a (Hd X)  (Hd Y))  (Tl X) (T l  Y))  

In these equations Hd and Tl denote respectively the functions head and tail. 
This program is associated with the theorem 

For all proper and factorizable relation R, for all natural number n, for all length- 
n numerals X and Y, for all a in A, there exists a' in A such that (R b n a X Y a') 
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to be proven by the command Realizer. Then the tactic Program_aU gen- 
erates sequences of introduction, application and elimination tactics on every 
subgoal depending on the syntax of the program Impl. In particular, the induc- 
tion scheme is found out by the system. Although the proof process is not fully 
automated, it is highly simplified. 

5 Summary  and Conclusions 

Our aim in this paper was to demonstrate the capabilities of Coq in the field of 
hardware verification. We have given a general and illustrated presentation of the 
prover and we have investigated how to reap the greatest benefit of its particular 
features not only for proving circuit correctness but also for effectively synthe- 
sizing devices at the algorithmic level. Our results apply to arithmetic linear 
structures the cells of which implement proper and factorizable relations (in- 
crementor, comparators, multipliers, . . .) .  To sum up, precise and general spec- 
ifications have been expressed in a natural way. Several reusable modules have 
been developed (for handling lists, numerals, repetitive arithmetic structures) 
in which generic properties and theorems have been proven. Several approaches 
have been investigated (verification of a particular circuit, verification of a class 
of circuits, synthesis of a class of circuits, intermediate approach). The synthesis 
methodology relies on the constructive aspect of the logic and, in practice, on the 
Coq extractor. A functional description of an implementation is automatically 
extracted from a proof of a statement of the form 

Vy E A 3x • B (P x y). 

P is a relation between the input x and the output y and represents the expected 
behavior (specification) of the circuit. In a third intermediate approach, specifi- 
cation and implementation are both given to the prover. As the proof process is 
guided by the syntactical structure of the implementation, it is more automated 
and thus easier to use. 
Relying on the Curry-Howard isomorphism, Coq provides an elegant unifying 
framework for specifying and proving. Proof-checking and type-checking are the 
same process (in PVS for example a type checking step must precede the classical 
proof process). Let us also mention that,  unlike in Nuprl, type-checking in Coq 
is decidable. Undoubtedly, Coq is a powerful tool, with advanced features, the 
most futuristic of them being the synthesis of certified programs. The drawback, 
in our point of view, is the lack of user friendliness and automation. Exploiting 
all Coq subtleties still requires skill and expertise. 
However, various works are now in progress that will make Coq much easier to 
use in the future. A nice interface, CtCoq, is already available [4]. Moreover, 
a tool is being developed that,  from the script of a Coq proof, automatically 
generates a text in natural mathematical language [10]. It will be of interest 
for analyzing, simplifying, and debugging proofs. New approaches are also being 
studied for improving the extraction process and the modularity. Finally, arith- 
metic decision procedures are about to be integrated in the system. 
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