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 THE JOURNAL OF SYMBOLIC LoGic

 Volume 57, Number 3, Sept. 1992

 CONTRACTION-FREE SEQUENT CALCULI

 FOR INTUITIONISTIC LOGIC

 ROY DYCKHOFF

 ?0. Prologue. Gentzen's sequent calculus LJ, and its variants such as G3 [21],
 are (as is well known) convenient as a basis for automating proof search for IPC

 (intuitionistic propositional calculus). But a problem arises: that of detecting loops,

 arising from the use (in reverse) of the rule : => for implication introduction on

 the left. We describe below an equivalent calculus, yet another variant on these
 systems, where the problem no longer arises: this gives a simple but effective

 decision procedure for IPC.
 The underlying method can be traced back forty years to Vorob'ev [33], [34].

 It has been rediscovered recently by several authors (the present author in August

 1990, Hudelmaier [18], [19], Paulson [27], and Lincoln et al. [23]). Since the

 main idea is not plainly apparent in Vorob'ev's work, and there are mathematical
 applications [28], it is desirable to have a simple proof. We present such a proof,
 exploiting the Dershowtiz-Manna theorem [4] on multiset orderings.

 ?1. Introduction. Consider the task of constructing proofs in Gentzen's se-

 quent calculus LJ of intuitionistic sequents F r G, where F is a set of assumption
 formulae and G is a formula (in the language of zero-order logic, using the nullary
 constant f [absurdity], the unary constant m [negation, with -IA =def A D f]
 and the binary constants &, v, and D [conjunction, disjunction, and implication
 respectively]). By the Haiptsatz [15], there is an apparently simple algorithm
 which breaks up the sequent, growing the proof tree until one reaches axioms (of
 the form F - A where A is in F), or can make no further progress and must back-
 track or even abandon the search. (Gentzen's argument in fact was to use the sub-
 formula property derived from the Hauptsatz to limit the size of the search tree.
 Dosen [5] improves on this argument.)

 Some extra effort is required to ensure termination. Suppose we use a version
 of the calculus with a contraction rule: then, at every step, we may choose to dupli-
 cate a formula before breaking it up. With care, one can remove the contraction
 rule almost entirely, but a trace of it remains in the rule D =>: in using this rule (in
 reverse) to extend the proof tree above a node labelled A D B, F G we must
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 796 ROY DYCKHOFF

 duplicate the formula A : B, generating children A B F B. A and B, F =r G.
 (Consider trying to prove - (A v m A) = f without doing such duplication.) This
 duplication forbids the argument that the size, by some measure, of the sequent has
 been diminished, and hence that the search must terminate. We could, following
 standard practice, use a stack to detect looping-but the looping tests are ex-
 pensive, and complicate the task of extending the technique to the first-order case.
 In the present work we give a sound complete calculus UT for constructing

 such proofs, but with no primitive rule for contraction: the only essential change is
 to the rule - =>. This provides a simple decision procedure for IPC.

 Note that our description of UT as "contraction-free" is based on our view of
 the sequent calculus as intended to be used from the root up: we have no qualms
 therefore about having primitive rules with the same formulae as antecedents in
 each of two premisses. Thus the apparent move from premisses F r A and F r B
 to the conclusion F - A & B does not require a contraction to be done on the
 multiset F, F containing twice as many copies of everything in F as F itself has.
 The two copies of F are, on being observed to be equal as multisets, just merged.
 From the viewpoint of Girard's linear logic [16], this counts as a contraction:
 from ours, concerned with termination of an algorithm, it does not. Both linear
 logic and the present work can be seen as means of controlling the use of the con-
 traction rule, but in different ways.

 UT does not have the subformula property. Nevertheless, it has it in an ob-
 vious weak sense: one can work out what formulae are able to appear in a proof
 of a particular end-sequent.

 ?2. Logical preliminaries. First, we present a complete set of sound rules for
 the sequent calculus U, essentially due to Gentzen [15]. Of various presentations,
 such as G3 of Kleene [21, p. 481], that by Dragalin [6] suits us best: but that
 covers the multi-succedent version GHPC.

 Sequents are of the form

 FormulaMultiset = Formula,

 where a multiset [4] is a set in which repetitions are allowed, but no account of
 order is taken. A, F denotes the multiset containing an occurrence of A, the
 remainder being the multiset F. We require no structural rules, other than those
 implicit in the use of multisets (so permutations are allowed). We easily see (using
 Dragalin's arguments, for example) that the rules of weakening, contraction and
 cut are admissible. These arguments apply when the use of the axiom rule (see
 below) is confined to atomic formulae A: it then follows that the more general usage
 is also admissible.

 Our presentation (Figure 1) differs a little from Gentzen's, but the differences
 are trivial enough to allow us the use of the name U of his system: modulo re-
 naming of some variables (in the first-order case), proofs in our system translate
 directly into his system and vice versa. Note that we do not require contraction: its
 only essential use is built into our formulation of the rule : A. (Our reason for
 using multisets rather than sets is to avoid concealing a contraction rule in the
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 CONTRACTION-FREE SEQUENT CALCULI 797

 Axiom A, =A f 7 J= G

 ABT =G - -= A T => B
 IA&BI, - T=G T=A&B]

 AT - =- G B, T=G -= -A => B
 v/ = _ _ _ v _ _ _ _

 IA v BLTrF= -G T=A v B F T=IA v BI
 A BT=) A BF - = A G AF = B

 D : _ _ D

 IA, BI ,=G |=A:D B|
 FIGURE 1

 notation.) Our objective is contraction elimination, and we shall show how, in the
 zero-order case, even this one (disguised) use can also be eliminated.

 In the presentation of these rules, in each case the formula in the conclusion
 which is designated the principal formula is boxed. A similar convention applies in
 some of the proofs below.

 Note the occurrence of A D B in the major premiss of the -- rule. But for
 this, all the rules have the property that each premiss is simpler than the con-
 clusion. We shall replace this rule by some similar rules which allow the same set
 of theorems. Let UT denote the formal system having the above rules, minus
 D =>, augmented by the four rules of Figure 2, routinely seen to be admissible in
 U. (The T is for "terminating".)

 B,AT => G

 C D (D D B),T =r G
 :D 2>

 2 (C & D) D B, = G

 C D BD D B, F =- G
 :D 3

 (C v D) D BF = G

 D D BF = c DD B F= G

 (C D D) D B, F = G

 FIGURE 2

 We regard the formula f as not being atomic. Note that the rule -D -- is sound
 even if the formula A is not atomic: what matters is that we can show that its use
 just when A is atomic suffices. It is easy to show that weakening is (still) an admis-
 sible rule of this system: so therefore also is the rule that from F = G one may
 infer f D B, F -- G-a rule one might otherwise expect to be primitive in LJT.

 Note that the first three of these four new rules are invertible-if the con-
 clusion is provable in LJ, so is the premiss. The fourth rule has the property that if
 the conclusion is provable in LJ, so is the second premiss.

 Our arguments will use various forms of induction, one of which is on the
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 798 ROY DYCKHOFF

 "size" of sequents. We measure the size of sequents as follows; but first we define

 an ordering on formulas. The weight, wt(A), of a formula A is a positive integer

 defined recursively as follows: wt(A) = wt(f) = 1 for atomic A, wt(A v B) =
 wt(A D B) = wt(A) + wt(B) + 1, and wt(A & B) = wt(A) + wt(B) + 2. This gives
 us a well-founded order relation > on formulae, with A > B iff wt(A) > wt(B).
 Note for later use that, for example, wt((C & D) = B) > wt(C D (D :D B)).

 Now treat the antecedent formulae of a sequent together with its succedent as

 a multiset. Then, by definition, F ,, iff the multiset zA is obtained from the multi-
 set F by replacing one or more formulas of F by zero or more formulas, each of
 which is of lower weight than one of the replaced formulas. This is the multiset

 ordering of Dershowitz and Manna, known [4] to be well-founded if the ordering
 on formulae is. Note that in each of the rules of UT, the conclusion is in the rela-
 tion >> to each of the associated premisses (if any).

 Below, we shall talk informally about the "size" of a sequent: arguments using
 this undefined concept can be formalised as arguments by well-founded induction
 on the relation >>. To see how to convert these (in the cases considered below) into

 arguments by induction on the natural numbers, see [4].

 ?3. Main results. The idea of the proof that UT is equivalent to U is to
 consider an U-provable sequent, and use wherever possible one of the invertible
 rules of U to replace it by a simpler (with respect to the ordering >>) U-provable
 sequent. In the case that the final step of the U proof of the given sequent is by

 means of D =>, we use one of the rules D =,,. . ., = =>4. The only difficulty arises
 with the D=>1 rule, since its conclusion is not quite general enough: as well as the
 implication A = B being introduced, the antecedent has to contain an occurrence

 of the atomic left-subformula A. We therefore prove a lemma which implies that
 in constructing the proof from the root up we may delay uses of this rule (with
 A =DB the principal formula, A being atomic) until the atom A occurs on the left
 of the sequent to be proved.

 DEFINITION. A formula of the form A D B is said to be awkward if A is atomic
 (recall that f is not regarded as atomic). A multiset F is said to be irreducible if it

 contains no pair A, A D B where A D B is awkward, and neither absurdity nor a
 conjunction nor a disjunction. A sequent is irreducible if its antecedent is irreduc-
 ible. An U proof is clumsy if the principal formula of the final step is on the left
 and is awkward; otherwise it is sensible.

 LEMMA 1. Any U-provable irreducible sequent has a sensible proof.
 PROOF. Otherwise, some U-provable irreducible sequents have only clumsy

 proofs. Consider, among all proofs of all such sequents, one of the shortest (where
 "length" of proof is measured along the leftmost branch): let it be H, with end-

 sequent F r G. So, the final step of H has an awkward principal formula A D B
 on the left. Then F =A B, F' and F is irreducible (and so A is not in F'). So the
 proof looks like

 (1) AF ,F = A B' F= G

 |A,: B 5F t= G
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 CONTRACTION-FREE SEQUENT CALCULI 799

 Since A does not occur in F', and cannot be identical to A , B, the proof H' is
 nontrivial. Its end-sequent has irreducible F as its antecedent, so, by the inductive
 assumption, it has a sensible proof H"'. Consider its final step. Since A is atomic,
 this step must be by *=>, where * is one of the logical constants f, &, v or v. Since
 F is irreducible, * must be D. Let D , E be the principal formula of the final step:
 since H"'. is sensible, D is not atomic. The proof of F r G now looks as follows:

 HO HI
 AA DBDD EF"1=>D E5 ADBF"1=>A H"1

 A, B1D D, E15F if -D A B, D AEF" = G (2) AB D BE| ,DinDEF" rmpG
 (2) J~~~A :, Bl 5D,: E F1 => G

 and we permute this into

 HO AB, E F =AA B E F"= G
 A BD D EXF =r D EifA MB|,F - G

 A3D BID D E|,F" F G

 where H2/E, B, F" -- G is routinely derived by substituting E for D , E at appro-
 priate occurrences of the latter in H"/B, D , E, F" G, dealing with the lowest
 principal occurrence by discarding the major premiss.

 Thus, we have found a proof (3) of F G in which the principal formula
 (D , E) of the final step is not awkward, as required. D

 REMARK. Using the same methods, it is not hard to show that any LJ-provable
 sequent, not having a pair A, A , B of antecedent formulae with A atomic, has a
 sensible proof. This result is stronger than we need for Theorem 1 below, but is
 required when extending the ideas to the first-order case. The lemma could, in part,
 be extracted from Lemma 7 in [22]. One could also go further and make all the
 subproofs sensible.

 LEMMA 2. KjFU, (C D D), B - C, DDif LJFD D, B o C D.
 PROOF. Trivial [34]. E
 THEOREM 1. The systems LJ and LJT are equivalent.
 PROOF. As noted earlier, it is routine to show that any sequent provable in UT

 is provable in LJ, using the admissibility of cut, contraction, and weakening in the
 latter.

 The important part is the converse. We argue by induction on the "size" of the
 sequent being proved (not on the structure of the proof).

 Suppose F-Lj T G. Several cases arise:
 (a) F contains f: then there is a trivial proof (by f=i) of F r G in LJT.
 (b) F contains a conjunction A & B. Let F =_ A & B F'. Then A, B, F' - G is

 also provable in LJ. By the inductive hypothesis, it has a proof in LJT; combine
 this proof in LJT with the use of the rule &=>, proving F e G in LJT.

 (c) F contains a disjunction A v B: we deal with this in a manner similar to (b).
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 800 ROY DYCKHOFF

 (d) F contains a pair A, A D B where A is atomic. Let F A, A D B, F'. Then
 A, B, F' => G is also provable in U, since LJ B A : B. By the inductive hy-
 pothesis, it has a proof in LJT; combine this proof in UT with the use of the rule

 a 1, proving F G in UT.
 (e) Otherwise, F is irreducible. By Lemma 1, F r G has an U proof where the

 principal formula is either on the right, or is an implication A : B on the left and
 A is not atomic. If the final step is by axiom, =>&, => v, or => , we inductively
 have a proof in UT, since in each case the premiss has (or the premisses have)
 lower size than the conclusion. The only difficulty arises with the D => rule. Sup-
 pose the final step is by means of this rule, with A D B being the principal formula,
 and A D B, F => G the conclusion. Consider the various possible forms of A.

 (i) If A is a conjunction (C & D), then, since in U (C & D), B iff C : (D : B),

 we may also prove C D (D = B), F' = G in U. By induction, we find a proof of
 this in UT, to which we append an instance of the - =2 rule.

 (ii) Similarly, if A is a disjunction (C v D), we inductively prove C = B, D = B,

 F => G in UT and append an instance of the = -3 rule.
 (iii) Suppose A is an implication (C D D). So, the conclusion

 A D B, F =r G

 follows in U from the U-provable premisses

 ADBF' A and B,F'-G

 But, in U, A D B, F' - A iff D D B, F => A, by Lemma 2. This second sequent is
 of lower size than A D B, F => G, so has, by the inductive hypothesis, a proof in
 UT. Similarly, so does B, F' G. Combine these with the use of the rule = 4.

 (iv) Suppose A is absurdity, f. Since f = B is vacuously provable, A = B,
 F => G iff F = G in U. By the inductive hypothesis, the latter has a proof in UT.
 Combine this with the use of the weakening rule in UT. R

 Since the rules of cut and contraction are admissible in U, these rules are
 admissible also in LJT. (A direct proof of cut-elimination for UT seems difficult.)

 The system UT of rules, treated in reverse as problem reduction rules, is ter-
 minating: any search for a proof will terminate in either success or failure. There
 is no need to use a stack and check for looping: for each rule, the move from

 conclusion to premisses replaces a sequent by zero or more sequents of lower size,
 where "size" is as explained in ?2. So we have a simple decision algorithm for
 zero-order intuitionistic logic. (In contrast to the case of classical logic, the order
 in which we choose to use these rules is important: some choices may have to be

 undone. Tennant [31] has described some heuristics for making such choices.)
 Note that, with minor variations, this technique applies also to minimal logic.

 ?4. Contraction-free multi-succedent calculi. In practice, a multi-succedent cal-
 culus is convenient for implementation: one can then share code easily with an
 implementation for the classical case, and also postpone decisions about which
 disjunct (of a disjunctive formula on the right) should be chosen.

 Dragalin [6] gives, as noted above, a convenient formalisation of such a cal-

 culus, GHPC. It looks as follows; the asterisks are to suggest "zero or more
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 CONTRACTION-FREE SEQUENT CALCULI 801

 formulae" on the right:

 Axiom* AF = A A f F =r a

 & >* AAF A AB, A F 5* F A, Fr BA
 |A, & Bls I A & _BIL JA&BI, A F jA&Bj,

 V AAF =A BF =A * F ABA
 LA v;B|,F za= A F='v B, A

 ADB,=> A BF =A -, AF = B
 ,

 [AD BIF=>A F= -A BIN A
 FIGURE 3

 (In fact, [6] restricts the axiom* rule to atomic A, and then shows that the more
 general use is admissible.) The rules are valid with respect to U, if we consider the

 meaning of a sequent with several formulae in the succedent to be that of the
 sequent made by disjoining those formulae together. Note that all the rules are
 invertible, except for the last two: but the last is invertible for empty A. [6] shows
 that weakening, contraction and cut are admissible rules.

 Now, : =>* is the only rule we have to change: we do it just by changing all

 occurrences of the goal formula metavariable G in the new rules ( D 5 ... -4)
 of UT into the formula multiset metavariable A.

 The new rules are now as follows:

 :DABA9T= A [Abeingatomic]
 C D> (D D B), F = A

 2 (C&D)DBF =A

 C ,DB, D =DB,F -> A

 (C V D) DB,F = A
 DDBF=C DD BCF = A

 (C zDD)DBF= A

 FIGURE 4

 Our arguments of ??2 and 3 now go through with no essential changes. We
 thus obtain a contraction-free multi-succedent calculus for intuitionistic logic (with
 no contraction hidden in the D D- rule).

 Note that, in contrast to the presentations in, for example, [7] and [35], the
 rule v =* of GHPC has no occurrence of zA in the succedent of the major pre-
 miss. A variant of the rule having such an occurrence would be admissible, but is
 not necessary for the translation of LJ proofs into the multi-succedent calculus

 GHPC. However, there is an advantage in having such an occurrence of A: the rule
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 802 ROY DYCKHOFF

 is then invertible. On the other hand, the argument above would then no longer be
 correct: the difficulty would be in replacing the sequent (C D D) , B, F => C, D,
 A by D, B, F' C D, A in (the multi-succedent variant of) the proof of
 Theorem 1. So, our argument is done in the context of Dragalin's system GHPC
 rather than in that of [7] or [35].

 However, the following rule is admissible, and strengthens the rule D =

 DDB,F =C DDA B F= A
 (C D D)B, F= A

 Using it rather than the weaker rule =}4* is therefore permitted, but not oblig-
 atory. Unfortunately, this rule is still not invertible, except when A is absurdity or
 empty. Which of the rules D -* and v =>4** should in practice be used is unclear.

 ?5. Natural deduction rules. Gentzen's formulation of LJ allows for the straight-
 forward translation (cf. [1], [9], [16], and [29]) of LJ proofs into NJ deductions.
 For example, an instance of the rule &=- is translated into an instance of the rule
 &E (in the form that from A & B we may infer both A and B). An instance of the
 rule D - translates into an instance of the rule =DE (modus ponens) as follows:

 HO Hi

 A =BA, B AB.F =} G

 is translated to the deduction having A DB and the formulae in F as assumptions,
 and G as conclusion: since from A DB and F we have (in the translation of HO)
 deduced A, we may write B under the pair A DB and A, appeal to modus ponens,
 and fill in the gap between B (with F) and G by entering the translation of 1H1.

 The new rules of LJT correspond to the replacement, in NJ, of modus ponens
 by the following rules:

 ADB A
 B [A is atomic] MP1

 (C & D) B MP2 (C v D)B MP3a (C v D)B MP3b
 CD=)(DDB) CD=)B DD=)B

 (C D)DB CD[D B] MP
 B

 FIGURE 5

 where the parenthesised [D , B] in the rule MP4 indicates its discharge as an
 assumption from the second premiss.

 It is of interest to see how the deductions got by this means can be transformed
 into standard natural deductions. Abramsky [1] gives a convenient formulation of
 the standard translation of sequent calculus proofs into natural deduction proofs.
 Adopting roughly his notation (in his ?2.2), and introducing appropriate new con-
 stants apply-atom, curry, left, right, and apply-imp, the new natural deduction
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 CONTRACTION-FREE SEQUENT CALCULI 803

 rules (with annotations connoting proofs) look like

 p:A D B q: A is atomic] MP
 apply-atom(p, q): B

 p:(C&D)DB MP2
 curry(p): C D (D D B)( D

 lef(p)C vD D -B MP3a p:(C v D) =DB MPb left(p): CDBP3aright(p): DD)B

 p:(C D) D B q(x):C DD[x:D D B] MP
 apply-imp(p, q): B

 FIGURE 6

 The appropriate labelling rules for the new sequent calculus rules are then

 x: B, a: A, A => g: G [ A being atomic]
 p :(A D B), a: A, A [apply-atom(p, a)/x]g: G

 x:(C D (D D B)),F = g:G

 D-2 p: ((C & D) D B),F r [curry(p)/x]g: G
 x:(C D B), y:(D D B), F r g:G

 p: ((C v D) D B), F - [left(p)/x, right(p)/y] g: G

 z:(D =DB), F = q(z):(C =DD) x:B, rF = g:G

 D 4 p: ((C D D) D B), F - [apply-imp(p, q)/x]g: G
 FIGURE 7

 By this means, we may label UT proofs with typed lambda calculus terms as
 witnesses: these terms can be traversed to obtain natural deductions (in NJT). To
 obtain an NJ deduction it suffices to use the definitions

 curry(p) =def AX- Ay. apply(p, <x, y>)

 left(p) =def x. apply(p, inl(x))

 right(p) =def Xx. apply(p, inr(x))

 apply-atom(p, q) =def apply(p, q)

 apply-imp(p, q) =def apply(p, q(Ay. apply(p, Ax.y)))

 interpreting the deductions of NJT into those of NJ. (These will not necessarily be
 normal deductions, but can be normalised in the usual way.)

 Not every NJ deduction can be obtained in this way, even allowing for standard
 conversions. By Konig's lemma, since UT is finitely branching and proofs of a given
 formula are of bounded depth, any formula can only have a finite number of proofs
 in UT. But the formula (p D p) D (p D p), where p is an atom, has infinitely many
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 804 ROY DYCKHOFF

 distinct deductions in NJ: the Church numerals (for p). (In fact, in UT we can

 only construct proofs representing the numerals for zero and one.) This limitation
 is regrettable, since functional programming encourages us to look at ways of
 generating proofs mechanically.

 ?6. First-order intuitionistic calculi. These ideas extend to some extent to the
 first-order case. It is easy to handle formulae of the form (]x)A(x) a B, using the
 equivalence (provable even in minimal logic)

 (]x)A(x) D B * (Vx)(A(x) D B),

 where the bound variable x is not free in B. But formulae of the form (Vx)A(x) D B
 are problematic. An early version of this paper gave appropriate sound rules, which
 are complete in a weak sense: for any provable formula, a suitable choice of a

 parameter (similar to the Q-depth parameter in [12]) allowed a successful proof
 search. We refer to Hudelmaier's unpublished [18] for full details of a similar
 approach.

 ?7. Implementation. The system UT of rules has been implemented in Prolog
 as part of the MacLogic system [8], used in teaching various first-order logics. This
 system includes some theorem provers (for classical, intuitionistic, and minimal
 logic), intended to be fast at solving problems but allowed to be slower when failing,
 in order to warn students of unsuccessful tactics for problem decomposition.

 ?8. Applications. Pitts [28] reports applications of UT to show that, in
 intuitionistic logic, quantification over propositional variables can be modelled in
 what we call the zero-order calculus, with nice applications to the theory of Heyting

 algebras.
 Hodas and Miller [17] illustrate the use of UT in a generic theorem-prover

 based on linear logic, encoding UT in about 15 lines of Prolog.
 Tennant [31] describes a theorem-prover for minimal zero-order logic (with an

 extension to intuitionistic relevant logic in mind), where the looping tests are
 replaced by use of a natural deduction version of the rules of LJT. He reports that
 this led to a fourfold increase in performance on a wide range of difficult problems.

 ?9. Related work. Vorob'ev [33], [34] described a decision algorithm for IPC
 based on similar considerations. The present article may be regarded in part as a
 restatement of this relatively ancient Soviet work: it is offered however as a clarifica-
 tion and simplification, in the knowledge that the technique is now being reinvented
 and exploited. The sequent calculus lying behind Vorob'ev's algorithm in [34] is
 concealed by the pre-processing of sequents into a normal form (using the
 distributive laws); his algorithm also takes advantage of the equivalence (for negated
 goals) of the intuitionistic decision problem with the classical one. See [25] for a
 summary of some of the related Soviet work.

 Hudelmaier [18], [19] invented the same calculus as LJT. His argument is
 similar to ours, but (like Vorob'ev) avoids the use of multiset orderings in favour
 of constructive techniques, from which one can extract explicit (but useless) theo-
 retical bounds on the relationship between the depths of the U proof and of the
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 CONTRACTION-FREE SEQUENT CALCULI 805

 UT proof. He has refined it into an O(n log n)-SPACE solution [20] to the decision
 problem for IPC. (From Statman's work, this problem is known to be PSPACE-
 complete. In the worst case, the obvious algorithm based on UT uses space expo-
 nential in the size of the sequent being proved. Our own view is that this is not a
 serious problem in practice.)

 Lincoln et al. [23] report on the use of a calculus IIL* nearly identical to
 LJT, for a translation of intuitionistic sequents to linear logic sequents (in the
 calculus IMALL): this differs from Girard's translation [16] in not using the modal
 operators (!, ?), but still preserves provability. IIL* is restricted to the implicational
 fragment of intuitionistic logic, and differs from UT in the rule for introduction of
 the implication A v B on the left when A is atomic: rather than allowing this only
 when A is already in the remaining context F, it just requires the derivability of A
 from F. IIL* is obviously sound, and its completeness follows trivially from that of
 UT (but not conversely). For automated proof search, we prefer the use of LJT,
 since it avoids work done trying to derive A in favour of waiting until it is obvious:
 but IIL* is the right calculus to use for the translation to IMALL.

 As a solution to the looping problem, Van Gelder [32] proposes the tortoise and
 hare technique: this requires maintenance of a stack of subproblems being solved,
 and two pointers thereinto, which move at different speeds: if there is a loop, then
 the pointers will eventually point at different occurrences of the same problem. We
 have not examined this approach in any detail, believing it to have similar
 disadvantages to the maintenance of a stack with a more expensive and more
 frequent check, but with earlier detection of looping.

 Gabbay [14] proposes the bounded restart rule: this requires that a history
 be kept of the search, but allows that when an atomic goal is to be proved, one
 may restart the search at points after earlier occasions when the same goal was
 investigated.

 Slaney [30] reports that his theorem prover (for minimal logic) first tries to apply
 the D .- rule without keeping the principal formula in the antecedent, and only on
 failure tries the proper rule. He reports that "it uses a simple loop detector which
 in practice does not seem to slow it down much, though on really large problems
 it probably would be expensive".

 One possible decision method for IPC is to use the Gbdel-McKinsey-Tarski
 translation of intuitionistic problems into S4, and then to use a decision procedure
 for S4. Fitting [10], [11] argues that although one can in principle use a periodicity
 test as part of such a decision procedure, in practice "such a test would be quite
 expensive", and he therefore recommends use of a modal depth counter. Wallen
 [35] describes (for zero-order S5) how to calculate the multiplicity (essentially an
 upper bound on the number of times any formula may need to be duplicated), and
 comments that similar techniques could be developed for the other modal logics.

 It is not clear how effective such a multiplicity is at constraining the search.
 Franzen [13] shows how to calculate such multiplicities for IPC; but he abandoned
 this approach in favour of a technique (implication-locking) of retaining implicative
 formulae in the major premiss of the D - rule, but inhibiting their use until more
 information is available. Tennant [31] describes a similar technique, fettering.

 Beeson [2] describes a (first-order) theorem-prover GENTZEN, implemented in
 Prolog, with loop-checking to avoid nontermination, and discusses related work.
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 It would be interesting to see whether a combination of the rules for UT with

 the mItrix methods of Bibel, Andrews and Wallen [35] would be effective.

 Other authors use techniques which avoid the problem by other means: for

 example, recent Soviet work [24] has been based on pre-processing to normal form,

 and then the use of a form of "resolution". Such techniques are outwith the scope

 of this paper's consideration of techniques for controlling or avoiding duplication.
 Note also that there is no connection with the work of Dardzhania [3], or that

 of Ono and Komori [26], on variants of intuitionistic logic with no contraction
 rule: these weaken the logic, rather than reformalise the same logic.

 ?10. Conclusion. We have shown the correctness and completeness of a variant

 of Gentzen's calculus U for zero-order intuitionistic logic, having no contraction
 rule and so having good termination properties when viewed as a system of

 problem reduction rules. This can be used as the basis for a simple decision proce-

 dure for this logic, which, in contrast to the direct use of U, needs no tests for

 looping. Proofs obtained by this means translate easily into natural deductions.
 The same variation can be applied to two multi-succedent calculi.

 ?11. Acknowledgements. Thanks for helpful comments are due to Gianluigi

 Bellin, Tony Davie, Dov Gabbay, Jorg Hudelmaier, Mike Livesey, Neil Leslie,
 Michel Levy, Dale Miller, Birgit Moser, Andy Pitts, Andre Scedrov, Neil Tennant

 and Lincoln Wallen. Special thanks are due to the authors of the various unpub-
 lished papers and reports listed below, and to Grigori Mints for pointing me to the

 Soviet literature. Per Martin-Ldf gently drew the duplication problem of U to my
 attention, as an issue which theorem provers (such as mine in 1986) often ignored.
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