
A Certified Version of Buchberger's A l g o r i t h m

Laurent ThSry

INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis France
thery@sophla, inria, fr

Abstrac t . We present a proof of Buchberger's algorithm that has been
developed in the Coq proof assistant. The formulation of the algorithm
in Coq can then be efficiently compiled and used to do computation.

1 Introduction

If we look at the way one can use computers to do mathematics, there is a clear
separation between computing, where one uses computer algebra systems, and
proving, where one uses theorem provers. The fact that these two aspects are
covered separately has obvious drawbacks. On the one hand it is a well-known
fact that, because of misuse or implementation errors, one should always double-
check the results given by a computer algebra system. This problem is even
more crucial for general-purpose computer algebra systems where the library of
algorithms is mostly developed by the user community. Extensions of the system
are then performed without giving evidence of their applicability or correctness.
On the other hand theorem provers usually come with very little computing
power. This makes it difficult to complete proofs for which some computing
steps are needed.

It would be a real progress if one could unify these two aspects in a single sys-
tem. It would then be possible to define mathematical objects and both compute
and prove properties about them. Building such a system from scratch requires
an important effort. A more pragmatic approach consists in complementing ex-
isting systems. If we look at computer algebra systems, the situation is somewhat
difficult. The languages of general-purpose computer algebra systems have not
been designed with the idea that people would like to reason about them. For
example, the scope of local variables in Maple [2] is not limited to the procedure
where they have been defined. Thus, stating properties of algorithms turns out
to be very difficult.

If we look at theorem provers, the main problem is efficiency. While most the-
orem provers allow us to define algorithms, executing them is inefficient because
it is performed inside the prover in an interpretative way. An alternative solution
is for the prover to be able to translate its algorithms into another programming
language that has a compiler.

Our approach follows the second line. We have chosen the theorem prover Coq
[12] to do our experiments. Coq is a prover based on type theory. It manipulates

C. Kirchner and H. Kirchner (Eds.): Automated Deduction, CADE-15
LNAI 1421, pp. 349-364, 1998. (~) Springer-Verlag Berlin Heidelberg 1998

350 Laurent Th~ry

objects with a rich notion of types which is clearly adequate for mathematical
objects. Coq also proposes an extraction mechanism that , given an algorithm
defined in the system, generates an implementation in the language Ocaml [14]
tha t can be efficiently compiled.

Is this solution practical? What is the effort involved in trying to certify stan-
dard algorithms for computer algebra systems? It is to answer these questions
that we decided to work on the proof of correctness of Buchberger's algorithm.
We started from a five page description of the algorithm in a standard introduc-
tion book [7]. The goal was simple: to develop enough mathematical knowledge
in Coq for stating the algorithm and proving its correctness and termination.

The paper is organized as follows. In Section 2 we introduce the Buchberger's
algorithm. In Sections 3 and 4 we sketch its proofs of correctness and termination.
In Section 5 we explain the main steps of our development and give a running
example of the algorithm. Finally we relate our approach to others and draw
some conclusions and future work.

2 B u c h b e r g e r ' s A l g o r i t h m

Buchberger's algorithm is a completion algorithm working on polynomials. Given
a list of polynomials it returns a completed list tha t has a particular property.
Before presenting the algorithm, we first need to define some basic notions [7].

2.1 O r d e r e d P o l y n o m i a l s

We first consider the usual n variables polynomials over an arbi t rary field (A,
+a,--a,*a,/a,0a,la) with two of their usual operations: addition (+) and multi-
plication by a term (.). A polynomial is composed of a list of terms. Each term
is composed of a coefficient and a monomial. The set of coefficients is A. The set
of monomials is denoted by Mn where n is the number of variables. The set of
terms and polynomials are denoted by TA,Mn and PA,M,~ respectively.

An order <_M, over monomials is a binary relation tha t is transitive, reflexive
and antisymmetric. It is total if two distinct elements are always comparable. It is
well-founded if there exists no infinite strictly decreasing sequence of monomials.

0 is minimal for the order and if the order is Finally it is admissible if x ~ x n
compatible with the multiplication.

Given an admissible well-founded total order ~M,~ over monomials, it is pos-
sible to represent a polynomial as a list of terms, such that the list of the corre-
sponding monomials is ordered, i.e. each monomial in the list is strictly greater
than the ones at its right. We use 0 and ~ to denote the null polynomial and
the ordered list constructor respectively. From this representation we get the
structural induction theorem for an arbi t rary predicate P over polynomials:

(P O) A (Va E A, Vp e PA,M~ , (P P) =~ (p (a 3r p))) =~ Vp �9 PA,M~ , (P P)

We define the transitive relation <p over polynomials as the smallest relation
such that:

A Certified Version of Buchberger's Algorithm 351

- V t E T A , M . , V p E P A , M . , O (p t ~ - p
- Yal,a2 EA, VmEMn,Vp, q �9 <p q ~ a im ~ p <p a2m -~ q
- Val , a2 � 9 Vml, m2 �9 q�9

ml <M. m2 ~ aim1 ~- p <p a2m2 2b q

This relation is well-founded. So we get another important induction principle:

(VpEPA,M., (VqEPA,M~, q <p p =~ (P q)) =V (Pp)) =r VpEPA,M~, (Pp)

2.2 Norma l Form

Given the definition of polynomials, it is possible that polynomials carry terms
with null coefficient. Equality for polynomials is then understood as the equality
without paying attention to terms with null coefficient. To give a more algorith-
mic account of this notion, we define the function nf that computes the normal
form of a polynomial by removing terms with null coefficient:

 f(0) = 0;

- Ym �9 Mn, Vp �9 PA,Mn, nf(Oam ~- p)
- V a � 9 V m � 9

= u S (p) ;
oa nf(am p) = am nf(p).

2.3 One Step Division, Reduc t ion , and I r reduc ib i l i ty

Since the division over monomials is not total, we first define a relation d~vPM.:

Vml,m2 E Mn, divPM.(rrtl,m2) ~ 3m3 E Mn, ml =m3.m2

Then the division over monomials/M, is defined as:

Vml, m2 E Mn, divP M. (ml, m2) ~ ml = (ml/M. m2).m2

We define the one step division/p over polynomials as follows :

Vml,m2 E Mn, divPM~(ml,m2)
Val , a2 E A, Vpl,P2 E PA,M., a2 ~ Oa ::~

(alml ~- pl)~(a2m2 3c P2) = Pl -- (al/aa2)(ml/M,~m2).P2

Given a set of polynomials S, it is now possible to define the reduction relation
~ s as the smallest relation such that:

- Vpl,p2 e PA,Mn, k/t E TA,M., Pl --~S P2 ~ t ~-Pl --+S t ~-P2
- Vml ,m2 E Mn, divPM,~(ml,m2)

Val, a2 E A, Vpl, P2 E PA,M=, a2 • Oa
(a2m2 4p2) E S ~ alml -~ Pl -~s (alml ~-pl)~(a2rn2 ~-P2)

We say that p is irreducible by ~ s ifVq E PA,M., ~(P -~S q)" We define the rela-
tion ~ + as the reflexive-transitive closure of the relation --*s and the reduction
till irreducibility --*~ (p --*~ q iff p 4 + q and q is irreducible by --*s).

352 Laurent Th~ry

2.4 S p o l y n o m i a l s

We use the infix symbol ^ to denote the function that computes the least common
multiple of two monomials. If we have two polynomials p = aim1 ~ Pl and
q : a2m2 3r P2 with al , a2 ~ 0, the polynomial ml^m2 represents the 'smallest'
polynomial tha t can be divided by both polynomials p and q:

ml^m2 ---+(p} ql = --(la/aal)((ml^m2)/M~ ml) .Pl

ral^m2 ---*{q} q2 = -- (la/aa2) ((ml^m2)/M~ m2).p2

We define the function Spoly as Spoly(p, q) = q2 - ql if the previous conditions
on p and q hold and Spoly(p,q) = 0 otherwise (p = 0 or q = 0 or al = 0 or
a 2 = 0) .

2.5 P o l y n o m i a l I dea l s

A polynomial ideal is a set of polynomials I tha t is stable under

- addition: Vp, q E I , p + q E I
- multiplication by a term: Vp E I, Vt E TA,M~, t.p E I.

Given a set of polynomials S, the ideal < S > generated by S is the set of poly-
nomials p such that

3k E N,p = Z t~.p~ such thatVi < k, ti E TA,M~andp~ ~ S.
i<k

It is easy to check that this set is an ideal. Finally a set of polynomials S is said
to be a basis of an ideal I iff <S>= I.

2.6 G r S b n e r B a s i s a nd B u c h b e r g e r ' s A l g o r i t h m

To be able to decide whether or not a given polynomial belongs to an ideal is an
important property that can be used to solve a large number of interesting prob-
lems concerning polynomials. We say that a set of polynomials S is a GrSbner
basis iff

Vp~PA,M.,pe<S>.'. '.- p - - ~ 0

In other words, a Gr5bner basis is characterized by a generated ideal whose only
irreducible polynomial is 0. Thus, to check if a given polynomial belongs to an
ideal generated by a Gr5bner basis, one simply needs to reduce it to an irreducible
polynomial and then check if this polynomial is 0 or not. A general result by
Hironaka states that , given any ideal generated by a set of polynomials, there
exists a GrSbner basis that generates the same ideal. Buchberger 's contribution
was to give an explicit algorithm for computing a GrSbner basis corresponding
to the initial set of polynomials.

In the presentation of the algorithm below, we manipulate sets of polynomials
as lists. The set of set of polynomials is represented by PA,M. list. We also use

A Certified Version of Buchberger's Algorithm 353

to denote the empty list and the notation ~l L] to represent the list whose head
is the polynomial p and whose tail is L.

We first define the function SpolyL that takes a polynomial and two lists of
polynomials and returns a list of polynomials:

SpolyL(p, L1, ~) = L1
SpolyL(p, Ls, [qlLu]) = [Spoly(p, q)lSpolyL(p, L1, L2)].

This function simply adds to the first list the spolynomials formed by the poly-
nomial and each polynomial of the second list.

The second function SpolyProd computes a reduced set of all possible spoly-
nomials formed from a list of polynomials:

- Spolyp~od([]) = []
- SpolyProd(~lL]) = SpolyL(p, SpolyProd(L), L).

The third function nfL normalizes each element of a list, removing zero polyno-
mials:

- nfL(~) = []
- mS(p) # 0 ~ nfL([plL]) = [nf(p)[nfL(L)]
- nf(p) = 0 ~ nfL(~[L]) = nfL(L).

We have now enough material to present the algorithm. Among its parame-
ters there is an arbitrary function reducer that takes a polynomial and computes
an irreducible polynomial such that:

Vp �9 PA,M,,P "-* *S reducef(~,p)

For the moment, we assume that such a function exists. The algorithm is a
completion that takes a pair of lists of polynomials as argument. The first element
of the pair represents the basis and the second one the possible candidates to
complete the basis:

- buchf(L1, []) = L1
- n] (reducef (L l ,p)) ~ 0 =~

buchf (L1, ~lL2]) : buchf ([nf (reducef (Ll , p))lL1],
SpolyL(nf (reduce/ (L1, p)), L2, L1))

- ~ f (~ d u c e l (L l , p)) = 0 ~ buchl(nl , ~lL2])= b~chf(L1,L2).

If the list of candidates is empty, the basis is returned (first case). If the head of
the list of candidates does not reduce to zero, it is added to the basis and the
spolynomials computed by SpolyL are added to the list of candidates (second
case). If the head of the list of the candidates reduces to zero, a recursive call is
made with the tail of the list (third case).

We finally define the function buch that takes a list of polynomials as argu-
ment and returns a corresponding GrSbner basis as:

buch(L) = buchf (nfL(L), SpolyProd(nfL(L))).

354 Laurent Th~ry

3 The Proof of Correctness

The correctness of the algorithm can be expressed by two theorems. The first
one ensures that the result of the algorithm does not change the generated ideal:
T h e o r e m BuchStable:

VS E PA,M,~ list, <S>-=<buch(S)>

The second one states that every member of the ideal reduces to 0:
T h e o r e m BuchReduce:

VS E PA,M~list, Vp E < S > , p '~uch(S) 0

The theorem BuchStable is a direct consequence of the three following lemmas:
L e m m a RedStable:

VS E PA,Mn list, Vp, q E PA,Mn, P --*+ q =~ (P E<S> ~ q E<S>)

L e m m a NfStable:

~/S E PA,M~ list, kip E PA,M~, (P e < S > -', :- hi(p) e < S >)

L e m m a SpolyStable:

VS E PA,M~ list, Vp, q E PA,M., P E<S> A q E < S > ~ Spoly(p,q) E<S>

The theorem BuchReduce needs much more work to be proved. The first step is
to prove the three following lemmas:
L e m m a RedCompMinus:

VS E PA,M~ list, Vp, q,r e PA,M,~,

P - q -*s r ~ 3pl, ql e PA,M., P --*+ Pl A q 4 + ql A r = Pl -- ql

L e m m a Red4MinusO:

VS e PA,M. list, Vp, q �9 PA,M.,

p--q--*+ O ~ 3 r e PA,M., p ~ + r h q ~ + r

L e m m a RedDistMinus:

VS �9 PA,M~ li8t, Vp, q, r �9 PA,Mn,

p ~ s q = ~ 3 S e P A , M . , p - - r - - . + s A q - - r - - . + s

To prove the first lemma we just look at the term that has been reduced in
p - q and use associative and distributive properties of addition and multiplica-
tion by a term. The second lemma is proved by induction on the length of the
reduction using the first lemma in the induction case. The third lemma is proved
with techniques similar to the first one.

The next step is to show that in order to get the theorem BuchReduce it is
sufficient to prove that the reduction is confluent:

Vp, q, r E PA,M., (p--**sqAp---**s r) =~ q = r

A Certified Version of Buchberger's Algorithm 355

Here is the proof:

- We take an arb i t ra ry element p of < S > . We want to prove tha t ~ * P s 0 with
the hypothesis tha t the reduction is confluent.

- By definition p -- ~ i < k ti.p~ with Vi < k, ti E TA,M~ and p~ E S for some k.
- We proceed by induction on k.
- For k -- 0, we have p = 0 so the proper ty holds.
- Suppose tha t the proper ty holds for l < k.
- By defining q = ~-~<k-1 ti.pi, we get q --+~ 0 by induction hypothesis.

- We have p - q -- tkPk, with Pk E S. I t implies tha t p - q ~ + 0.
- By applying the lemma Red+MinusO, we deduce tha t there exists an r such

tha t p --.+ r and q ~ + r.
- We know tha t the reduction is confluent and tha t q reduces to 0. I t implies

tha t r reduces to 0. So we get p - - ~ 0. r-]

We are now ready for the main step of the proof. In order to prove tha t the
reduction is confluent, we show tha t it is sufficient tha t every spolynomial formed
with polynomials of the basis reduces to 0:

(Vp, q E S, Spoly(p, q) ~*s O) ~--**s confluent

We first prove two useful lemmas about the order defined in Section 2.1:
L e m m a StructLess:

Vt E TA,M=, Vp E PA,M=, P <p t ~-p

L e r n m a RedLess:

VS E PA,M~ list, Vp, q E PA,M,, P ~ S q ~ q <V P

Note tha t the lemma RedLess and the fact tha t <p is well-founded ensure tha t
the reduction always terminates. Now we can s tar t the proof tha t the reduction
is confluent:

- As the relation <p is well-founded, we prove tha t the reduction is confluent
by induction on <p by taking as the main hypothesis that:

Vp, q E S, Spolu(P, q) --**s 0

- Consider an arb i t ra ry p, and suppose tha t

Vq E PA,M~, q <p P ~ (Vr, s e PA,M,~ (q --~ *S r A q ---~ *S s) =~ r = s)

- We take two arbi t rary reductions of p: p - - ~ r and p -*~ s and prove tha t
r = 8 .

- If p is irreducible, the proper ty clearly holds r = p = s.
- Otherwise, consider Pl and P2 such tha t p --~s Pl - - ~ r and p - '*s P2 --*~ s.
- Because Pl <p P and P2 <p P, it is now sufficient to prove tha t there exists

a P3 such tha t Pl - - ~ P3 a n d P2 ---*~ P3 t o get r = P3 - - 8 by induction
hypothesis.

356 Laurent Th~ry

- We do a case analysis on the nature of the reductions p --*s Pl and p --~s P2.
There are four possible cases:

1. Suppose p = t ~ q ~ s t ~ ql = pl and p = t ~- q - * s t -~ q2 -- p2.
- Since q < p p , q ~ s ql, and q --*s q2, we get reducef(S, ql) =

reducer(S, q) = reducer(S, q2) by induction hypothesis.
- I t follows tha t Pl ~ + t ~- reducer(S, q) and P2--*+t ~- reducer(S, q).
- I t is then sufficient to take P3 = reducer(S, t ~ reducer(S, q)).

2. Suppose p -*s P~ql = Pl and p = t ~- q ~ s t ~ q2 = P2.
- By definition of the one step division, there exists a polynomial q3 such

tha t p~ql = q - q3.
- Since q - * s q2, by applying the lemma RedDistMinus, there exists a

polynomial q4 such tha t Pl -- q - q3 ---~+ q4 and q2 - q3 4 + q4.
- I t is easy to check tha t q2 - q3 = pu~ql, so P2 ---+~ q4.
- I t is then sufficient to take P3 = reducer(S, q4)-

3. Suppose p = t ~- q --*s t -~ ql = Pl and p --*s q~q2 = P:.
- This case is just the symmetr ic of case 2, so the proper ty holds.

4. Suppose p ~ s P~ql = Pl and p --*s p~q2 = p2.
- P, ql, and q2 axe non-zero polynomials, so p = a m ~ p~, ql = aim1 ~- q~,

and q2 = a2m2 ~-q~ for some a, al ,a2 E A, some m, m l , m 2 E Mn, and
some p', q~ , q~ �9 PA,M,.

- ql and q2 divide p, so m l and m2 divide m. We deduce tha t there exists
m3 such tha t m = ma.(m~^ml).

- Using the definition of the one step division, we get tha t

p l - = (p ' - (a/aal)(mlM.ml).q') - (p ' - (a/o 2)(mlM.m2).q)
- By simplifying the previous expression with the spolyaomials definition

we get pl - P2 - (am3).Spoly(q2, ql).
- Using the main hypothesis, we have Spoly(q2, ql) ~*s O, so we get Pl -

P2 ~ 0.
- By applying the lemma Red+MinusO, there exists a polynomial Pa such

tha t pl -*+ p4 and P2 --*+ P4.
- I t is then sufficient to take P3 = reducef(S, p4).

- In all four cases, we are able to find such a polynomial P3, so the proper ty
holds. []

Now in order to prove the theorem BuchReduce, it is sufficient to show

Vp, q �9 buch(S), Spoly(p, q) --* *buch(S) 0

This proper ty is not immediate because the function SpolyProd does not generate
all the possible spolynomials but only a reduced set. The following two lemmas:
L e m m a Spolyld:

Vp �9 PA,M,, 8poly(p,p) = 0

L e m m a SpolySym:

Vp, q �9 PA,M, , Spoly(p, q) = -Spoly(q, p)

ensure tha t the reduction to 0 of the reduced set implies the reduction of the
complete set. This ends the proof of correctness.

A Certified Version of Buchberger's Algorithm

4 The P r o o f of Te rmina t i on

357

Except for the function buchf, all the proofs of termination of the functions we
have been using are trivial: the arguments in recursive calls are always struc-
turally smaller than the initial arguments.

For the termination of the function buch:f we need a weak version of Dixon's
lemma. This lemma states that in every infinite sequence of monomials Mn there
exists at least one monomial M~ that divides another monomial Mj such that
i < j. It follows that if we define the relation ~ over list of polynomials as the
smallest relation such that:

VS e PA,M,~ ~iSt, VB ~: PA,M~,,
p is irreducible by --*s Ap # 0 ~ ~l S] ~ S

the relation ~ is well-founded. If now we define the relation ~}~ as the smallest
relation such that:

- VS, S~T,T' 6 PA,M. Iist, S ~ S ' ~ (S , T) ~ ' (S ' , T ')

- VS, T 6 PA,M. list, Vp 6 PA,M~, (S,T) ~'(S, [piT])

N~ is the lexicographic product of two well-founded relations, so it is well-
founded. Then for every recursive call within buchf it is easy to show that the
argument y of the recursive call and the initial argument x are such that y SY x.
So the function terminates.

5 Formalizing the Proofs Inside a Prover

One of the most satisfying aspect of our work has been to realize how naturally
definitions and properties can be expressed in a higher order logic setting. What
has been presented in Sections 2, 3 and 4 follows closely the proof development
we have done in Coq. However we have avoided to present elements that were too
specific to Coq. So we believe that the same definitions and the same proof steps
could be used to get the proofs of correctness and termination in any theorem
prover like Nuprl [4], HOL [8], Isabelle [lS] or PVS [21], that allows the definition
of recursive functions. In that respect we hope that what has been presented in
the previous sections is a good compromise between the need for the proof to
be human readable and the necessary detailed formalization due to mechanical
theorem proving. In any case, it is a useful and important exercise to go from
a textbook proof like the one in [7] to a proof that is suitable to mechanical
theorem proving.

358 Laurent Th~ry

5.1 T h e P r o o f D e v e l o p m e n t

The development in Coq is structured in three main parts:

1. The development of generic polynomials is composed of five modules. The
module porder defines the notions of polynomials as lists of terms where
terms are axiomatized and of ordered polynomials using an arbitrary order.
Then the modules seq, splus, smultm_lm, and sminus define respectively
equality, addition, term multiplication, and subtraction over polynomials.

2. The development of the algorithm itself contains five modules. The first
two modules spminus and sreduce define respectively the one step division
and the different notions of reduction. The module def_spoly defines the
notion of spolynomials and proves that the reduction is confluent if all the
spolynomials reduce to zero. The module NBuch defines an abstract version
of the algorithm proving all the results with the help of some hypotheses.
Finally, the module Buch instantiates the result of NBuch proving the different
hypotheses.

3. The final part of the development is the instantiation. It is composed by
three modules. The module Monomials defines monomials. The module p a i r
defines terms as pairs of coefficients and monomials. The module i n s t a n
glues all the different modules with the instantiation.

Figure 1 gives some quantitative information on the development. The columns
correspond respectively to the number of lines of the module, the number of
definitions, the number of theorems, the number of lemmas, and finally the ratio
between the number of lines and the different objects defined or proved. Note
that these figures do not include two important contributions that we have been
using in the proof. A theory of lexicographic exponentiation derived from [17] is
provided within the Coq system. It contains the main result needed for proving
that reductions always terminate. A contribution by Loic Pottier [19] gave us a
non-constructive proof of the Dixon's lemma 1. As explained before, this gives us
indirectly the termination of the algorithm.

The proof development is around 9000 lines, so it represents an important
effort. The proof has been carried out over a period of one year as a part-time
activity. When we started, we thought the proof could be carried out in three
months. Our first mistake was to underestimate the amount of work needed
to formalize polynomials and the usual operations. The second lesson we have
learned is that a special care has to be given to the organization of the develop-
ment. Having a good set of definitions and basic properties is crucial when doing
proofs. It is very often necessary to reorganize and reformulate definitions and
theorems to increase reusability and productivity.

The other problems we have encountered are more specific to Coq. The entire
proof development has been done using an arbitrary ring of coefficients and an
arbitrary order. So each theorem of the development is fully quantified in order
to allow later instantiation. But when we need to get theorems from a module

1 It is the only non-constructive part of our proof.

A Certified Version of Buchberger's Algorithm 359

Module Lines
porder 359
seq 359
splus 726
smultm_Im 201
sminus 500
Total1 2145
spminus 380
sreduce 1439
def_spoly 1135
!NBuch 455
Buch 1334
Totah 4743
Monomials 408
!pair 701
instan 943
Tota~ 2052

Total 18940]

Definitions
8 18
8 17
5 37
1 19
4 25

26 116
2 19
16 34
10 45
13 26
15 68
56 192
12 18
11 72
18 11
41 101

123 409

Theorems Lemmas Ratio
15 8
8 10
1 16
2 9
2 16

28 12
0 18
9 24
3 19
0 11
0 16
12 18
4 12
0 8
0 32
4 14

[,~ [15

Fig. 1. Quantitative information on the development

for a given instantiation, we need to operate individually on each of them which
is very tedious. This is a well-known problem of modulari ty for which solutions
have been proposed and implemented in other provers (see for example [6]).
Clearly modulari ty is a must if we aim at large proof developments.

The equality we use for polynomials is not the simple structural equality. The
polynomials we have defined may contain zero terms but we want to consider as
equals those polynomials that only differ for zero terms. Also we want to take
into account a possible equality =a over the elements of A. Using an explicit
equality makes proofs harder in Coq because we miss the possibility to replace
equals by equals. In order to regain substitutivity, we need to prove a theorem
of compatibility for each function and predicate. For example, if =p denotes our
equality over polynomials, it is necessary to prove the theorem:

Pl =p ql A P2 =p q2 :=~ Pl + P2 =p ql + q2

to be allowed to replace polynomials in additions. Then proofs often get polluted
with tedious steps of manipulation of the equality. In mathematics, the usual
trick for avoiding this problem is to implicitly work with quotients. A real benefit
could be gained in adding such a capability to Coq.

Finally if we look at Figure 1, the average of 15 lines per definition or theo-
rem shows that proofs are often reasonably short. As a mat ter of fact, we have
made very little use of automation. We mostly use the tactic Auto tha t simply
takes a database of theorems and checks if the goal is a simple consequence of
the database and the assumptions using the modus ponens only. It is difficult
to evaluate what would be gained if we were doing the proof in a prover tha t

360 Laurent Th~ry

provides more automation. Nevertheless, a specific class of goals we have en-
countered could largely benefit from automation. In the proof development, we
construct the type of polynomials as being {p: te rm l i s t I (o l i s ~ p)}, i.e.
the lists of terms such that the lists are ordered. In a proof that manipulates
polynomials, it is often the case that we get several subgoals which require to
prove that a list is ordered so it can be considered as a polynomial. Proving
such subgoals is trivial most of the time but having to repeatedly prove them
becomes quickly annoying.

5.2 E x t r a c t i n g t h e A l g o r i t h m

Once the development is finished, not only we have the proof of correctness of
the algorithm but it is also possible to automatically extract an implementation.
The self-contained version of the algorithm gives a 600 line long Ocaml program.
The example below uses an instantiation of the algorithm with n variables poly-
nomials for n = 6 over Q and the usual lexicographic order (a > b > c > d
> e > f) . Instantiating the implementation gives us 5 functions:

1. gen: i n t -> p o l y creates the generators;
2. s c a l : i n t -> po ly -> p o l y multiplies the polynomial by an integer;
3. p l u s : po ly -> po ly -> po ly adds two polynomials;
4. mul t : po ly -> p o l y -> po ly multiplies two polynomials;
5. buch: po ly l i s t -> po ly l i s t computes the Gr5bner basis.

We also write a prettyprinter in Ocaml to make the outputs of computation more
readable. In the following, we present an interactive session with the toplevel
Ocaml. Command lines are prefixed with # and end with two semicolons. We
first define local variables to represent generators:

let a = gen 0;;

val a : poly = a

let b = gen i;;

val b : poly = b

let c = gen 2;;

val c : poly = c

let d = gen 3;;

val d : poly = d

let pl = gen 6;;

val pl : poly = 1

We then construct the four n-cyclic polynomials for n=4:

let rO = (plus a (plus b (plus c d)));;

val rO : poly = a +b +c +d

let rl = (plus (mult a b)

(plus (mult b c) (plus (mult c d) (mult d a))));;

val rl : poly = ab +ad +bc +cd

A Certified Version of Buchberger's Algorithm 361

#let r2 : (plus (mult a (mult b c)) (plus (mult b (mult c d))
(plus (mult c (mult d a)) (mult d (mult a b)))));;

val r2 : poly = abc +abd +acd +bcd
#let r3 = (plus (mult a (mult b (mull; c d))) (scal (-I) pl));;
val r3 : poly =abcd -i

and the computation of the Gr5bner basis gives:

buch [r 3 ; r 2 ; r l ; r 0] ; ;
- : poly l i s t -- [abcd -1; abc +abd +acd +bed; ab +ad +bc +cd;

a +b +c +d; -b~2d -2bdA2 -d~3; b '2 +2bd +d~2;
bcd~2 -bd^3 +c~2d'2 +cd'3 -d^4 -1;
bc -bd +c'2d^4 +cd -2d '2 ;
-bd~4 +b -dA5 +d; c ' 3 d ' 3 +c'2d~4 -cd - d ' 2 ;
cA3dA2 +c^2d~3 -C -d; c ' 2 d ' 6 -c~2d~2 - d ' 4 +1]

While the answer of the system for n = 4 was immediate, the computation for
n = 5 had to be aborted after one hour of computation and a process size of
more than 100Mb! This is not too surprising: the version of the algorithm is
clearly too naive to perform well on large examples.

6 Related Work

Analytica [3] and more recently Theorema [22] propose an extension of the com-
puter algebra system Mathematica [23] with a proving component. The examples
they present are promising but their proof engines seem to need further devel-
opments in order to handle proofs of the same complexity as the one we have
presented here. Also, there have been attempts to develop large fragments of
mathematics within theorem provers. One of the first attempt was the Automath
project [15]. The current largest attempt is the Mizar project [20]. Some recent
efforts include Jackson's work on computational algebra [13] and Harrison's work
on real analysis [9]. The focus of these works is mostly on formalizing mathemat-
ics inside a prover, so they give very few account of algorithmic aspects. Finally
there have been several proposals to exploit a physical link between a prover
and a computer algebra system to perform computation (see for example [1]).
In [10], there is a discussion of some of the limitations of this approach.

As for the technique of program extraction, it has been demonstrated mostly
on toy programs [11], [16]. We believe that our algorithm is one of the first
non-trivial examples using this technique.

7 Conclus ion and Fu tu re Work

While working on this development we had clearly the feeling to be at the frontier
between proving and computing. Even if we were mostly in the proving world
trying to state properties about polynomials, we were also able to test and
compute with these very same polynomials. The situation is not yet ideal and

362 Laurent Th~ry

we have described some of the problems we have encountered. Still we hope that
this experiment shows that we are not so far from being able to mix proving and
computing.

It is interesting to contrast the 9000 lines of the proof development with
the 600 lines of the extracted Ocaml implementation of the algorithm. Proving
requires much more effort than programming. This is not a surprise. It also indi-
cates that the perspective of developing a completely certified computer algebra
system is unrealistic for the moment. The first step in that direction is definitely
to increase the knowledge of provers with basic algebraic notions. One third of
our proof lines has been used to construct a library of multivariate polynomials.
More automation and a better support to structure the development are also
mandatory.

The work we have done on Buchberger's algorithm is far from being finished.
Our algorithm is a textbook version of a real algorithm. We are aware that we
still need to give evidence that with our approach we can obtain an algorithm
that can be compared with what is proposed in general-purpose computer alge-
bra systems. In that respect, it is worth noticing that correctness becomes an
important issue for optimized versions of the algorithm. The main optimization
consists in avoiding to check the reducibility to zero of some spolynomials. A
common implementation error is to be too aggressive in the optimization and
discard spolynomials that are in fact not reducing to zero. Even in that case, the
algorithm can still behave well because the generation of spolynomials is heavily
redundant. Testing may not be sufficient to spot this kind of implementation
error.

Moreover, we would like to investigate the possibility of obtaining automat-
ically or semi-automatically a textbook version of the proof of correctness of
the algorithm directly from our development. In [5], a method is proposed to
automatically produce a document in a pseudo-natural language out of proofs in
Coq. Applying this method to our complete development seems very promising.

There are several ways in which this initial experiment can be extended.
First of all it would be very interesting to see how the same proof looks like
in other theorem proving systems. It would give a more accurate view of what
current theorem proving technology can achieve on this particular problem. Also,
we plan to complement this initial contribution with the certification of other
standard algorithms for polynomials such as factorization. Our long term goal is
to provide a completely certified kernel for non-trivial polynomial manipulations.

References

1. Jacques Calmet and Karsten Homann. Classification of communication and co-
operation mechanisms for logical and symbolic computation systems. In First
International Workshop 'Frontiers of Combining Systems' (b-~oCoS'96), Kluwer
Series on Applied Logic, pages 133-146. Springer-Verlag, 1996.

2. Bruce W. Char, Keith O. Geddes, and Gaston H. Gonnet. First leaves: a tutorial
introduction to Maple V. Springer-Verlag, 1992.

A Certified Version of Buchberger's Algorithm 363

3. Edmund Clarke and Xudong Zhao. Analytica - - a theorem prover for Mathemat-
ica. Research report, Carnegie Mellon University, 1991.

4. Robert L. Constable, Stuart F. Allen, H.M. Bromley, Walter R. Cleaveland,
James F. Cremer, Robert W. Harper, Douglas J. Howe, Todd B. Knoblock, Nax P.
Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. Implementing
mathematics with the Nuprl proof development system. Prentice Hall, 1986.

5. Yann Coscoy, Gilles Kahn, and Laurent Th~ry. Extracting text from proofs. In
Typed Lambda Calculus and its Applications, volume 902 of LNCS, pages 109-123.
Springer-Verlag, 1995.

6. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little theories. In
D. Kapur, editor, Automated Deduction--CADE-11, volume 607 of LNCS, pages
567-581. Springer-Verlag, 1992.

7. Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for computer
algebra. Kluwer, 1992.

8. Michael Gordon and Thomas Melham. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

9. John R. Harrison. Theorem proving with the real numbers. Technical Report 408,
University of Cambridge Computer Laboratory, 1996. PhD thesis.

10. John R. Harrison and Laurent Th~ry. Extending the HOL theorem prover with a
computer algebra system to reason about the reals. In Higher Order Logic Theorem
Proving and hs Applications, volume 780 of LNCS. Springer-Verlag, August 1995.

11. Doug Howe. Reasoning About Functional Programs in Nuprl. In Functional
Programming, Concurrency, Simulation and Automated Reasoning, volume 693
of LNCS, pages 144-164. Springer-Verlag, 1993.

12. G~rard Huet, Gilles Kahn, and Christine Panlin-Mohring. The Coq proof assistant:
A tutorial: Version 6.1. Technical Report 204, INRIA, 1997.

13. Paul B. Jackson. Enhancing the Nuprl proof development system and applying it to
computational abstract algebra. Technical Report TR95-1509, Cornell University,
1995.

14. Xavier Leroy. Objective Caml. Available at h t ~ p : / / p a u i l l a c . •
1997.

15. Rob P. Nederpelt, J. Herman Ceuvers, and Roel C. De Vrijer, editors. Selected
papers on Automath. North-Holland, 1994.

16. Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs in the
system Coq. Journal of Symbolic Computation, 15(5-6):607-640, May-June 1993.

17. Lawrence C. Paulson. Constructing Recursion Operators in Intuitionistic Type
Theory. Journal of Symbolic Computation, 2(4):325-355, December 1986.

18. Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS.
Springer-Verlag, 1994.

19. Loic Pottier. Dixon's lemma. Available at f t p : / / ~ w . i n r i a , f r / s a f i r / p o t t i e r /
MON/, 1996.

20. Piotr Rudnicki. An overview of the MIZAR pro jet. In Workshop on Types and
Proofs for Programs. Available by ftp at pub /cs r spor t s /Bas tad92/proc , ps. Z on
f t p . ca. chalmers, se, June 1992.

21. John M. Rushby, Natajaran Shankar, and Mandayam Srivas. PVS: Combining
specification, proof checking, and model checking. In CAV '96, volume 1102 of
LNCS. Springer-Verlag, July 1996.

364 Laurent Th~ry

22. Daniela Vasaru, Tudor Jebelean, and Bruno Buchberger. Theorema: A system for
formal scientific training in natural language presentation. Technical Report 97-34,
Risc-Linz, 1997.

23. Stephen Wolfram. Mathematica: a system for doing mathematics by computer.
Addison-Wesley, 1988.

