
A Certified Version of  Buchberger's  A l g o r i t h m  

Laurent ThSry 

INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis France 
thery@sophla, inria, fr 

Abstrac t .  We present a proof of Buchberger's algorithm that has been 
developed in the Coq proof assistant. The formulation of the algorithm 
in Coq can then be efficiently compiled and used to do computation. 

1 Introduction 

If we look at the way one can use computers to do mathematics, there is a clear 
separation between computing, where one uses computer algebra systems, and 
proving, where one uses theorem provers. The fact that these two aspects are 
covered separately has obvious drawbacks. On the one hand it is a well-known 
fact that, because of misuse or implementation errors, one should always double- 
check the results given by a computer algebra system. This problem is even 
more crucial for general-purpose computer algebra systems where the library of 
algorithms is mostly developed by the user community. Extensions of the system 
are then performed without giving evidence of their applicability or correctness. 
On the other hand theorem provers usually come with very little computing 
power. This makes it difficult to complete proofs for which some computing 
steps are needed. 

It would be a real progress if one could unify these two aspects in a single sys- 
tem. It would then be possible to define mathematical objects and both compute 
and prove properties about them. Building such a system from scratch requires 
an important effort. A more pragmatic approach consists in complementing ex- 
isting systems. If we look at computer algebra systems, the situation is somewhat 
difficult. The languages of general-purpose computer algebra systems have not 
been designed with the idea that people would like to reason about them. For 
example, the scope of local variables in Maple [2] is not limited to the procedure 
where they have been defined. Thus, stating properties of algorithms turns out 
to be very difficult. 

If we look at theorem provers, the main problem is efficiency. While most the- 
orem provers allow us to define algorithms, executing them is inefficient because 
it is performed inside the prover in an interpretative way. An alternative solution 
is for the prover to be able to translate its algorithms into another programming 
language that has a compiler. 

Our approach follows the second line. We have chosen the theorem prover Coq 
[12] to do our experiments. Coq is a prover based on type theory. It manipulates 

C. Kirchner and H. Kirchner (Eds.): Automated Deduction, CADE-15 
LNAI 1421, pp. 349-364, 1998. (~) Springer-Verlag Berlin Heidelberg 1998 



350 Laurent Th~ry 

objects with a rich notion of types which is clearly adequate for mathematical  
objects. Coq also proposes an extraction mechanism that ,  given an algorithm 
defined in the system, generates an implementation in the language Ocaml [14] 
tha t  can be efficiently compiled. 

Is this solution practical? What  is the effort involved in trying to certify stan- 
dard algorithms for computer algebra systems? It is to answer these questions 
that  we decided to work on the proof of correctness of Buchberger's algorithm. 
We started from a five page description of the algorithm in a standard introduc- 
tion book [7]. The goal was simple: to develop enough mathematical  knowledge 
in Coq for stating the algorithm and proving its correctness and termination. 

The paper is organized as follows. In Section 2 we introduce the Buchberger's 
algorithm. In Sections 3 and 4 we sketch its proofs of correctness and termination. 
In Section 5 we explain the main steps of our development and give a running 
example of the algorithm. Finally we relate our approach to others and draw 
some conclusions and future work. 

2 B u c h b e r g e r ' s  A l g o r i t h m  

Buchberger's algorithm is a completion algorithm working on polynomials. Given 
a list of polynomials it returns a completed list tha t  has a particular property. 
Before presenting the algorithm, we first need to define some basic notions [7]. 

2.1 O r d e r e d  P o l y n o m i a l s  

We first consider the usual n variables polynomials over an arbi t rary  field (A, 
+a,--a,*a,/a,0a,la) with two of their usual operations: addition (+) and multi- 
plication by a term (.). A polynomial is composed of a list of terms. Each term 
is composed of a coefficient and a monomial. The set of coefficients is A. The set 
of monomials is denoted by Mn where n is the number of variables. The set of 
terms and polynomials are denoted by TA,Mn and PA,M,~ respectively. 

An order <_M, over monomials is a binary relation tha t  is transitive, reflexive 
and antisymmetric. It is total if two distinct elements are always comparable. It is 
well-founded if there exists no infinite strictly decreasing sequence of monomials. 

0 is minimal for the order and if the order is Finally it is admissible if x ~  x n 
compatible with the multiplication. 

Given an admissible well-founded total order ~M,~ over monomials, it is pos- 
sible to represent a polynomial as a list of terms, such that  the list of the corre- 
sponding monomials is ordered, i.e. each monomial in the list is strictly greater 
than the ones at its right. We use 0 and ~ to denote the null polynomial and 
the ordered list constructor respectively. From this representation we get the 
structural  induction theorem for an arbi t rary predicate P over polynomials: 

( P O) A (Va E A, Vp e PA,M~ , ( P P) =~ ( p (a 3r p) ) ) =~ Vp �9 PA,M~ , ( P P) 

We define the transitive relation <p over polynomials as the smallest relation 
such that: 
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- V t E T A , M . , V p E P A , M . , O ( p t ~ - p  
- Yal,a2 EA, VmEMn,Vp,  q �9  <p q ~ a im ~ p <p a2m -~ q 
- Val ,  a2 � 9  Vml, m2 �9  q�9 

ml <M. m2 ~ aim1 ~- p <p a2m2 2b q 

This relation is well-founded. So we get another important induction principle: 

(VpEPA,M., (VqEPA,M~, q <p p =~ (P q)) =V (Pp)) =r VpEPA,M~, (Pp) 

2.2 Norma l  Form 

Given the definition of polynomials, it is possible that polynomials carry terms 
with null coefficient. Equality for polynomials is then understood as the equality 
without paying attention to terms with null coefficient. To give a more algorith- 
mic account of this notion, we define the function nf  that computes the normal 
form of a polynomial by removing terms with null coefficient: 

 f(0) = 0; 

- Ym �9 Mn, Vp �9 PA,Mn, nf(Oam ~- p) 
- V a � 9  V m � 9  

= u S ( p ) ;  
oa nf(am p) = am nf(p). 

2.3 One Step  Division, Reduc t ion ,  and  I r reduc ib i l i ty  

Since the division over monomials is not total, we first define a relation d~vPM.: 

Vml,m2 E Mn, divPM.(rrtl,m2) ~ 3m3 E Mn, ml  =m3.m2 

Then the division over monomials/M, is defined as: 

Vml, m2 E Mn, divP M. (ml, m2) ~ ml = (ml/M. m2).m2 

We define the one step division/p over polynomials as follows : 

Vml,m2 E Mn, divPM~(ml,m2) 
Val ,  a2 E A, Vpl,P2 E PA,M., a2 ~ Oa ::~ 

(alml ~- pl)~(a2m2 3c P2) = Pl -- (al/aa2)(ml/M,~m2).P2 

Given a set of polynomials S, it is now possible to define the reduction relation 
~ s  as the smallest relation such that: 

- Vpl,p2 e PA,Mn, k/t E TA,M., Pl --~S P2 ~ t ~-Pl --+S t ~-P2 
- Vml ,m2 E Mn, divPM,~(ml,m2) 

Val, a2 E A, Vpl, P2 E PA,M=, a2 • Oa 
(a2m2 4p2) E S ~ alml  -~ Pl -~s (alml ~-pl)~(a2rn2 ~-P2) 

We say that p is irreducible by ~ s  ifVq E PA,M., ~(P -~S q)" We define the rela- 
tion ~ +  as the reflexive-transitive closure of the relation --*s and the reduction 
till irreducibility --*~ (p --*~ q iff p 4 + q and q is irreducible by --*s). 
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2.4 S p o l y n o m i a l s  

We use the infix symbol ^ to denote the function that  computes the least common 
multiple of two monomials. If we have two polynomials p = aim1 ~ Pl and 
q : a2m2 3r P2 with al ,  a2 ~ 0, the polynomial ml^m2 represents the 'smallest' 
polynomial tha t  can be divided by both  polynomials p and q: 

ml^m2 ---+(p} ql = --(la/aal)((ml^m2)/M~ ml) .Pl  

ral^m2 ---*{q} q2 = -- (la/aa2) ((ml^m2)/M~ m2).p2 

We define the function Spoly as Spoly(p, q) = q2 - ql if the previous conditions 
on p and q hold and Spoly(p,q) = 0 otherwise (p = 0 or q = 0 or al  = 0 or 
a 2  = 0 ) .  

2.5 P o l y n o m i a l  I dea l s  

A polynomial ideal is a set of polynomials I tha t  is stable under 

- addition: Vp, q E I ,  p + q E I 
- multiplication by a term: Vp E I, Vt E TA,M~, t.p E I. 

Given a set of polynomials S, the ideal < S >  generated by S is the set of poly- 
nomials p such that  

3k E N,p = Z t~.p~ such thatVi < k, ti E TA,M~andp~ ~ S. 
i<k 

It is easy to check that  this set is an ideal. Finally a set of polynomials S is said 
to be a basis of an ideal I iff <S>= I. 

2.6 G r S b n e r  B a s i s  a nd  B u c h b e r g e r ' s  A l g o r i t h m  

To be able to decide whether or not a given polynomial belongs to an ideal is an 
important  property that  can be used to solve a large number of interesting prob- 
lems concerning polynomials. We say that  a set of polynomials S is a GrSbner 
basis iff 

Vp~PA,M.,pe<S>.'. '.- p - - ~ 0  

In other words, a Gr5bner basis is characterized by a generated ideal whose only 
irreducible polynomial is 0. Thus, to check if a given polynomial belongs to an 
ideal generated by a Gr5bner basis, one simply needs to reduce it to an irreducible 
polynomial and then check if this polynomial is 0 or not. A general result by 
Hironaka states that ,  given any ideal generated by a set of polynomials, there 
exists a GrSbner basis that  generates the same ideal. Buchberger 's contribution 
was to give an explicit algorithm for computing a GrSbner basis corresponding 
to the initial set of polynomials. 

In the presentation of the algorithm below, we manipulate sets of polynomials 
as lists. The  set of set of polynomials is represented by PA,M. list. We also use 
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to denote the empty list and the notation ~l L] to represent the list whose head 
is the polynomial p and whose tail is L. 

We first define the function SpolyL that takes a polynomial and two lists of 
polynomials and returns a list of polynomials: 

SpolyL(p, L1, ~) = L1 
SpolyL(p, Ls, [qlLu]) = [Spoly(p, q)lSpolyL(p, L1, L2)]. 

This function simply adds to the first list the spolynomials formed by the poly- 
nomial and each polynomial of the second list. 

The second function SpolyProd computes a reduced set of all possible spoly- 
nomials formed from a list of polynomials: 

- Spolyp~od([]) = [] 
- SpolyProd(~lL]) = SpolyL(p, SpolyProd(L), L). 

The third function nfL normalizes each element of a list, removing zero polyno- 
mials: 

- nfL(~) = [] 
- mS(p) # 0 ~ nfL([plL]) = [nf(p)[nfL(L)] 
- nf(p) = 0 ~ nfL(~[L]) = nfL(L). 

We have now enough material to present the algorithm. Among its parame- 
ters there is an arbitrary function reducer that takes a polynomial and computes 
an irreducible polynomial such that: 

Vp �9 PA,M,,P "-* *S reducef(~,p) 

For the moment, we assume that such a function exists. The algorithm is a 
completion that takes a pair of lists of polynomials as argument. The first element 
of the pair represents the basis and the second one the possible candidates to 
complete the basis: 

- buchf(L1, []) = L1 
- n ] ( reducef (L l ,p ) )  ~ 0 =~ 

buchf ( L1, ~lL2]) : buchf ([nf ( reducef ( Ll ,  p) )lL1], 
SpolyL( nf  ( reduce/ ( L1, p) ), L2, L1)) 

- ~ f ( ~ d u c e l ( L l , p ) ) =  0 ~ buchl(nl ,  ~lL2])= b~chf(L1,L2).  

If the list of candidates is empty, the basis is returned (first case). If the head of 
the list of candidates does not reduce to zero, it is added to the basis and the 
spolynomials computed by SpolyL are added to the list of candidates (second 
case). If the head of the list of the candidates reduces to zero, a recursive call is 
made with the tail of the list (third case). 

We finally define the function buch that takes a list of polynomials as argu- 
ment and returns a corresponding GrSbner basis as: 

buch( L ) = buchf ( nfL( L ), SpolyProd( nfL( L ) ) ). 
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3 The  Proof  of Correctness  

The correctness of the algorithm can be expressed by two theorems. The first 
one ensures that the result of the algorithm does not change the generated ideal: 
T h e o r e m  BuchStable: 

VS E PA,M,~ list, <S>-=<buch(S)> 

The second one states that every member of the ideal reduces to 0: 
T h e o r e m  BuchReduce: 

VS E PA,M~list, Vp E < S > ,  p '~uch(S) 0 

The theorem BuchStable is a direct consequence of the three following lemmas: 
L e m m a  RedStable: 

VS E PA,Mn list, Vp, q E PA,Mn, P --*+ q =~ (P E<S> ~ q E<S>)  

L e m m a  NfStable: 

~/S E PA,M~ list, kip E PA,M~, (P e < S >  -', :- hi(p) e < S > )  

L e m m a  SpolyStable: 

VS E PA,M~ list, Vp, q E PA,M., P E<S> A q E < S > ~  Spoly(p,q) E<S> 

The theorem BuchReduce needs much more work to be proved. The first step is 
to prove the three following lemmas: 
L e m m a  RedCompMinus: 

VS E PA,M~ list, Vp, q,r e PA,M,~, 

P - q -*s r ~ 3pl, ql e PA,M., P --*+ Pl A q 4 + ql A r = Pl -- ql 

L e m m a  Red4MinusO: 

VS e PA,M. list, Vp, q �9 PA,M., 

p--q--*+ O ~  3 r e  PA,M., p ~  + r h q  ~ + r 

L e m m a  RedDistMinus: 

VS �9 PA,M~ li8t, Vp, q, r �9 PA,Mn, 

p ~ s q = ~  3 S e P A , M . , p - - r - - . +  s A q - - r - - . +  s 

To prove the first lemma we just look at the term that has been reduced in 
p - q and use associative and distributive properties of addition and multiplica- 
tion by a term. The second lemma is proved by induction on the length of the 
reduction using the first lemma in the induction case. The third lemma is proved 
with techniques similar to the first one. 

The next step is to show that in order to get the theorem BuchReduce it is 
sufficient to prove that the reduction is confluent: 

Vp, q, r E  PA,M., (p--**sqAp---**s r) =~ q = r  
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Here is the proof: 

- We take an arb i t ra ry  element p of < S > .  We want to prove tha t  ~ *  P s 0 with 
the hypothesis tha t  the reduction is confluent. 

- By definition p -- ~ i < k  ti.p~ with Vi < k, ti E TA,M~ and p~ E S for some k. 
- We proceed by induction on k. 
- For k -- 0, we have p = 0 so the proper ty  holds. 
- Suppose tha t  the proper ty  holds for l < k. 
- By  defining q = ~-~<k-1 ti.pi, we get q --+~ 0 by induction hypothesis.  

- We have p - q -- tkPk, with Pk E S. I t  implies tha t  p - q ~ +  0. 
- By applying the lemma Red+MinusO, we deduce tha t  there exists an r such 

tha t  p --.+ r and q ~ +  r. 
- We know tha t  the reduction is confluent and tha t  q reduces to 0. I t  implies 

tha t  r reduces to 0. So we get p - - ~  0. r-] 

We are now ready for the main step of the proof. In order to prove tha t  the 
reduction is confluent, we show tha t  it is sufficient tha t  every spolynomial  formed 
with polynomials of the basis reduces to 0: 

(Vp, q E S, Spoly(p, q) ~*s O) ~--**s confluent 

We first prove two useful lemmas about  the order defined in Section 2.1: 
L e m m a  StructLess: 

Vt E TA,M=, Vp E PA,M=, P <p t ~-p 

L e r n m a  RedLess: 

VS E PA,M~ list, Vp, q E PA,M,, P ~ S  q ~ q <V P 

Note tha t  the lemma RedLess and the fact tha t  <p is well-founded ensure tha t  
the reduction always terminates.  Now we can s tar t  the proof  tha t  the reduction 
is confluent: 

- As the relation <p is well-founded, we prove tha t  the reduction is confluent 
by induction on <p by taking as the main hypothesis that:  

Vp, q E S, Spolu(P, q) --**s 0 

- Consider an arb i t ra ry  p, and suppose tha t  

Vq E PA,M~, q <p P ~ (Vr, s e PA,M,~ (q --~ *S r A q ---~ *S s) =~ r = s) 

- We take two arbi t rary  reductions of p: p - - ~  r and p -*~ s and prove tha t  
r = 8 .  

- If  p is irreducible, the proper ty  clearly holds r = p = s. 
- Otherwise, consider Pl and P2 such tha t  p --~s Pl - - ~  r and p - '*s P2 --*~ s. 
- Because Pl <p P and P2 <p P, it is now sufficient to prove tha t  there exists 

a P3 such tha t  Pl - - ~  P3 a n d  P2 ---*~ P3 t o  get r = P3 - -  8 by induction 
hypothesis. 
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- We do a case analysis on the nature  of the reductions p --*s Pl and p --~s P2. 
There  are four possible cases: 

1. Suppose p = t ~ q ~ s  t ~ ql = pl  and p = t ~- q - * s  t -~ q2 -- p2. 
- Since q < p p ,  q ~ s  ql, and q --*s q2, we get reducef(S, ql) = 

reducer(S, q) = reducer(S, q2) by induction hypothesis.  
- I t  follows tha t  Pl ~ + t  ~- reducer(S, q) and P2--*+t ~- reducer(S, q). 
- I t  is then sufficient to take P3 = reducer(S, t ~ reducer(S, q)). 

2. Suppose p -*s  P~ql = Pl and p = t ~- q ~ s  t ~ q2 = P2. 
- By definition of the one step division, there exists a polynomial  q3 such 

tha t  p~ql = q - q3. 
- Since q - * s  q2, by applying the lemma RedDistMinus, there exists a 

polynomial  q4 such tha t  Pl -- q - q3 ---~+ q4 and q2 - q3 4 +  q4. 
- I t  is easy to check tha t  q2 - q3 = pu~ql, so P2 ---+~ q4. 
- I t  is then sufficient to take P3 = reducer(S, q4)- 

3. Suppose p = t ~- q --*s t -~ ql = Pl and p --*s q~q2 = P:. 
- This case is just  the symmetr ic  of case 2, so the proper ty  holds. 

4. Suppose p ~ s  P~ql = Pl and p --*s p~q2 = p2. 
- P, ql, and q2 axe non-zero polynomials, so p = a m  ~ p~, ql = aim1 ~- q~, 

and q2 = a2m2 ~-q~ for some a, al ,a2 E A, some m, m l , m 2  E Mn, and 
some p', q~ , q~ �9 PA,M,. 

- ql and q2 divide p, so m l  and m2 divide m. We deduce tha t  there exists 
m3 such tha t  m = ma.(m~^ml).  

- Using the definition of the one step division, we get tha t  

p l  - = ( p '  - (a/aal)(mlM.ml).q' ) - ( p '  - (a/o 2)(mlM.m2).q ) 
- By simplifying the previous expression with the spolyaomials  definition 

we get pl - P2 - (am3).Spoly(q2, ql). 
- Using the main hypothesis, we have Spoly(q2, ql) ~*s O, so we get Pl - 

P2 ~ 0. 
- By applying the lemma Red+MinusO, there exists a polynomial  Pa such 

tha t  pl  -*+ p4 and P2 --*+ P4. 
- I t  is then  sufficient to  take P3 = reducef(S, p4). 

- In all four cases, we are able to find such a polynomial  P3, so the proper ty  
holds. [] 

Now in order to prove the theorem BuchReduce, it is sufficient to show 

Vp, q �9 buch( S),  Spoly(p, q) --* *buch(S) 0 

This proper ty  is not immediate  because the function SpolyProd does not generate  
all the possible spolynomials but only a reduced set. The  following two lemmas: 
L e m m a  Spolyld: 

Vp �9 PA,M,, 8poly(p,p) = 0 

L e m m a  SpolySym: 

Vp, q �9 PA,M, , Spoly(p, q) = -Spoly(q,  p) 

ensure tha t  the reduction to 0 of the reduced set implies the reduction of the 
complete set. This ends the proof of correctness. 
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4 The  P r o o f  of Te rmina t i on  

357 

Except for the function buchf, all the proofs of termination of the functions we 
have been using are trivial: the arguments in recursive calls are always struc- 
turally smaller than the initial arguments. 

For the termination of the function buch:f we need a weak version of Dixon's 
lemma. This lemma states that in every infinite sequence of monomials Mn there 
exists at least one monomial M~ that divides another monomial Mj such that 
i < j.  It follows that if we define the relation ~ over list of polynomials as the 
smallest relation such that: 

VS e PA,M,~ ~iSt, VB ~: PA,M~,, 
p is irreducible by --*s Ap # 0 ~ ~l S] ~ S  

the relation ~ is well-founded. If now we define the relation ~}~ as the smallest 
relation such that: 

- VS, S~T,T'  6 PA,M. Iist, S ~ S '  ~ ( S , T ) ~ ' ( S ' , T ' )  

- VS, T 6 PA,M. list, Vp 6 PA,M~, (S,T) ~'(S,  [piT]) 

N~ is the lexicographic product of two well-founded relations, so it is well- 
founded. Then for every recursive call within buchf it is easy to show that the 
argument y of the recursive call and the initial argument x are such that y SY x. 
So the function terminates. 

5 Formalizing the  Proofs  Inside a Prover  

One of the most satisfying aspect of our work has been to realize how naturally 
definitions and properties can be expressed in a higher order logic setting. What 
has been presented in Sections 2, 3 and 4 follows closely the proof development 
we have done in Coq. However we have avoided to present elements that were too 
specific to Coq. So we believe that the same definitions and the same proof steps 
could be used to get the proofs of correctness and termination in any theorem 
prover like Nuprl [4], HOL [8], Isabelle [lS] or PVS [21], that allows the definition 
of recursive functions. In that respect we hope that what has been presented in 
the previous sections is a good compromise between the need for the proof to 
be human readable and the necessary detailed formalization due to mechanical 
theorem proving. In any case, it is a useful and important exercise to go from 
a textbook proof like the one in [7] to a proof that is suitable to mechanical 
theorem proving. 



358 Laurent Th~ry 

5.1 T h e  P r o o f  D e v e l o p m e n t  

The development in Coq is structured in three main parts: 

1. The development of generic polynomials is composed of five modules. The 
module porder  defines the notions of polynomials as lists of terms where 
terms are axiomatized and of ordered polynomials using an arbitrary order. 
Then the modules seq, splus,  smultm_lm, and sminus define respectively 
equality, addition, term multiplication, and subtraction over polynomials. 

2. The development of the algorithm itself contains five modules. The first 
two modules spminus and sreduce  define respectively the one step division 
and the different notions of reduction. The module def_spoly  defines the 
notion of spolynomials and proves that the reduction is confluent if all the 
spolynomials reduce to zero. The module NBuch defines an abstract version 
of the algorithm proving all the results with the help of some hypotheses. 
Finally, the module Buch instantiates the result of NBuch proving the different 
hypotheses. 

3. The final part of the development is the instantiation. It is composed by 
three modules. The module Monomials defines monomials. The module p a i r  
defines terms as pairs of coefficients and monomials. The module i n s t a n  
glues all the different modules with the instantiation. 

Figure 1 gives some quantitative information on the development. The columns 
correspond respectively to the number of lines of the module, the number of 
definitions, the number of theorems, the number of lemmas, and finally the ratio 
between the number of lines and the different objects defined or proved. Note 
that these figures do not include two important contributions that we have been 
using in the proof. A theory of lexicographic exponentiation derived from [17] is 
provided within the Coq system. It contains the main result needed for proving 
that reductions always terminate. A contribution by Loic Pottier [19] gave us a 
non-constructive proof of the Dixon's lemma 1. As explained before, this gives us 
indirectly the termination of the algorithm. 

The proof development is around 9000 lines, so it represents an important 
effort. The proof has been carried out over a period of one year as a part-time 
activity. When we started, we thought the proof could be carried out in three 
months. Our first mistake was to underestimate the amount of work needed 
to formalize polynomials and the usual operations. The second lesson we have 
learned is that a special care has to be given to the organization of the develop- 
ment. Having a good set of definitions and basic properties is crucial when doing 
proofs. It is very often necessary to reorganize and reformulate definitions and 
theorems to increase reusability and productivity. 

The other problems we have encountered are more specific to Coq. The entire 
proof development has been done using an arbitrary ring of coefficients and an 
arbitrary order. So each theorem of the development is fully quantified in order 
to allow later instantiation. But when we need to get theorems from a module 

1 It is the only non-constructive part of our proof. 
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Module Lines 
porder 359 
seq  359 
splus 726 
smultm_Im 201 
sminus 500 
Total1 2145 
spminus 380 
sreduce 1439 
def_spoly 1135 
!NBuch 455 
Buch 1334 
Totah 4743 
Monomials 408 
!pair 701 
instan 943 
Tota~ 2052 

Total 18940] 

Definitions 
8 18 
8 17 
5 37 
1 19 
4 25 

26 116 
2 19 
16 34 
10 45 
13 26 
15 68 
56 192 
12 18 
11 72 
18 11 
41 101 

123 409 

Theorems Lemmas Ratio 
15 8 
8 10 
1 16 
2 9 
2 16 

28 12 
0 18 
9 24 
3 19 
0 11 
0 16 
12 18 
4 12 
0 8 
0 32 
4 14 

[ ,~ [15  

Fig.  1. Quantitative information on the development 

for a given instantiation, we need to operate individually on each of them which 
is very tedious. This is a well-known problem of modulari ty  for which solutions 
have been proposed and implemented in other provers (see for example [6]). 
Clearly modulari ty is a must if we aim at large proof developments. 

The equality we use for polynomials is not the simple structural  equality. The 
polynomials we have defined may contain zero terms but  we want to consider as 
equals those polynomials that  only differ for zero terms. Also we want to take 
into account a possible equality =a over the elements of A. Using an explicit 
equality makes proofs harder in Coq because we miss the possibility to replace 
equals by equals. In order to regain substitutivity, we need to prove a theorem 
of compatibility for each function and predicate. For example, if =p denotes our 
equality over polynomials, it is necessary to prove the theorem: 

Pl =p ql A P2 =p q2 :=~ Pl + P2 =p ql + q2 

to be allowed to replace polynomials in additions. Then proofs often get polluted 
with tedious steps of manipulation of the equality. In mathematics,  the usual 
trick for avoiding this problem is to implicitly work with quotients. A real benefit 
could be gained in adding such a capability to Coq. 

Finally if we look at Figure 1, the average of 15 lines per definition or theo- 
rem shows that  proofs are often reasonably short. As a mat ter  of fact, we have 
made very little use of automation. We mostly use the tactic Auto tha t  simply 
takes a database of theorems and checks if the goal is a simple consequence of 
the database and the assumptions using the modus ponens only. It is difficult 
to evaluate what would be gained if we were doing the proof in a prover tha t  
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provides more automation. Nevertheless, a specific class of goals we have en- 
countered could largely benefit from automation. In the proof development, we 
construct the type of polynomials as being {p: te rm l i s t  I ( o l i s ~  p)}, i.e. 
the lists of terms such that  the lists are ordered. In a proof that  manipulates 
polynomials, it is often the case that  we get several subgoals which require to 
prove that  a list is ordered so it can be considered as a polynomial. Proving 
such subgoals is trivial most of the time but having to repeatedly prove them 
becomes quickly annoying. 

5.2 E x t r a c t i n g  t h e  A l g o r i t h m  

Once the development is finished, not only we have the proof of correctness of 
the algorithm but it is also possible to automatically extract an implementation. 
The self-contained version of the algorithm gives a 600 line long Ocaml program. 
The example below uses an instantiation of the algorithm with n variables poly- 
nomials for n = 6 over Q and the usual lexicographic order ( a > b > c > d 
> e > f) .  Instantiating the implementation gives us 5 functions: 

1. gen: i n t  -> p o l y  creates the generators; 
2. s c a l :  i n t  -> po ly  -> p o l y  multiplies the polynomial by an integer; 
3. p l u s :  po ly  -> po ly  -> po ly  adds two polynomials; 
4. mul t  : po ly  -> p o l y  -> po ly  multiplies two polynomials; 
5. buch: po ly  l i s t  -> po ly  l i s t  computes the Gr5bner basis. 

We also write a prettyprinter in Ocaml to make the outputs of computation more 
readable. In the following, we present an interactive session with the toplevel 
Ocaml. Command lines are prefixed with # and end with two semicolons. We 
first define local variables to represent generators: 

# let a = gen 0;; 

val a : poly = a 

# let b = gen i;; 

val b : poly = b 

# let c = gen 2;; 

val c : poly = c 

# let d = gen 3;; 

val d : poly = d 

# let pl = gen 6;; 

val pl : poly = 1 

We then construct the four n-cyclic polynomials for n=4: 

# let rO = (plus a (plus b (plus c d)));; 

val rO : poly = a +b +c +d 

# let rl = (plus (mult a b) 

(plus (mult b c) (plus (mult c d) (mult d a))));; 

val rl : poly = ab +ad +bc +cd 
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#let r2 : (plus (mult a (mult b c)) (plus (mult b (mult c d)) 
(plus (mult c (mult d a)) (mult d (mult a b)))));; 

val r2 : poly = abc +abd +acd +bcd 
#let r3 = (plus (mult a (mult b (mull; c d))) (scal (-I) pl));; 
val r3 : poly =abcd -i 

and the computation of the Gr5bner basis gives: 

# buch [ r 3 ; r 2 ; r l ; r 0 ] ; ;  
- : poly  l i s t  -- [abcd -1; abc +abd +acd +bed; ab +ad +bc +cd; 

a +b +c +d; -b~2d -2bdA2 -d~3; b '2  +2bd +d~2; 
bcd~2 -bd^3 +c~2d'2 +cd'3 -d^4 -1; 
bc -bd +c'2d^4 +cd -2d '2 ;  
-bd~4 +b -dA5 +d; c ' 3 d ' 3  +c'2d~4 -cd - d ' 2 ;  
cA3dA2 +c^2d~3 -C -d; c ' 2 d ' 6  -c~2d~2 - d ' 4  +1] 

While the answer of the system for n = 4 was immediate, the computation for 
n = 5 had to be aborted after one hour of computation and a process size of 
more than 100Mb! This is not too surprising: the version of the algorithm is 
clearly too naive to perform well on large examples. 

6 Related Work 

Analytica [3] and more recently Theorema [22] propose an extension of the com- 
puter algebra system Mathematica [23] with a proving component. The examples 
they present are promising but their proof engines seem to need further devel- 
opments in order to handle proofs of the same complexity as the one we have 
presented here. Also, there have been attempts to develop large fragments of 
mathematics within theorem provers. One of the first attempt was the Automath 
project [15]. The current largest attempt is the Mizar project [20]. Some recent 
efforts include Jackson's work on computational algebra [13] and Harrison's work 
on real analysis [9]. The focus of these works is mostly on formalizing mathemat- 
ics inside a prover, so they give very few account of algorithmic aspects. Finally 
there have been several proposals to exploit a physical link between a prover 
and a computer algebra system to perform computation (see for example [1]). 
In [10], there is a discussion of some of the limitations of this approach. 

As for the technique of program extraction, it has been demonstrated mostly 
on toy programs [11], [16]. We believe that our algorithm is one of the first 
non-trivial examples using this technique. 

7 Conclus ion  and  Fu tu re  Work  

While working on this development we had clearly the feeling to be at the frontier 
between proving and computing. Even if we were mostly in the proving world 
trying to state properties about polynomials, we were also able to test and 
compute with these very same polynomials. The situation is not yet ideal and 
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we have described some of the problems we have encountered. Still we hope that 
this experiment shows that we are not so far from being able to mix proving and 
computing. 

It is interesting to contrast the 9000 lines of the proof development with 
the 600 lines of the extracted Ocaml implementation of the algorithm. Proving 
requires much more effort than programming. This is not a surprise. It also indi- 
cates that the perspective of developing a completely certified computer algebra 
system is unrealistic for the moment. The first step in that direction is definitely 
to increase the knowledge of provers with basic algebraic notions. One third of 
our proof lines has been used to construct a library of multivariate polynomials. 
More automation and a better support to structure the development are also 
mandatory. 

The work we have done on Buchberger's algorithm is far from being finished. 
Our algorithm is a textbook version of a real algorithm. We are aware that we 
still need to give evidence that with our approach we can obtain an algorithm 
that can be compared with what is proposed in general-purpose computer alge- 
bra systems. In that respect, it is worth noticing that correctness becomes an 
important issue for optimized versions of the algorithm. The main optimization 
consists in avoiding to check the reducibility to zero of some spolynomials. A 
common implementation error is to be too aggressive in the optimization and 
discard spolynomials that are in fact not reducing to zero. Even in that case, the 
algorithm can still behave well because the generation of spolynomials is heavily 
redundant. Testing may not be sufficient to spot this kind of implementation 
error. 

Moreover, we would like to investigate the possibility of obtaining automat- 
ically or semi-automatically a textbook version of the proof of correctness of 
the algorithm directly from our development. In [5], a method is proposed to 
automatically produce a document in a pseudo-natural language out of proofs in 
Coq. Applying this method to our complete development seems very promising. 

There are several ways in which this initial experiment can be extended. 
First of all it would be very interesting to see how the same proof looks like 
in other theorem proving systems. It would give a more accurate view of what 
current theorem proving technology can achieve on this particular problem. Also, 
we plan to complement this initial contribution with the certification of other 
standard algorithms for polynomials such as factorization. Our long term goal is 
to provide a completely certified kernel for non-trivial polynomial manipulations. 
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