
Programming Thomas A. Standish
Languages Editor

Mechanical Program
Analysis
Ben Wegbreit
Xerox Palo Alto Research Center

One means of analyzing program performance is by
deriving closed-form expressions for their execution
behavior. This paper discusses the mechanization of such
analysis, and describes a system, Metric, which is able to
analyze simple Lisp programs and produce, for example,
closed-form expressions for their running time expressed
in terms of size of input. This paper presents the
reasons for mechanizing program analysis, describes the
operation of Metric, explains its implementation, and
discusses its limitations.

Key Words and Phrases: analysis of programs,
performance analysis, execution time, execution behavior,
difference equations, generating functions, list processing,
Lisp, algebraic manipulation, programming languages,
analysis of algorithms

CR Categories: 3.69, 4.22, 5.24, 5.25

Copyright O 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: Xerox Palo Alto Research Center, 3180
Porter Drive, Palo Alto, CA 94304.

528

1. Introduction

One means of analyzing program performance is by
deriving closed-form expressions for their execution be-
havior. This is an important facet of programming. In
this paper, we discuss the mechanization of such analy-
sis. We first outline the main problems to be addressed.
We then describe a prototype system, Metric, which is
able to analyze simple Lisp programs and produce
closed-form expressions for their execution behavior in
terms of properties of the input, e.g. execution time as a
function of the length of the arguments. The Metric
system has been implemented in Interlisp [19]; this im-
plementation is discussed, with emphasis on system or-
ganization and general techniques. We conclude with a
brief discussion of issues raised by this study.

Two limitations should be noted at the outset. One,
standard halting-problem arguments show that no such
system can be complete: execution time is not a decida-
ble property of current programming languages. Two,
the analysis of many algorithms requires considerable
mathematical expertise; an expert system would neces-
sarily include all the techniques in the monumental work
of Knuth [9]. The former is an absolute limitation; the
latter establishes a boundary beyond which interactive
assistance from a programmer or analyst is required
[5]. We are concerned in this paper with establishing
mechanical program analysis as a desirable and feasible
activity within these limitations.

Mechanical program analysis has three main appli-
cations:
1. As a software engineering tool: serving as an aid to
the programmer in understanding how a program be-
haves.
2. In an automatic program synthesizer [6, 10, 12]. In
general, there are many ways in which an axiomatic
program specification can be realized; some knowledge
of performance is required if a program synthesizer is to
make a good choice.
3. In the compiling system for a very high-level language
[15]. To the extent that a very high-level programming
language statement avoids commitment of procedural
steps, the issues of synthesis arise: there are many possi-
ble procedural renderings of a program and performance
is the criterion to choose among logically equivalent
alternatives (cf. [3] for amplification of this point).

There are a variety of measurement techniques [8,
7, 14] for obtaining execution profiles, i.e. plots of time
spent in each program region when the program is run
on sample data. While such profiles serve the needs of
the first application reasonably well, they must be sup-
plemented by analysis for the purposes of the other two
applications. In particular, to optimize a program writ-
ten in a very high-level language, the system must not
only find where the program is spending resources but
also determine why, i.e. analyze what it is doing there.
Some closed-form representations of program behavior
in these regions seems required if one is to go much be-

Communications September 1975
of Volume 18
the ACM Number 9

yond the classical [4] compiler optimization techniques.
With a suitable closed-form representation, one has a
start at finding the cause, in program terms, of poor
functional behavior or unacceptably large coefficients.

The behavior of a program can be characterized by
a set of properties: execution time on a particular ma-
chine, amount of storage used, size of its output,
probability of its result satisfying a certain predicate,
etc. Some of these properties (e.g. time) are of intrinsic
interest; others (e.g. probabilities) are of interest prin-
cipally because they are required in computing proper-
ties of intrinsic interest. We use the term measure
generically to denote any of these properties.

Given a program and a specified measure, the prob-
lem of analysis is first to determine what properties of
the data are most relevant to program performance
under that measure and then to find a closed-form ex-
pression in terms of these properties. In general, an
exact expression in terms of known properties of the
input cannot be obtained, e.g. internal tests may depend
on computed quantities having no simple relation to the
input. Such tests are treated probabilistically, e.g. as
Markov processes [1, 16] when the probability is con-
stant and independent of prior history. Following Knuth
[9], performance of a program under some measure can
be expressed as a four-tuple (min, max, mean, variance).
The term performance will be subsequently used strictly
to denote such a four-tuple. We use the term range to
denote the pair (min, max) and moment to denote the
(mean, variance). A scalar S is an abbreviation for the
performance (S,S,S,O).

Metric is a prototype system, constructed to study
the mechanization of program analysis; as such, it con-
centrates on certain key issues ignoring many peripheral
ones. Its source language is essentially Lisp 1.0 as de-
scribed in [11]. In the interest of brevity, we refer the
reader to [11] and [20] for an explanation of list process-
ing and Lisp. In presenting example programs, we use
the following notation:

The empty list is denoted by { }.
A nonempty list is denoted by {f.r} w h e r e f is the

first element of the list and r is the list consisting of
all elements except the first.

CONS(f ,r) = I f . r}
CAR({ f . r}) = f
C D R ({ f . r }) = r
ATOM(x) is a predicate which is true if and only if x is

not a list or is the empty list.
NULL(x) is defined as x = {}.
Conditional expressions are written as:

if pl then ex else if p2 then e2 • • • else en

Given the definition of a set of procedures, Metric
attempts to produce analysis for their running times,
number of CONS executed, number of list cells in their
result, etc., as directed. In its current state, it can handle
only simple programs such as those which might be used
as introductory exercises in Lisp programming (e.g.

529

append, reverse, nth, substitute, flatten, member, and
union). However, the system is built on methods with
general competence, and within its province, it has some
degree of expertise. Subject to certain limitations, these
methods are extendable to more complex programs and
a richer set of data and control structures. In the con-
clusion, we outline how the extensions may be affected
and discuss the limiting constraints.

This paper is divided into seven sections. Section 2
gives several examples of programs and their analysis
by Metric. Section 3 is an overview of the system or-
ganization. Sections 4, 5, and 6 describe the three prin-
cipal phases of the system: assigning local costs, ana-
lyzing recursion, and solving difference equations. Sec-
tion 7 discusses the extensions of these techniques.

2. Examples

We begin with a set of examples which illustrate the
sort of analysis that Metric can carry out. Here we are
concerned only with what Metric can handle; subse-
quent sections discuss how.

A conceptually simple procedure for reversing the
top level of a list is given by:

REVERSE(L) =-
if NULL(L) then {}
else APPEND(REVERSE(CDR(L)) ,

CONS(CAR(L) , {}))

APPEND (X, Y) =
if NULL(X) then Y
else CONS(CAR(X) ,

APPEND(CDR(X) , Y))

Metric determines that the execution time for RE-
VERSE(e) is given by e0 -k cl. n -+- c~. n 2 where n is the
length of e (i.e. the number of list cells in the cdr direc-
tion) and the c~'s are implementation constants. In its
normal mode of operation, Metric computes such im-
plementation constants symbolically, as linear arith-
metic expressions of the form ni.ei q- . . . -k- n k ' e k

where the n~'s are real numbers and the e~'s denote exe-
cutions of elementary procedures. For example1:

c2 = (1~2).null-{- (1 /2) .edr-b (1~2).cons
-I- (1 /2) .car q- (1/2).fncall q- 2. vref

The lowercase spelling of a primitive operator stands for
that operation;fncall denotes the action required to in-
voke a nonprimitive procedure; vref denotes access to a
variable; and cref denotes access to a constant. Gener-
ally, it is convenient to ignore the distinction between
the costs of CAR and CDR; cr is then used to denote

The appearance of nonintegral coefficients such as 1/2 may
seem puzzling. The reason is as follows: the execution time is most
naturally expressed in the form do q- dl.n q- (1/2).d2.n. (n -- 1),
where the di's are linear arithmetic expressions with integral coeffi-
cients (cf. Section 6). Going from this natural form to a poly-
nomial creates the nonintegral coefficients in the c~'s above.

Communications September 1975
of Volume 18
the ACM Number 9

either. The other two constants are given by:

Cl = (3/2).null -b cr q- (1/2).cons q- (3/2).fncall
+ 3 . v , ~ f + cref

Co = null -b vref -b cref

This symbolic representation o f execution time was
chosen as being the simplest machine-independent form.
By assigning values to the elementary operat ion sym-
bols, one can obtain number o f CONS executed, num-
ber o f m e m o r y references, or microseconds for the com-
putat ion time under an interpreter or simple compiler. 2

F L A T is a procedure which flattens a list, construct-
ing a one-level list of the a toms in a possibly multilevel
list, e.g. F L A T ({ A . { { B . C } . D } }) = {A,B,C,D}. One
way of doing this uses a doubly-recursive auxiliary pro-
cedure FLAT2:

FLAT(L) -- FLAT2(L, {})

FLAT2(X, ¥) =-
i f ATOM(X) then CONS(X, Y)
else FLAT2(CAR(X) ,

FLAT2(CDR(X) , Y))

Metric determines that the t ime for FLAT(L) depends
on the size of L, i.e. the n u m b e r o f list cells. ~ Specifically,
the time is found to be Co + el.s, where s is the size o f
L, and:

el = cons + 2.fneall + 2. er --k 2. atom + 7. vref
co = cons -b atom -k fncall -b 4. vref -b eref

In analyzing a p rogram under one measure, one or
more other measures are typically applied in the de-
composi t ion. For example, in comput ing time of RE-
VERSE(FLAT(APPEND(P,Q))) , it is found that length
of the a rgument to R E V E R S E is needed. Analyzing
FLAT under the length measure, Metric obtains length
(FLAT(L)) = 1 + size(L). Continuing, it finds that
size(APPEND(P,Q)) = size(P) + size(Q). Hence, the
length of the a rgument to R E V E R S E is found to be 1 +
size(P) -k size(Q), giving one consti tuent of the time.

Length and size are structural properties o f varia-
bles, analogous to dimensions o f arrays or number of
records in a file. Metric at tempts to express p rogram
behavior in terms of these. When this is not possible,
due to internal tests no t related to structural properties,
Metric expresses the analysis as a performance in which
probabilities of unanalyzable tests appear as parameters.
For example, the number o f times that a tom X appears

This does not provide a satisfactory basis to assess computa-
tion time under an optimizing compiler, since no account is taken
of possible transformations to the execution sequence (e.g. common
subexpression elimination, and removal of invariant computation
from recursive calls). To handle this properly, it would be necessary
to apply the local cost assignment phase discussed in Section 4, not
to the source program, but rather to the intermediary code or to the
generated code itself. This would complicate the implementation
both directly (program representation is usually more complex)
and indirectly (compiler interfaces must be established) but presents
few conceptual problems. We return to this in Section 7.

3 Size may be defined by size (I,) =-- if NULL(L) then 0 else 1
-b size(CAR(L)) --k size(CDR(L)), and length analogously.

in the top level of list L is computed by :

COUNT(X,L)
if NULL(L) then 0
else if X = CAR(L)

then A DO 1 (CO UNT(X, CDR(L)))
else CO UNT(X, CDR(L))

The probabil i ty of the test X = CAR(L.) succeeding is
needed to obtain the time performance of COUNT.
However, the operat ion " = " is primitive and cannot be
further analyzed. The system can proceed no further
without using addit ional knowledge supplied to it. If,
on its input data base, it finds that the test " = " in
CO UNT may be treated as constant , it assigns a sym-
bolic probability, say p, its value to be determined by
measurement . Metric then is able to determine that the
time performance is given by:

(Co -q- cln, Co -q- c2n, Co -b c3n, c4n)

where n = length(L) and

Co = null -b cref -q- vref
cl = fncall --k null -q- eq -q- 2. cr q- 5. vref
c2 = addl q- 2.fncall -k null q- eq q- 2. cr q- 5. vref
c3 = p. addl --k p'fncall --k fncall q- null "b" eq q- 2. cr

+ 5. vref
c4 = p .addl 2 + 2 .p .addl .fncall + p.fncall ~

-- p2.addl2 - 2.p2.addl .fncall - p2.fncall 2

An instructive counterpar t is UNION which assumes
its arguments are lists of nonrepeat ing a tomic symbols
and forms their set union:

UNION(X,Y) =
if NULL(X) then Y
else if M E M B E R (C A R (X) , Y)

then UNION(CDR(X) , Y)
else CONS(CAR(X) ,

UNION(CDR(X) , Y))

Here the test to be treated probabilistically is a defined
procedure:

M E M B E R (Z , L) =-
if NULL(L) then false
else if Z = CAR(L) then true
else M E M B E R (Z , C D R (L))

so that probabi l i ty(MEMBER(CAR(X) , Y)) is a derived
expression which can be expressed in terms of other
quantities. Analyzing M E M B E R using probability of
the result being true as the measure, Metric obtains
1 -- (1 -- a) m where a = probabili ty(Z = CAR(L)) and
m = length(L). Using this, the length o f UNION(X, Y)
is found to be:

(m , m -k n , m q- n . (l - - a) m,
n . (1 - - a) m - n . (1 - - a) 2"m)

where m = length(I") and n = length(X).

530 Communications September 1975
of Volume 18
the ACM Number 9

Fig. I. Structure of Metric.

input program Ib

Cost
Tablets

/ Procedure
Definitions

r

progrclm
expressions I

l
Local Cost
Assignment

cost
expressions

Analysis

I l
difference olgebrolc
equations expressions

t L
Difference
Equations

INPUT
DATA SYSTEM
BASES MODULES

L

-I

II performance
of program
expressions

OUTPUT

3. System Structure

The overall organization of Metric is shown in Fig-
ure 1. Solid lines show the flow of control through the
system; dashed lines show the use of data, either input
data or previously computed results. The input data
bases are a set of procedure definitions and a set of tables
used to establish the symbolic cost of elementary opera-
tions. Direct input is a program expression and one of
the known measures to use in its analysis. The output is
the specified analysis plus a data base of the perform-
ance of procedures analyzed in this process. Subsequent
calls on the system retrieve the results of prior analysis
when applicable. Hence, the system can be supplied
performance information but will work from definitions
if that is unavailable.

Analysis of a program expression takes place in
three phases:

Phase 1: Local cost assignment. A cost is assigned to
each constituent as follows: Primitive operations
(e.g. CAR) and language overhead activities (e.g.
function call) are assigned costs as specified by the
local cost tables. Defined operations are assigned
the cost of their definition except that recursive
procedure calls are detected and specially marked.
The analysis of a nonrecursive procedure is deter-
mined by the composition of local costs; a recursive
procedure is passed on to the next phase.

Phase 2: Recursion analysis. The procedure is symboli-
cally evaluated to determine how the recursion vari-

ables change from one call to the next. This gives the
recursive structure of the computation sequence.
Next, the computation sequence is projected into
the integers by constructing a set of difference equa-
tions which model the list structure manipulation
carried out by the recursive calls.

Phase 3: Solution of difference equations. One or more
of the following techniques are used to obtain closed-
form expressions: direct summation, pattern match-
ing, elimination of variables, best-case/worst-case
analysis, and differentiation of generating functions.

The solution to the difference equations gives an ex-
pression for the performance of the originating recur-
sive procedure. This is simplified, put into functional
form, and stored under the pair (procedure, measure) for
subsequent retrieval. A procedure thus analyzed has its
cost given by the stored functional form. The next three
sections explain these three phases in more detail.

4. Assigning Local Costs

The local cost assignment phase maps a program
expression into a symbolic cost expression which speci-
fies its cost under a given measure. Measures may be
broadly grouped into two classes--cumulative and
noncumulative--depending on how the arguments to a
procedure appear in the measure of that procedure.
Cumulative measures (e.g. time) treat nested procedure
calls as additive; for example, the time to APPEND
(REVERSE(P), CONS(Q,R)) is the sum of the times
required to REVERSE(P), CONS(Q,R) and APPEND
the results. Noncumulative measures (e.g. length) ig-
nore inner procedure calls except when a property of
their result is explicitly needed; for example, the length
of CONS(REVERSE(X), APPEND(Y,Z)) does not
depend upon the first argument to CONS, so REVERSE
can be totally ignored. Cumulative measures describe
resource expenditure: time, number of CONS (and I/o
activity if I/o was considered). Noncumulative measures
describe the result of a procedure independent of how
that result is obtained: size, length, probability of a cer-
tain specified result (and data type if data types were
considered).

To maintain uniform notation for expressions in-
volving the two classes of measures, (measure) ((pro-
cedure application)) is always interpreted as the cost of
(procedure application) under (measure) after all argu-
ments have been evaluated. Thus, the total time to
compute the entire program expression APPEND
(REVERSE(P), CONS(Q,R)) is expressed as: time
(REVERSE(P)) q- time(CONS(Q,R)) q- time(AP-
PEND(REVERSE(P), CONS(Q,R))) -t- time to access
P, Q, and R.

Procedures may be grouped into three classes: (1)
primitive--built-in operations of the language (e.g.
CDR); (2)fixed--defined procedures containing no re-

531 Communications September 1975
of Volume 18
the ACM Number 9

cursive calls or invocations of recursive procedures
(e.g. NOT); and (3) closed--procedures which call
themselves (directly recursive) or invoke other closed
procedures.

4.1 Primitive Procedures
Primitive procedures and constants are assigned

costs as specified by the local cost tables. Depending on
the measure and procedure, these may be reals, scalar
expressions, or performance four-tuples. For example,
the constant {} is assigned cost 0 under the measure
length. Similarly, under the size measure, size(CONS
(el,e2)) = 1 -k- size(el) + size(e2). Under the measure
time, the usual assignment is a symbolic expression,
e.g. time(CONS(e~, e2)) = cons. However, this may be
reduced to a more elementary form, such as memory
references or microseconds on a given machine. In some
cases, performance four-tuples may be used. For exam-
ple, in an implementation with cons-paging [2] the
number of instructions executed to perform a CONS is
variable; similarly a read operation would be modeled
by its performance (rain, max, mean, variance). The use
of performance four-tuples in this way allows the sys-
tem to obtain statistical analysis of programs whose
primitive (i.e. unanalyzable) operations have variable
costs.

4.2 Fixed Procedures
Fixed procedures are assigned costs by analyzing

their bodies. The body of a fixed procedure may be de-
composed into the disjunction of one or more execution
paths r ~ , . . . , r~ where internal tests choose the appro-
priate path. Since each execution path consists only of
primitive and other fixed procedures, local cost assign-
ment is used directly to assign a cost ci to each path r~.
Similarly, local analysis under the measure probability
is used to obtain the probability p~ of taking that pa th?
The performance is then:

(minimum(min(c O) , maximum(max(c i)) ,
i i

)--~(pi" mean(ci)), ~-~(pi" variance(ci)
i i

-~ pi" mean(ci)2) _ (~(pi 'mean(ci)))2}.
i

This is complicated by the need to express the results
symbolically, e.g. cons and (3.cr q- atom) are incom-
parable. Their minimum is therefore expressed as:
minimum (cons, 3. cr + atom). When the performance of
a fixed procedure has the form (S,S,S,O) (because there
is only one path or all paths have equal cost), it is fro-

4 In computing this probability, the system treats all tests as
statistically independent, so the probability of a sequence of choices
is computed to be the product of their independent probabilities.
This simplifying assumption is often invalid. Merely detecting the
possibility of nonindependent tests would not be difficult: it suffices
to be conservative and report possible dependency whenever the
analyzer cannot guarantee independence. However, going further
and analyzing the dependencies is a fundamental, deep problem and
beyond the scope of the present paper. We return to this issue in
the conclusion.

quently useful to suppress detail and express the cos t
of that procedure as a single entity. For example, time
of NOT defined as NOT(X) =-- if X then false else true
is represented by the simple symbolic expression not.

As an example, consider EQ3 which tests whether its
three arguments are identical:

EQ3(X, Y,Z) -
if N O T (X = Y) then false
else if N O T (X = Z) then false
else true

EQ3 has three branches with probabilities (1 - a),
(1 - a).a, and a 2 respectively, where a is the probabili ty
of EQ returning T. Under the measure time, the costs
are

Cl = 2.vref + eq + fncall + not + cref,

c., = 4. vref + 2. eq + 2.fncall + 2. not + cref,

and c2 respectively; hence, performance is:

(Cl, C2, Cl "~ a. (c2 -- cl), cl 2 + a. c22 -- a. cl 2
- (c l + a . (c , - Cl))2).

Since terminal conditions of these paths are false,
false, and true respectively, the probability of EQ3
returning the result true is determined to be a 2. This
would be computed, by analyzing EQ3 under the mea-
sure probability, if EQ3 appeared as the test in another
procedure.

4.3 Closed Procedures
Closed procedures are assigned costs by processing

their definitions, assigning local costs to primitive and
fixed constituents as described above, but giving special
treatment to directly recursive calls a n d calls on other
closed procedures. We consider direct recursion first.
The essential idea & to map a recursive procedure P into
a new recursive procedure whose value is the cost o f P.
Recursive calls are marked with the measure being used
in the current analysis. That is, if the definition of P
being analyzed under measure M contains a subexpres-
sion P(el, . . . , en), then, when the cost assignment
phase encounters this and detects recursion, it returns
the symbolic expression M(P(el, . . . , on)). For exam-
ple, using the definition of A P P E N D given in Section 2:

length(APPEND(X, Y)) =-
if NULL(X) then length(Y)
else 1 q- Iength(APPEND(CDR(X), Y))

Recursion analysis, discussed in the next section, uses
this to determine, symbolically, how the arguments are
modified from call to embedded call.

Calls from a closed procedure to another closed pro-
cedure are handled by analyzing the called procedure
recursively to obtain its cost--possibly under a differ-
ent measure. For example, consider determining the
time of REVERSE. An intermediary representation

532 Communications September 1975
of Volume 18
the ACM Number 9

would be:

i f NULL(L) then null q- vref q- cref
else null q- 3. vref q- cref q- 2. cr q- cons + 2 .fncall

time(REVERSE(CDR(L))) +
time(APPEND(REVERSE(CDR(L)),
CONS(CAR(L), {I)))

Since the symbolic expression time(APPEND(RE-
VERSE(CDR(L)), CONS(CAR(L), {}))) invokes
another closed procedure, the local analysis phase in-
vokes the system recursively to obtain a closed-form
expression for this in terms of primitive operations. This
is carried out in the following steps.
(i) APPEND is analyzed under the measure time. The
system is thereby invoked recursively; it runs through
all three phases in carrying out this analysis and pro-
duces the answer: time(APPEND(X,Y)) = Co + c1"
length(X) and computes the constants co and c1. The
process by which the answer is obtained is developed in
this and the next two sections. Here, it suffices to con-
tinue with the result.
(ii) Since the length of the first argument to APPEND
is needed, REVERSE is analyzed under the measure
length.

length(REVERSE(L)) ---
if NULL(L) then 0
else length(APPEND(REVERSE(CDR(L)),

CONS(CAR(L), {})))

Again, instead of returning the result in this form,
Metric attempts to determine the value of length(AP-
PEND(REVERSE(CDR(L)), CONS(CAR(L), {}))).
(iii) To do so, it analyzes APPEND under the measure
length. The phase (l) result is shown above. Phases (2)
and (3) eventually result in: length(APPEND(X, }1)) =
length(X) + length(Y).
(iv) To use the result of step (iii) in step (ii), length-
(CONS(CAR(L), { })) and length(REVERSE(CDR(L)))
are needed. The former is 1. The latter is a use of length
(REVERSE) while analyzing REVERSE under the
measure length; consequently, it is represented as length
(REVERSE(C D R(L))).
(v) Substituting (iii) and (iv) into (ii), length of RE-
VERSE is expressed as

if NULL(L) then 0
else 1 + Iength(REVERSE(CDR(L)))

From this, subsequent phases find that length(RE-
VERSE(L)) = length(L).
(vi) The result of (v) is combined with the result of (i),
to obtain : time(APP END(REVERSE(C D R(L)) ,
CONS(CAR(L), {}))) = Co q- cl. (length(L) -- 1) where
the ei's are the constants from step (i). This, then, is
used to obtain an expression for the time of REVERSE.

This process wherein the analysis of a procedure
under one measure invokes the analysis of called pro-
cedures under different measures is somewhat analogous

to the generation and proof of subsidiary lemmas in
automatic program verification. In Metric, it is used
frequently. In addition to cases like the above, a de-
fined predicate encountered as the conditional-test in a
procedure definition is analyzed for probability of its
returning the value true. It is useful in this regard to
treat each measure as imposing an interpretation (i.e.
model) on the primitive operator names and local cost
assignment as evaluation in this model. Local cost as-
signment maps fixed procedures into fixed cost expres-
sions and recursive procedures into recursive cost ex-
pressions.

When Metric discovers that one recursive procedure
calls another, it temporarily suspends analysis of the
first, analyzes the second to obtain its cost in closed
form, and substitutes a closed-form expression in place
of the call to the second procedure. Called procedures
are thus systematically eliminated from subsequent
consideration. Hence, the recursive cost expressions pro-
duced by the local cost phase contain only one function
letter, which simplifies the construction of difference
equations in the next phase. This elimination method
works only for certain call disciplines: define a set of
procedures to be well nested if, whenever A calls B, no
procedure called by B calls A. Note the analogy with
well-nested loops. Also, note the specific relation that
any well-nested iterative loop structure can be turned
into a set of well-nested recursive procedure's--each
label is turned into a procedure name, and each back-
ward goto into a procedure call. The elimination method
works only on well-nested procedures. If the nesting
structure is viewed as a tree, the processing order corre-
sponds to a prefix walk.

5. Analyzing Recursion

The recursion analysis phase attempts to map the
recursive cost expression for a procedure into a set of
difference equations whose solution gives the perfor-
mance of the original procedure. This takes place in three
steps: (1) reduction to normal form; (2) construction of
recursion equations by symbolic evaluation and case
discrimination; and (3) projection into the integers.

5.1 Reduction to Normal Form
A recursive cost expression for the procedure P

under measure M contains one or more execution paths
which include M(P(argl, . . . , argn)) and one or more
paths free of recursion. The normal form for such a
cost expression is a conditional:

if p l then c~ else if p2 then c2 else i f . . . else Ck

where the ci's are free of conditionals.
The recursive cost expression for any pure Lisp pro-

cedure can be reduced to this form by moving all tests
backward along the execution path and replacing em-
bedded conditionals by conjunctions of the outer tests

533 Communications September 1975
of Volume 18
the ACM Number 9

and inner tests. In the case of well-nested procedures
analyzed by the elimination method of the previous
section, the only nonprimitive procedure in the c~'s is
P, the procedure being analyzed.

To simplify subsequent processing, it is desirable to
eliminate all argument positions which are constant in
all uses or which are manifestly irrelevant to the value of
the cost expression. When an argument position is thus
eliminated, the corresponding formal parameter is
treated as a free variable. For example, to illustrate the
elimination of constant argument positions, consider
SUBST which substitutes X for the atom Y in Z

SUBST(X, r , z) -------
if ATOM(Z) then if Y = Z then X

else Z
else CONS(SUBST(X,Y,CAR(Z)),

SUBST(X, r, CDR(Z)))

Each recursive call on SUBST uses X as the first argu-
ment while X is also the first parameter in the defining
form. Hence, the first argument position is constant
over the course of recursion and may therefore be
eliminated. The formal parameter X is then treated as a
free variable. Similar considerations apply to the formal
parameter Y and the second argument position. Thus,
under the measure size, the cost has normal form:

size(SUBST(Z)) =-
if ATOM(Z) & Y = Z then size(X)
else if ATOM(Z) then size(Z)
else 1 -b size(SUBST(CAR(Z)))

q- size(SUBST(CDR(Z)))

An argument position may vary during the recursion
and still be irrelevant to the value of the cost expression.
Define a relevant argument position as follows: A
formal parameter which appears in a nonrecursive cost
expression is relevant, since the value of that cost ex-
pression depends on it; hence, the corresponding argu-
ment position is relevant. A formal parameter which
appears in a test is relevant if the test actually depends
on its value; hence, the corresponding argument position
is relevant. Finally, a formal parameter is relevant if it
appears as an argument in a recursivc call within a posi-
tion previously labeled as relevant; again, the argument
position corresponding to the formal parameter is then
relevant. An argument position is manifestly irrelevant
if it is not shown to be relevant by the above rules. For
example, consider the time of FLAT2 defined in Section
2. Its normal form before parameter elimination is:

time(FLAT2(X, Y)) =-
if ATOM(X) then Co
else cl q- time(FLAT2(CDR(X), Y))

q- time(FLAT2(CAR(X), FLAT2(CDR(X),Y)))

Although the second argument to FLAT2 varies--being
Y in the definition and FLAT2(CDR(X),Y) in one re-
cursive call--its value is manifestly irrelevant to the

value of the cost function. Parameter elimination re-
sults in:

time(FLAT2(X)) =-
if ATOM(X) then co
else cl + time(FLAT2(CDR(X)))

q- time(FLAT2(CAR(X)))

5.2 Construction of Recursion Equations
The second step constructs a set of recursion equa-

tions, converting the cost expression from procedural
to declarative form. We begin with an example, con-
tinuing the above processing of SUBST. Let E(Z) =
size(SUBST(Z)), let a~ be some unspecified atom, let
sl and s2 be unspecified values. Then size(SUBST(Z)) is
defined by the recursion equations:

E(al) = size(X) when Y = Z;
0 when Y ~ Z

E({sl.s2}) = 1 + E(sx) + E(s~)

This is obtained by employing two processes simultane-
ously: symbolic evaluation and case discrimination. We
consider these in turn.

Symbolic evaluation constructs a partial model of
the data structures and values as specified by an execu-
tion path; it uses this model to partially evaluate subse-
quent expressions on that path. The model is repre-
sented in a symbolic association list, alist, which stores
the values of variables and expressions as determined by
tests: the left hand side of each conditional alternative
is given an input alist and generates two output alists:
with its truth (falsity) conjoined as a new binding for its
Yes (No) output branch. The Yes output branch is used
in evaluating the right hand side of the alternative; the
No output branch is given as input to the next condi-
tional alternative. In the above example, ATOM(Z)
adds (Z = al) to the Yes alist and (Z = {sl.s~}) to
the No alist. By convention, a~'s stand for unspecified
atoms, si's for unspecified S-expressions, and ni's for
unspecified nonnegative integers.

Each form encountered during symbolic evaluation
is evaluated so far as possible by using the information
in the current alist. In outline, partial evaluation of a
form using an alist proceeds as follows. A variable is
replaced by its alist binding (e.g. Z by a~ on the Yes arm
after ATOM(Z)) or by itself if no binding is present.
CONS(el, ez) is replaced by {el.ez}; CDR({el.e2}) is
replaced by e2, size(a~) is replaced by 0, etc. Invoca-
tions of defined procedures are replaced by expressions
for their definition (copy rule) up to the first recursive
call, which evaluates to a (recursive) function applica-
tion: dummy function symbol applied to the partial
evaluation of the arguments. Symbolic evaluation only
affects the right hand sides of conditional alternatives,
i.e. their symbolic costs.

Case discrimination converts an initial sequence of
conditional left hand sides pl, . . . , pk into a pattern Pk
which describes the situation in which the kth condi-

534 Communications September 1975
of Volume 18
the ACM Number 9

tional alternative will be chosen. The pattern pe is
divided into two parts: a structural portion, e.g. E(al),
and a when qualification, e.g. when (Y = Z). The struc-
tural portion models that aspect of the arguments on
which recursion is performed. The relevant properties
in the case of list structure is distinguishing {},
atomic, and dotted pairs; in the case of dotted pairs, the
system models as many levels as are manifest from the
program tests. For example, on the path which takes
the No branches of NULL(X) and NULL(CDR(X)) ,
the binding for X establishes that 2" = {Sl. {s2 . s3} }
meaning: the car of X is some S-expression while its
cdr is a dotted pair. In forming a set of recursion equa-
tions, the structural portion becomes the left hand side
while the conditional alternative and when qualifica-
tion become the right hand side. Right hand sides with
identical left hand sides are grouped together.

The effect of symbolic evaluation combined with
case discrimination is illustrated by the following re-
cursion equations:

(1) Let E(L) = time(REVERSE(L)). Then
E({}) = do
E({Sl . s2}) = d l + dz.length(s2) + E(s2)

for appropriate constant do, d~, and d2.

(2) Let E(L) = length(UNION(L,Y)),
where Y is treated as a free variable. Then

E({}) = length(Y)
E({sx . s2 }) = E(s2) when MEMBER(s1,]I) ;

1 + E(s2) when ~,~MEMBER(s~, Y).

(3) Let E(X) = time(FLAT2(X,Y)),
where Y has been dropped, since step (i) finds that it is
manifestly irrelevant. Then

E(al) = co
E({Sl . s2}) = Cl + E(sx) + E(s2).

(4) Under the measure length, however, Y is quite rele-
vant to FLAT2. Hence, let E(X, Y) = length(FLAT2
(X,Y)) . Then

E(ax, Y) = 1 + length(Y)
E({sx . s2}, Y) = E(sl, E(sz, Y)).

5.3 Projection onto the Integers
The final step in analyzing recursion is mapping the

recursion equations where the arguments are list struc-
tures into a set of difference equations where the argu-
ments are integers. Define E(arg~, . . . , argn) to be
F(bx, . . . , b,) where each b~ is some integer valued func-
tion of argo, b~ is said to be an abstraction ofargl. The
abstractions are chosen such that: (a) the replacement
of E(argl, . . . , argo) by F(bx, . . . , b,) can be done
consistently, (b) all variables which are not integer-
valued are replaced (except from when qualifications
which are left unaltered). The current system uses only
the abstraction's length and size3 To a first approxima-
tion, length is used if each recursive form involves only
some nth cdr of the input, while size is used if some
recursive form depends on car and cdr links. For ex-

ample, the first two recursion equations above depend
only on s2, since sl is ignored. As this is the complete
recursive description of E, the dependence only on s2
carries to all levels, i.e. only the length of the argument
to E is relevant. Hence, a new function F is defined,
which makes this dependence explicit, F(length(L)) =
E(L). Since length({sl.s2}) = 1 + length(s2), the cor-
responding difference equations are:

(1') Let F(length(L)) = E(L).
F(0) = do
F(n2 + I) = dl + d2.n2 + F(n2).

(2') Let r(length(L)) = E(L).
F(O) = length(Y)
F(n2 + 1) = F(n2) when MEMBER(sl , Y);

1 + F(n2) when ,~MEMBER(sl , Y).

Where both sl and s~ appear as arguments to E recur-
sively, the dependency is on size. A new function F is
therefore defined as F(size(X)) = E(X). Since size •
({Sl . s2}) = 1 + size(s1) + size(s~), the difference
equation corresponding to (3) is:

(3') Let r(size(X)) = E(X).
F(0) = c0
F(nl + n2 + 1) = cl + F(nl) + F(n2).

The appearance of an explicit length or size of an argu-
ment forces the abstraction of that argument position.
Thus, in case (4):

(4') F(size(X), length(Y)) = E(X,Y) .
F(O, m) = 1 + m
F(nl + n2 + 1, m) = F(nl, F(n2, m)).

Note that the abstraction to the integers treats only the
structural part of the pattern in the recursion equations.
The when qualifications remain unchanged-- to be used
in subsequent processing.

6. Solving Difference Equations

The final phase solves difference equations such as
the above to produce closed-form expressions. Differ-
ence equations may be considered in two groups de-
pending on the absence or presence of when qualifications.
Those without qualifications can have exact solutions.
When qualifications give rise to performance expres-
sions for which the range is obtained by considering
best and worst cases and the moments are obtained f rom
the derivatives of generating functions.

5 Other possible abstractions include car-length, max-length
(maximum path along any combination of car or cdr links), and
min-length. Adding these to the system would not be difficult. More
difficult but essentially understood is how to extend these to a
language with multiple record types; for example, in such a lan-
guage, each pointer field of a record defines a separate length class,
etc. What is not well understood is how to synthesize an abstraction
from the program when the correct one is not already known by the
system; this is currently being studied.

535 Communications September 1975
of Volume 18
the ACM Number 9

6.1 Unqualified Difference Equations
M a n y of the unqualified difference equations can be

solved very simply. For example, consider the differ-
ence equations for the time of R E V E R S E :

F(O) = do
F(n + 1) = dl + d2.n + F(n).

This may be summed directly:

F(n) = do + d l .n + (1 /2) .d2 .n . (n - 1).

Rewrit ing this as a polynomial in n,

F(n) = do + (dx -- d2/2) .n + (1/2).d2n 2.

Letting Co = do, c~ = (dl -- d2/2), and c2 = d2/2, the
time expression given in Section 2 is obtained:

F(n) = Co + c l .n + c2.n 2.

Similarly, the system:

F(0) = Co
F(n + 1) = cl + b .F(n)

has the solution:

F(n) = cl/(1 -- b) + b n (c o - cl)/(1 - b)).

A related class of simple difference equations arises
f rom programs where some variables are being built up
(C O N S , or A D D I) while other variables are being de-
composed (CDR, or SUB1) . For example, a procedure
for reversing a list in linear time is given by:

R E V (L) =-- REV2(L , {})

R E V 2 (X , Y) =-
if N U L L (X) then Y
else R E V 2 (C D R (X) ,

C O N S (C A R (X) , Y))

Comput ing length of R E V 2 gives rise to the difference
equat ions:

F(0, m) = m
F(n + 1, m) = F(n, m + 1)

with solution F(n,m) = n + m.
The use o f a size abstract ion caused by simultaneous

car and cdr recursion creates complications. Consider,
for example, the difference equations for length of
FLAT2:

F(O, m) = 1 + m
F(nl + n2 + 1, m) = F(nl, F(no., m)).

The appearance o f two variables, such as nl + n2 in an
argument posit ion implies potential indeterminacy since,
in general, the value o f the right hand expression depends
on the part icular choice of n~ and n2. Were this the case,
it would be necessary to average over all choices of (i,j)
pairs weighted by their computed or measured fre-
quency. However , for a c o m m o n class of programs,
this is not the case- - the value of the right hand side
depends only on the sum nl + n2, not on the particular

536

values of nl and n2. The system first guesses that this
simple situation occurs• Under this hypothesis, it is free
to consistently substitute for either nl or n2 on the right
and left hand sides• It chooses a constant which simpli-
fies the p rob lem--here , nl = 0- -s ince this is a known
base case. The result:

F(0, m) = 1 + m
F(nz + 1, m) = 1 + F(n2, m)

is then readily solved: F(n,m) = m + n + 1. Finally,
the guess is checked. Here,

F(1 + nl + n~,m) = 2 + n l + n2 + m,

so the guess is confirmed.

6.2 Qualified Difference Equations
I f there is a when qualification, then a per formance

must be computed. We begin with an example. The
difference equat ions for time of M E M B E R are:

F(0) = cO
F(n + I) = cl when X = C A R (Y) ;

c2 + F(n) when X # C A R (Y) .

(min, max) is obtained by best-case/worst-case analysis.
Min(F(n)) = minimum(el , cO + n. c2), while m a x (F (N))
= c2 . (n -- 1) + m a x i m u m (el, e0 + c2). To obtain
the moments (mean, variance), Metric uses generating
funct ions? Let a = probabi l i ty(X = C A R (Y)) . Let
pk be the probabil i ty that F(n) has value k. Lett ing z be
the formal variable, define G,(z) = po + p l . z + p2z 2 +
• • • + p k ' z k + " " ". F r o m the above difference equat ions
for F(n), Metric obtains difference equations for G(n, z),
using a t ransformat ion discussed below:

G(0, z) = z °°
G(n + 1, z) = a . z cl + (1 -- a) .zc2 .G(n ,z) .

Treat ing z as a parameter , this is a simple system in n,
having the form:

H0 = do
H , + I --- d l + d2. H , .

Hence, its solution has been discussed previously:

G(n, z) = az' l /(1 -- (1 -- a)z c2)
+ (1 -- a)"z""2(z c ° - azc'/(1 -- (1 -- a)z~O).

Since G(n, z) is a probabil i ty generating funct ion:

mean(G,) = G ' , (I)
variance(G,) = G",(1) + G' , (1) -- (G ' , (I)) 2.

Taking the first and second derivatives of the above ex-
pression forG(n, z) and simplifying, Metric obtains the

6 In the interest of brevity, we refer the reader to other sources
for the development of generating functions and their use in pro-
gram analysis: [17] contains a good introduction to generating
functions; [16] discusses the use of generating functions where the
program is modeled as a discrete Markov process; and [9] makes
extensive use of generating functions in the analysis of algorithms.

Communications September 1975
of Volume 18
the ACM Number 9

desired mean and variance:

mean(F(n)) = e0 q- el" (1 -- a)"
variance(F(n)) = e2 q- e~.(1 -- a) n q- e4.n(l -- a)"

+ es.(l -- a) 2~

where the e~'s are functions of the ci's. For example:

el = null + 3. vref + fncall + cdr
- (null-t- 5 .vre fq- fncal l q- 2.cdr-t- eq)/a.

As a final comment on this example, we note the
crucial role of algebraic simplification in both comput-
ing and presenting the final result. In carrying out alge-
braic manipulation, it is usually necessary to simplify
the result at each stage; otherwise, intermediate expres-
sion swell can consume unreasonable amounts of stor-
age. The system, in fact, simplifies the result of every
algebraic operation. For example, a sum of terms is
represented by an n-ary "bush" in which cancellation
has been carried out and, more generally, in which terms
differing only by a constant factor have been grouped
together. The algebraic plus routine constructs this
simplified representation in forming its answer. A second
role of algebraic simplification is expressing final re-
sults in a form which clearly displays the dependence
on the parameter(s), e.g. n in the above example. Metric
simplifies the final result explicitly to achieve this: let
Xl, . . - , x , be the parameters. Each term of the re-
sult is written in the form Di.F~(xI, . . . , x ,) where D~
is independent of the Xl'S but may depend on free vari-
ables. Terms which differ only in D~ are collected to-
gether; the result is a sum o n j of terms (Dj 1 q- . . . A-
Dj kt~) .Fi(xx , . . . , x,) . The form is then simplified by
defining new constants Cj = (D~ x + . . . -? D~k[JJ).

We next consider the treatment of when qualifica-
tions in the general case. The performance is computed
by obtaining the range and the moments. Consider ob-
taining max. First, the difference equations are rewritten
by replacing any performance subexpressions with their
max component, r Next, a reduced system is formed by
eliminating any early exit cases which allow termination
short of recursion down to the base case; the solution R
to the reduced system is obtained. I f there are no early
exit cases, then R is the desired maximum. I f there are
early exits, then the maximum obtained by taking such
an exit occurs if it is taken at the last possible recursion
step. Hence, the system is next solved under this assump-
tion. The desired max is the maximum of the two solu-
tions thus obtained. The min is computed analogously.
Then the min and max are compared. I f they are equal,
a scalar result is returned; otherwise, the moments must
be computed to complete the performance expression.

The computation of moments is somewhat complex.

This assumes that all performances can attain their maxima
simultaneously. This is another instance of assuming independent
tests, and is not always correct. It may be that, due to some cou-
pling, when one module has worst case behavior, some subsequent
module cannot. In general, the computed max and rain are upper
and lower bounds but are not necessarily attained.

First, the generating function is obtained. Deriving a
difference equation for the generating function is es-
sentially syntactic: on the left hand side of a case defini-
tion, F(n) is replaced by G(n, z) ; on the right hand side
of a case definition, the transformation g is applied.

(1) g(al; a2) = g(al) + g(a2)
(2) g(c when e) = probability(e).g(c)
(3) g(cl q- c2) = g(cl) .g(c2)
(4) g(F(n)) = G(n, z)
(5) g(s) = z" if s is a scalar independent of n
(6) g(r) = R(z) if r is a nonscalar performance inde-

pendent of n, where R is a new function letter.

The first rule establishes that if the right hand side is a
set of alternatives, then the transforms of the alterna-
tives are to be summed. The second rule establishes
that the generating function for a when qualified case
is the probability of the event times the generating func-
tion for the case.

The last rule brings up a new point. I t maps a non-
scalar performance r into a function R(z)- - the generat-
ing function for the probability distribution of that
performance. R is not explicitly known. However, an
explicit representation of R is not really necessary. The
mean and variance of G depends on R only through the
values of its zeroth, first, and second derivatives evalu-
ated at z = 1. Since R is a probability generating func-
tion, R(1) = 1, R'(1) = mean(r), R"(1) = variance(r)
-- mean(r) + mean(r) 2. The mean and variance of a
performance r are known. Hence, R can be treated as a
formal function having these properties. It will be noted
that rule (5) is a special case of this rule, since for any
scalar S, mean(S) = S while variance(S) = O.

As an example of how the transformation g operates,
consider the difference equation for the time of CO UNT:

F (0) = cO

F(n + 1) = el + F(n) when X = sl;
c2 q- F(n) when X ~ sl.

The result of g is a simple difference equation for the
generating function:

G (0 , z) = z °°

G(n q- 1, z) = (a.z °1 q- (1 -- a)zc2).G(n,z)

where a = probability(X = Sl). As a second example,
suppose that in COUNT the operation ADD1 was re-
placed by some other operation having an execution time
described by a nonscalar performance (cf. Section 4.1).
In that case, the coefficient corresponding to cl would be
a nonscalar performance and, under the transforma-
tion g, this would be mapped into a probability
distribution Rl(Z)--using rule (6) above. Hence, the dif-
ference equation for the generating function would then
be:

G(0, z) = z c°
G(n d- 1, z) = (a.Rl(Z) q- (I -- a).z~2).G(n, z).

537 Communications September 1975
of Volume 18
the ACM Number 9

Next, a closed form for the generating function is
obtained by applying the difference equation solver to
the new difference equation. With a closed form thus
produced, obtaining the first and second derivatives is
straightforward. If Ri's are present, their first and sec-
ond derivatives are represented formally. The only
complication is the pervasive use of algebraic simplifica-
tion to control the size of the expressions [13]. Evaluat-
ing at z = 1 and using the known values of the zeroth,
first, and second derivatives of the R / s yields the de-
sired results.

7. Concluding Remarks

The development of Metric has been concerned with
complete automation: mechanical analysis of programs
with no assistance. As such, it complements work such
as [5] on providing interactive tools for use by the pro-
grammer. In its current state, Metric can analyze only
fairly simple Lisp programs, whereas an interactive
system has the potential for handling programs of arbi-
trary difficulty. It therefore is appropriate to address the
issue of extending this work, i.e. to identify the problems
which must be solved in scaling up the system to handle
a richer class of programs.

Languages such as Fortran, Algol, or PL/I present a
large variety of constructs absent from our simple Lisp
subset. However, the treatment of many of these within
our framework is basically understood.

(1) Control structure. Well-nested loop constructs (e.g.
do, for, while) correspond directly to nested recursive
procedure calls.

(2) Side effects. Assignments in straight line code can
be modeled by successive substitutions. Assignments
around a loop are modeled by the recursion relations
they define.

(3) I f and case statements. Test and branch statements
of all sorts are syntactic variants of conditionals. The
C O U N T example shows the treatment and resulting
analysis of loops with embedded if statements. The
M E M B E R example shows the treatment of a for loop
with an exit condition.

(4) Optimization. As noted in Section 2, if the source
program is not mapped one-for-one onto the machine
then the local cost assignment should be performed
after all significant optimization has been performed.

It appears that the most significant problems are
more fundamental, having more to do with the theory
of computation than with programming languages. The
most important is the probabilistic treatment of tests.
As noted in Section 4, all tests are currently treated as
independent events. This simplifying assumption is often
wrong, e.g.:

i f x = y t h e n . . . i f x = y . . .
if x < y t h e n . . . i f y < z . . .

Once detected, repeated identical tests such as the first
example can be handled satisfactorily; the probability
of the redundant test failing is zero. The problem of
detecting simple common cases here is identical to that
required for test elision in an optimizing compiler, e.g
as discussed in [18]. The more complex situation where
the outcome of one test forces the outcome of a subse-
quent nonidentical test reduces to proving the validity
of a logical implication. Domain-specific theorem
provers such as those being developed for program
verification can be employed here. The difficult problem
is cases like the second where the conditional probability
of t e sh given the success of test1 is neither 0, 1, nor the
same as the unconditional probability of t e sh . Detecting
the possibility of conditioning or, equivalently, guaran-
teeing its absence is fairly straightforward. If the condi-
tional probability is constant, it can be measured. How-
ever, the important case where t e sh is conditioned and
nonconstant is difficult. Mechanization' would seem to
be beyond the range of current techniques.

A possible prospect may be to proceed by analogy
with program verification: to allow the addition to the
program of performance specifications by the pro-
grammer, which the system then checks for consistency.
That is, performance expressions are treated as asser-
tions and the task of the system is to verify that the
resource analysis provided by the programmer is correct.

The analogy with verification is further evidenced
when we observe that the correct determination of con-
ditional probability is required not only to obtain mean
and variance, but also m a x as well. Consider, for ex-
ample, the following simple program to sort an array
All : n]

f l a g ~ true;
while flag do
begin f l a g *--- false;

for i from 2 to n do
i f A [i - - 1] > A[i] then
begin f l a g ~-- true; e x c h a n g e (A [i - - 1], A [i])
end

end

Since the outer loop is executed until some pass on which
no exchange occurs, termination depends on the test
A[i -- 1] > A[i] being affected by prior tests and ex-
changes.

Beyond this, there are a number of defects in the
current system whose solutions are understood. The alge-
braic manipulation subsystem could be augmented with
a radical simplification package [13]. Similarly, the
methods used for solution of difference equations could
be extended. Also, the current organization into phases
is only a linear approximation to the right one: cur-
rently, the source program is transformed in successive
phases until an answer is obtained; however, guesses are
made along the way and if certain of these are wrong,
the system fails. An obvious improvement would be a
more flexible organization where a later phase can report

538 Communications September 1975
of Volume 18
the ACM Number 9

back reasons for failure, earlier stages can ask for ad-
vice from later ones, and several approaches can be tried
in parallel. Another area for improvement is the final
representation of analyses: algebraic expressions are
sometimes advantageously presented by approximating
an exact but complex solution. Some facilities for deal-
ing with approximations are therefore desirable.

Acknowledgments. We have benefited greatly from
discussions with L.P. Deutsch, L. Guibas, and J Moore.

Received July 1974; revised November 1974

References
1. Beizer, B. Analyt ical techniques for the statistical evaluat ion of
p rogram running time. Proc. AFIPS 1970 FJCC, Vol. 37, AFIPS
Press, Montvale, N.J., pp. 519-524.
2. Bobrow, D., and Murphy, D. Structure of a Lisp system using
two level storage. Comm. A C M 10, 3 (Mar. 1967), 155-159.
3, Cheatham, T.E., and Wegbreit , B. A labora tory for the study of
au tomat ing programming. Proc. AFIPS 1972 SJCC, Vol. 40,
AFIPS Press, Montvale, N.J., pp. 11-21.
4. Cocke, J., and Schwartz, J.T. Programming Languages and
Their Compilers. Couran t Inst i tute of Mathemat ica l Sciences, New
York U. Press, New York, 1970.
5, Cohen, J., and Zuckerman, C. Two languages for es t imat ing
program efficiency. Comm. A C M 17, 6 (June 1974), 301-308.
6. Green, C. Appl ica t ion of theorem-proving to problem solving.
Proc. First In temat . Joint Conf. on Artif. Intell., 1969, pp. 219-239.

7. Ingalls, D. The execution t ime profile as a p rogramming tool. In
Design and Optimization o f Compilers, R. Rustin, Ed., Prentice-
Hall , Englewood Cliffs, N.J., 1972, pp. 107-128.
8. Knuth, D.E. An empirical s tudy of F O R T R A N programs. In
Software-Practice and Experience, Vol. 1, 1971, pp. 105-133.
9. Knuth, D.E. The Art o f Computer Programming. Addison-
Wesley, Menlo Park, Calif., 1968.
10. Lee, R.C.T., Chang, C.L., and Waldinger, R.J. An improved
program-synthesizing a lgor i thm and its correctness. Comm. A C M
17, 4 (Apr. 1974), 211-217.
11. McCarthy, J. Recursive functions of symbolic expressions a n d
their computa t ion by machine. Comm. A C M 3 , 4 (Apr. 1960), 184-
195.
12. Manna, Z., and Waldinger, R.J. Toward au tomat ic p rogram
synthesis. Comm. A C M 1 4 , 3 (Mar. 1971), 151-164.
13. Moses, J. Algebraic s impl i fca t ion : A guide for the perplexed.
Comm. A C M 14, 8 (Aug. 1971), 527-537.
14. Nemeth, A.G., and Rovner, P.D. User p rogram measurement
in a t ime-shared environment . Comm. A C M 14, 10 (Oct. 1971), 661-
666.
15. Proceedings of a sympos ium on very high level languages.
S I G P L A N Notices, Vol. 9, No. 4 (Apr. 1974).
16. Ramamoor thy , C,V. Discrete Markov analysis of computer
programs. A C M 20th Nat. Conf., 1965, pp. 386-392.

17. Riordan, J. An Introduction to Combinatorial Analysis. John
Wiley, New York, 1958.

18. Sites, R.L. Proving that computer programs terminate cleanly.
Ph.D. Th., Comput . Sci. Dep., Stanford U., May 1974.

19. Teitelman, W. b~terlisp Reference Manual. Xerox Palo Al to
Research Center, Palo Alto, Calif., 1974.

20 . Weissman, C. Lisp 1.5 Primer. Dickenson Pub. Co., Belmont,
Calif., 1967.

PROFESSIONAL
ACTIVITIES

Calls for Papers:
Important Dates

15 September 1975. 1975-76 ACM George E.
Forsythe Student Paper Competition. See April
Communications. Any student who has not re-
ceived a bachelor's degree before April 1, 1975,
is eligible. Submit intent by June 30 and complete
paper by September 15 to ACM Student Editorial
Committee, Department of Computer Science,
University of Toronto, Toronto, Ont., Canada
M5S 1A7.

1 October 1975. 3rd International Colloqu-
ium on Automata, Languages, and Programming,
Edinburgh University, Scotland, July 20-23, 1976.
See August Communications. Submit intent and
topic by October 1 and draft paper (1,000-10,000
words in four copies) by November 15 to C.A.
Mackinder, Organizing Sec., Computer Science
Dep., Edinburgh University, James Clark Max-
well Bldg., Mayfield Road, Edinburgh, Scotland.

1 October 1975. Conference on Data: Ab-
straction, Definition and Structure, Salt Lake
City, Utah, March 22-24, 1976. Sponsors: ACM
SIGPLAN and SIGMOD. See April Communi-
cations. Send five copies of complete papers
with abstracts to Prog. Chin: Henry F. Ledgard,
Computer and Information Science, Graduate
Research Center, University of Massachusetts,
Amherst, MA 01002.

1 October 1975. Computer Society of India
Annual Convention on "Computers and Social
Change," Hyderabad, India, January 20-23, 1976.
Write Program Chairman (DVR Vithal, Com-
puter Group, Tata Institute of Fundamental Re-
search, Bombay 400 005, India) for information
for authors, giving title and subject, immediately;
abstracts due October 11 full papers due Novem-
ber 1.

10 October 1975. COMPCON 76, Jack Tar
Hotel, San Francisco, Calif., Feb. 24-26, 1976.
Sponsor: IEEE-CS. See September Communica-
tions. Abstract and 1000-2000 word digest due
October 10, to Herschel H Loomis Jr., Dep. of
Electrical Engineering, University of California,
Davis, CA 95616.

15 October 1975. 8th AICA Congress on
Simulation of Systems, Delft, The Netherlands,
August 23-28, 1976. See August Communications.
Submit two copies of 250-500 word abstract in
English to L. Dekker, Delft University of Tech-

nology, Department of Mathematics, Julianalaan
132, Delft/The Netherlands. Notifications by De-
cember 31; provisional full paper due February
29, 1976; notifications by April 30; final paper due
June 30. Proceedings.

26 October 1975. Technical Symposium on
Computer Science and Education, Disneyland
Hotel, Anaheim, Calif., February 12-13, 1976.
Sponsors: ACM SIGCSE and SIGCUE. Send
three copies of complete paper to Ronald W.
Colman, Computer Science Programs, California
State University, Fullerton, CA 92634.

1 November 1975. Fifth Biennial Interna-
tional Codata Conference, University of Colo-
rado, Boulder, Colo. Sponsor: The Committee on
Data for Science and Technology (CODATA),
ICSU. See August Communications. Submit title
and brief description to Program Committee
Chm: David R. Lide Jr., NBS, Washington, DC
20234; notifications and instructions by January 1.

1 November 1975. 1976 International Sym-
posium on Fault-Tolerant Computing (FTCS-6),
Pittsburgh, Penna., June 21-23, 1976. Sponsor:
IEEE-CS TC on Fault-Tolerant Computing. See
September Communications. Send abstract (250-
word max.) to Program Chairman: Barry R. Bor-
gerson, Sperry Research Center, 100 North Road,
Sudbury, MA 01776. 4 c. manuscript (4000-word
max.) and 1-p. statement on paper's contribution
due December 1; notifications by March 1, 1976.

10 November 1975. Programming Systems in
the Small Processor Environment, New Orleans,
Louisiana, March 4-6, 1976. Sponsors: ACM
SIGMINI and SIGPLAN. See August Communi-
cations. Five copies of manuscript with abstract,
not to exceed 16 double-spaced typewritten pages,
to Program Chairman: Lawrence J. Schutte,
Room 6B-302, Bell Telephone Laboratories, Na-
perville, IL 60540; 312 690-4116. Notifications
by December 10; final papers due January 15,
1976. Proceedings.

15 November 1975. 1976 International Sym-
posium on Information Theory, Ronnehy Brunn,
Ronneby, Sweden, June 21-24, 1976. Sponsor:
1EEE Information Theory Group. See August
Communications. Submit complete manuscript
and abstract for "long" paper (30 min duration)
and 500-word summary and abstract for "short"
paper (15 min duration) to Jack Salz, Bell Lab-
oratories, Room 1G-509, Holmdel, NJ 07733.
Notifications by Feb. 1.

15 November 1975. 2nd International Sym-
posium on Programming, Paris, France, April
13-15, 1976. Sponsors: Centre National de la
Recherche Scientifique (CNRS) and Universite
Pierre et Marie Curie. Submit an abstract (one
page) and first draft of paper (about 12 pages)
to Secretariat du Colloque, Institut de Program-

mation, 4, Place Jussieu, 75230 Paris, Cedex 05,
France. Notifications by January 15, 1976; final
papers due by March 1, 1976. Proceedings.

1 December 1975. Fourth Annual Computer
Science Conference, Disneyland Hotel, Anaheim,
Calif., Feb. 10-12, 1976. Sponsor: ACM. See
August Communications. Submit abstract of re-
search report to Chairman: Julian Feldman, Dep.
of Information and Computer Science, University
of California, Irvine, CA 92664.

I December 1975. 1976 Summer Simulation
Conference, Sheraton-Park Hotel, Washington,
D.C., July 12-14, 1976. Sponsors: AICHE, AIAA,
AMS, ISA, SCI, and SHARE. See July Com-
munications. Send three-to-five page summary to
Program Chairman, Iwao Sugai, JHU Applied
Physics Laboratory, 11100 Johns Hopkins Road,
Laurel, MD 20810. Notifications by Feb. 1, 1976;
complete manuscripts due March 15. Proceedings.

1 December 1975. Third ICASE Conference
on Scientific Computing: Computer Science and
Scientific Computing, Quality Inn/Fort Magruder,
Williamsburg, VA, April 1-2, 1976. Sponsor:
ICASE in coop. with ACM, ACS, AIAA, ASCE,
IEEE, SIAM. Submit 2-3 page abstracts for pa-
pers to be presented in poster sessions to Robert
G. Voigt, 1CASE, MS-132C, NASA Langley Re-
search Center, Hampton, VA 23665; 804 827-2513.

1 December 1975, International Conference
on Computational Linguistics, University of Ot-
tawa, Ottawa, Canada, June 28-July 2, 1976.
Submit 1000-word abstract to M. Kay, Xerox
Palo Alto Research Center, 3333 Coyote Hill
Road, Palo Alto, CA 94305; text of accepted
papers due May 1, 1976.

5 January 1976. '76 NCC, New York, N.Y.,
June 7-10, 1976. See June Communications. Submit
six copies of paper not to exceed 5,000 words and
abstract of not over 200 words to Program Chair-
man, Stanley Winkler, IBM Corp., 18100 Fred-
erick Pike, Gaithersburg, MD 20760. Notifications
by March 1, 1976.

16 January 1976. Conference on Informa-
tion Sciences and Systems, The Johns Hopkins
University, Baltimore, MD, March 31, April 1
and 2, 1976. See September Communications.
Submit a "regular" or "short" designation, title,
and summary to 1976 CISS, Department of Elec-
trical Engineering, The Johns Hopkins Univer-
sity, Baltimore, MD 21218. Notifications by Feb-
ruary 16. Proceedings.

1 March 1976. SIGCSE 76, Quality Inn/
Fort Magruder, Williamsburg, Va., July 26-27.
See July Communications. Submit three copies of
paper to William Poole, Mathematics Department,
College of William and Mary, Williamsburg, VA
23185.

5 3 9 C o m m u n i c a t i o n s
of
the A C M

September 1975
V o l u m e 18
N u m b e r 9

