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1. Introduction 

One means of analyzing program performance is by 
deriving closed-form expressions for their execution be- 
havior. This is an important facet of programming. In 
this paper, we discuss the mechanization of such analy- 
sis. We first outline the main problems to be addressed. 
We then describe a prototype system, Metric, which is 
able to analyze simple Lisp programs and produce 
closed-form expressions for their execution behavior in 
terms of properties of the input, e.g. execution time as a 
function of the length of the arguments. The Metric 
system has been implemented in Interlisp [19]; this im- 
plementation is discussed, with emphasis on system or- 
ganization and general techniques. We conclude with a 
brief discussion of issues raised by this study. 

Two limitations should be noted at the outset. One, 
standard halting-problem arguments show that no such 
system can be complete: execution time is not a decida- 
ble property of current programming languages. Two, 
the analysis of many algorithms requires considerable 
mathematical expertise; an expert system would neces- 
sarily include all the techniques in the monumental  work 
of Knuth [9]. The former is an absolute limitation; the 
latter establishes a boundary beyond which interactive 
assistance from a programmer or analyst is required 
[5]. We are concerned in this paper with establishing 
mechanical program analysis as a desirable and feasible 
activity within these limitations. 

Mechanical program analysis has three main appli- 
cations: 
1. As a software engineering tool: serving as an aid to 
the programmer in understanding how a program be- 
haves. 
2. In an automatic program synthesizer [6, 10, 12]. In 
general, there are many ways in which an axiomatic 
program specification can be realized; some knowledge 
of performance is required if a program synthesizer is to 
make a good choice. 
3. In the compiling system for a very high-level language 
[15]. To the extent that a very high-level programming 
language statement avoids commitment of procedural 
steps, the issues of synthesis arise: there are many possi- 
ble procedural renderings of a program and performance 
is the criterion to choose among logically equivalent 
alternatives (cf. [3] for amplification of this point). 

There are a variety of measurement techniques [8, 
7, 14] for obtaining execution profiles, i.e. plots of time 
spent in each program region when the program is run 
on sample data. While such profiles serve the needs of 
the first application reasonably well, they must be sup- 
plemented by analysis for the purposes of the other two 
applications. In particular, to optimize a program writ- 
ten in a very high-level language, the system must not 
only find where the program is spending resources but  
also determine why, i.e. analyze what it is doing there. 
Some closed-form representations of program behavior 
in these regions seems required if one is to go much be- 
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yond the classical [4] compiler optimization techniques. 
With a suitable closed-form representation, one has a 
start at finding the cause, in program terms, of  poor  
functional behavior or unacceptably large coefficients. 

The behavior of  a program can be characterized by 
a set of  properties: execution time on a particular ma- 
chine, amount  of  storage used, size of its output, 
probability of  its result satisfying a certain predicate, 
etc. Some of these properties (e.g. time) are of intrinsic 
interest; others (e.g. probabilities) are of  interest prin- 
cipally because they are required in computing proper- 
ties of intrinsic interest. We use the term measure 
generically to denote any of these properties. 

Given a program and a specified measure, the prob- 
lem of analysis is first to determine what properties of  
the data are most relevant to program performance 
under that measure and then to find a closed-form ex- 
pression in terms of these properties. In general, an 
exact expression in terms of known properties of  the 
input cannot be obtained, e.g. internal tests may depend 
on computed quantities having no simple relation to the 
input. Such tests are treated probabilistically, e.g. as 
Markov  processes [1, 16] when the probability is con- 
stant and independent of  prior history. Following Knuth 
[9], performance of a program under some measure can 
be expressed as a four-tuple (min, max, mean, variance). 
The term performance will be subsequently used strictly 
to denote such a four-tuple. We use the term range to 
denote the pair (min, max) and moment to denote the 
(mean, variance). A scalar S is an abbreviation for the 
performance (S,S,S,O). 

Metric is a prototype system, constructed to study 
the mechanization of program analysis; as such, it con- 
centrates on certain key issues ignoring many peripheral 
ones. Its source language is essentially Lisp 1.0 as de- 
scribed in [11]. In the interest of  brevity, we refer the 
reader to [11] and [20] for an explanation of list process- 
ing and Lisp. In presenting example programs, we use 
the following notation: 

The empty list is denoted by { }. 
A nonempty list is denoted by {f.r} w h e r e f  is the 

first element of  the list and r is the list consisting of 
all elements except the first. 

CONS(f ,r)  = I f .  r} 
CAR({ f .  r}) = f 
C D R ( { f . r } )  = r 
ATOM(x)  is a predicate which is true if and only if x is 

not a list or is the empty list. 
NULL(x)  is defined as x = {}. 
Conditional expressions are written as: 

if pl  then ex else if p2 then e2 • • • else en 

Given the definition of a set of procedures, Metric 
attempts to produce analysis for their running times, 
number of  CONS executed, number of list cells in their 
result, etc., as directed. In its current state, it can handle 
only simple programs such as those which might be used 
as introductory exercises in Lisp programming (e.g. 

529 

append, reverse, nth, substitute, flatten, member,  and 
union). However, the system is built on methods with 
general competence, and within its province, it has some 
degree of expertise. Subject to certain limitations, these 
methods are extendable to more complex programs and 
a richer set of  data and control structures. In the con- 
clusion, we outline how the extensions may be affected 
and discuss the limiting constraints. 

This paper is divided into seven sections. Section 2 
gives several examples of programs and their analysis 
by Metric. Section 3 is an overview of the system or- 
ganization. Sections 4, 5, and 6 describe the three prin- 
cipal phases of  the system: assigning local costs, ana- 
lyzing recursion, and solving difference equations. Sec- 
tion 7 discusses the extensions of  these techniques. 

2. Examples 

We begin with a set of  examples which illustrate the 
sort of  analysis that Metric can carry out. Here we are 
concerned only with what Metric can handle; subse- 
quent sections discuss how. 

A conceptually simple procedure for reversing the 
top level of  a list is given by: 

REVERSE(L)  =- 
if NULL(L)  then {} 
else APPEND(REVERSE(CDR(L) ) ,  

CONS(CAR(L) ,  {})) 

APPEND (X, Y) = 
if NULL(X)  then Y 
else CONS(CAR(X) ,  

APPEND(CDR(X) ,  Y)) 

Metric determines that the execution time for RE- 
VERSE(e) is given by e0 -k cl. n -+- c~. n 2 where n is the 
length of e (i.e. the number  of list cells in the cdr direc- 
tion) and the c~'s are implementation constants. In its 
normal mode of operation, Metric computes such im- 
plementation constants symbolically, as linear arith- 
metic expressions of  the form ni.ei  q- . . .  -k- n k ' e k  

where the n~'s are real numbers and the e~'s denote exe- 
cutions of elementary procedures. For  example1: 

c2 = (1~2).null-{- (1 /2) .edr-b  (1~2).cons 
-I- (1 /2) .car  q- (1/2).fncall  q- 2. vref 

The lowercase spelling of a primitive operator stands for 
that operation;fncall denotes the action required to in- 
voke a nonprimitive procedure; vref denotes access to a 
variable; and cref denotes access to a constant. Gener- 
ally, it is convenient to ignore the distinction between 
the costs of CAR and CDR; cr is then used to denote 

The appearance of nonintegral coefficients such as 1/2 may 
seem puzzling. The reason is as follows: the execution time is most 
naturally expressed in the form do q- dl.n q- (1/2).d2.n. (n -- 1), 
where the di's are linear arithmetic expressions with integral coeffi- 
cients (cf. Section 6). Going from this natural form to a poly- 
nomial creates the nonintegral coefficients in the c~'s above. 
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either. The other two constants are given by:  

Cl = (3/2).null -b cr q- (1/2).cons q- (3/2).fncall 
+ 3 . v , ~ f +  cref 

Co = null -b vref -b cref 

This symbolic representation o f  execution time was 
chosen as being the simplest machine-independent  form. 
By assigning values to the elementary operat ion sym- 
bols, one can obtain number  o f  CONS executed, num- 
ber o f  m e m o r y  references, or microseconds for the com- 
putat ion time under  an interpreter or simple compiler.  2 

F L A T  is a procedure  which flattens a list, construct-  
ing a one-level list of  the a toms in a possibly multilevel 
list, e.g. F L A T ( { A . { { B . C } . D } } )  = {A,B,C,D}. One 
way of  doing this uses a doubly-recursive auxiliary pro- 
cedure FLAT2: 

FLAT(L) -- FLAT2(L, {}) 

FLAT2(X,  ¥)  =- 
i f  ATOM(X) then CONS(X,  Y) 
else FLAT2(CAR(X) ,  

FLAT2(CDR(X) ,  Y)) 

Metric determines that  the t ime for FLAT(L) depends 
on the size of  L, i.e. the n u m b e r  o f  list cells. ~ Specifically, 
the time is found to be Co + el.s, where s is the size o f  
L, and:  

el = cons + 2.fneall + 2. er --k 2. atom + 7. vref 
co = cons -b atom -k fncall -b 4. vref -b eref 

In  analyzing a p rogram under  one measure, one or 
more  other measures are typically applied in the de- 
composi t ion.  For  example, in comput ing  time of  RE- 
VERSE(FLAT(APPEND(P,Q)) ) ,  it is found that  length 
of  the a rgument  to R E V E R S E  is needed. Analyzing 
FLAT  under the length measure, Metric obtains length 
(FLAT(L)) = 1 + size(L). Continuing,  it finds that  
size(APPEND(P,Q)) = size(P) + size(Q). Hence, the 
length of  the a rgument  to R E V E R S E  is found to be 1 + 
size(P) -k size(Q), giving one consti tuent of  the time. 

Length and size are structural properties o f  varia- 
bles, analogous  to dimensions o f  arrays or number  of  
records in a file. Metric at tempts to express p rogram 
behavior  in terms of  these. When this is not  possible, 
due to internal tests no t  related to structural properties, 
Metric expresses the analysis as a performance in which 
probabilities of  unanalyzable tests appear  as parameters.  
For  example, the number  o f  times that  a tom X appears 

This does not provide a satisfactory basis to assess computa- 
tion time under an optimizing compiler, since no account is taken 
of possible transformations to the execution sequence (e.g. common 
subexpression elimination, and removal of invariant computation 
from recursive calls). To handle this properly, it would be necessary 
to apply the local cost assignment phase discussed in Section 4, not 
to the source program, but rather to the intermediary code or to the 
generated code itself. This would complicate the implementation 
both directly (program representation is usually more complex) 
and indirectly (compiler interfaces must be established) but presents 
few conceptual problems. We return to this in Section 7. 

3 Size may be defined by size (I,) =-- if NULL(L) then 0 else 1 
-b size(CAR(L)) --k size(CDR(L)), and length analogously. 

in the top level of  list L is computed by :  

COUNT(X,L) 
if NULL(L) then 0 
else if X = CAR(L) 

then A DO 1 (CO UNT(X, CDR(L)))  
else CO UNT(X, CDR(L)) 

The probabil i ty of  the test X = CAR(L.) succeeding is 
needed to obtain the time performance of  COUNT. 
However,  the operat ion " = "  is primitive and cannot  be 
further analyzed. The system can proceed no further 
without  using addit ional  knowledge supplied to it. If, 
on its input data base, it finds that  the test " = "  in 
CO UNT may be treated as constant ,  it assigns a sym- 
bolic probability,  say p, its value to be determined by 
measurement .  Metric then is able to determine that  the 
time performance is given by:  

(Co -q- cln, Co -q- c2n, Co -b c3n, c4n) 

where n = length(L) and 

Co = null -b cref -q- vref 
cl = fncall --k null -q- eq -q- 2. cr q- 5. vref 
c2 = addl q- 2.fncall -k null q- eq q- 2. cr q- 5. vref 
c3 = p. addl --k p'fncall --k fncall q- null "b" eq q- 2. cr 

+ 5. vref 
c4 = p .addl  2 + 2 .p .addl  .fncall + p.fncall  ~ 

-- p2.addl2 - 2.p2.addl .fncall - p2.fncall 2 

An instructive counterpar t  is UNION which assumes 
its arguments  are lists of  nonrepeat ing a tomic symbols 
and forms their set union:  

UNION(X,Y)  = 
if NULL(X)  then Y 
else if M E M B E R ( C A R ( X ) , Y )  

then UNION(CDR(X) ,  Y) 
else CONS(CAR(X) ,  

UNION(CDR(X) ,  Y)) 

Here the test to be treated probabilistically is a defined 
procedure:  

M E M B E R ( Z , L )  =- 
if NULL(L) then false 
else if Z = CAR(L) then true 
else M E M B E R ( Z , C D R ( L )  ) 

so that  probabi l i ty(MEMBER(CAR(X) ,  Y)) is a derived 
expression which can be expressed in terms of  other 
quantities. Analyzing M E M B E R  using probability of  
the result being true as the measure, Metric obtains 
1 -- (1 -- a) m where a = probabili ty(Z = CAR(L))  and 
m = length(L). Using this, the length o f  UNION(X,  Y) 
is found to be: 

( m , m  -k n , m  q- n . ( l  - -  a) m, 
n . ( 1 - - a )  m -  n . ( 1 - -  a) 2"m) 

where m = length(I") and n = length(X). 
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Fig. I. Structure of Metric. 
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3. System Structure 

The overall organization of Metric is shown in Fig- 
ure 1. Solid lines show the flow of control through the 
system; dashed lines show the use of data, either input 
data or previously computed results. The input data 
bases are a set of procedure definitions and a set of tables 
used to establish the symbolic cost of elementary opera- 
tions. Direct input is a program expression and one of 
the known measures to use in its analysis. The output is 
the specified analysis plus a data base of the perform- 
ance of procedures analyzed in this process. Subsequent 
calls on the system retrieve the results of prior analysis 
when applicable. Hence, the system can be supplied 
performance information but will work from definitions 
if that is unavailable. 

Analysis of a program expression takes place in 
three phases: 

Phase 1: Local cost assignment. A cost is assigned to 
each constituent as follows: Primitive operations 
(e.g. CAR) and language overhead activities (e.g. 
function call) are assigned costs as specified by the 
local cost tables. Defined operations are assigned 
the cost of their definition except that recursive 
procedure calls are detected and specially marked. 
The analysis of a nonrecursive procedure is deter- 
mined by the composition of local costs; a recursive 
procedure is passed on to the next phase. 

Phase 2: Recursion analysis. The procedure is symboli- 
cally evaluated to determine how the recursion vari- 

ables change from one call to the next. This gives the 
recursive structure of the computation sequence. 
Next, the computation sequence is projected into 
the integers by constructing a set of difference equa- 
tions which model the list structure manipulation 
carried out by the recursive calls. 

Phase 3: Solution of difference equations. One or more 
of the following techniques are used to obtain closed- 
form expressions: direct summation, pattern match- 
ing, elimination of variables, best-case/worst-case 
analysis, and differentiation of generating functions. 

The solution to the difference equations gives an ex- 
pression for the performance of the originating recur- 
sive procedure. This is simplified, put into functional 
form, and stored under the pair (procedure, measure) for 
subsequent retrieval. A procedure thus analyzed has its 
cost given by the stored functional form. The next three 
sections explain these three phases in more detail. 

4. Assigning Local Costs 

The local cost assignment phase maps a program 
expression into a symbolic cost expression which speci- 
fies its cost under a given measure. Measures may be 
broadly grouped into two classes--cumulative and 
noncumulative--depending on how the arguments to a 
procedure appear in the measure of that procedure. 
Cumulative measures (e.g. time) treat nested procedure 
calls as additive; for example, the time to APPEND 
(REVERSE(P), CONS(Q,R)) is the sum of the times 
required to REVERSE(P), CONS(Q,R) and APPEND 
the results. Noncumulative measures (e.g. length) ig- 
nore inner procedure calls except when a property of 
their result is explicitly needed; for example, the length 
of CONS(REVERSE(X), APPEND(Y,Z)) does not 
depend upon the first argument to CONS, so REVERSE 
can be totally ignored. Cumulative measures describe 
resource expenditure: time, number of CONS (and I/o 
activity if I/o was considered). Noncumulative measures 
describe the result of a procedure independent of how 
that result is obtained: size, length, probability of a cer- 
tain specified result (and data type if data types were 
considered). 

To maintain uniform notation for expressions in- 
volving the two classes of measures, (measure) ((pro- 
cedure application)) is always interpreted as the cost of 
(procedure application) under (measure) after all argu- 
ments have been evaluated. Thus, the total time to 
compute the entire program expression APPEND 
(REVERSE(P), CONS(Q,R)) is expressed as: time 
(REVERSE(P)) q- time(CONS(Q,R)) q- time(AP- 
PEND(REVERSE(P), CONS(Q,R))) -t- time to access 
P, Q, and R. 

Procedures may be grouped into three classes: (1) 
primitive--built-in operations of the language (e.g. 
CDR); (2)fixed--defined procedures containing no re- 
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cursive calls or invocations of recursive procedures 
(e.g. NOT); and (3) closed--procedures which call 
themselves (directly recursive) or invoke other closed 
procedures. 

4.1 Primitive Procedures 
Primitive procedures and constants are assigned 

costs as specified by the local cost tables. Depending on 
the measure and procedure, these may be reals, scalar 
expressions, or performance four-tuples. For  example, 
the constant {} is assigned cost 0 under the measure 
length. Similarly, under the size measure, size(CONS 
(el,e2)) = 1 -k- size(el) + size(e2). Under the measure 
time, the usual assignment is a symbolic expression, 
e.g. time(CONS(e~, e2)) = cons. However, this may be 
reduced to a more elementary form, such as memory 
references or microseconds on a given machine. In some 
cases, performance four-tuples may be used. For  exam- 
ple, in an implementation with cons-paging [2] the 
number  of  instructions executed to perform a CONS is 
variable; similarly a read operation would be modeled 
by its performance (rain, max, mean, variance). The use 
of  performance four-tuples in this way allows the sys- 
tem to obtain statistical analysis of  programs whose 
primitive (i.e. unanalyzable) operations have variable 
costs. 

4.2 Fixed Procedures 
Fixed procedures are assigned costs by analyzing 

their bodies. The body of a fixed procedure may be de- 
composed into the disjunction of one or more execution 
paths r ~ , . . . ,  r~ where internal tests choose the appro- 
priate path. Since each execution path consists only of 
primitive and other fixed procedures, local cost assign- 
ment is used directly to assign a cost ci to each path r~. 
Similarly, local analysis under the measure probability 
is used to obtain the probability p~ of taking that pa th?  
The performance is then: 

(minimum(min( c O ) , maximum(max(c i) ) , 
i i 

)--~(pi" mean(ci)), ~-~(pi" variance(ci) 
i i 

-~ pi" mean(ci)2) _ (~(pi 'mean(ci)))2}.  
i 

This is complicated by the need to express the results 
symbolically, e.g. cons and (3.cr q- atom) are incom- 
parable. Their minimum is therefore expressed as: 
minimum (cons, 3. cr + atom). When the performance of 
a fixed procedure has the form (S,S,S,O) (because there 
is only one path or all paths have equal cost), it is fro- 

4 In computing this probability, the system treats all tests as 
statistically independent, so the probability of a sequence of choices 
is computed to be the product of their independent probabilities. 
This simplifying assumption is often invalid. Merely detecting the 
possibility of nonindependent tests would not be difficult: it suffices 
to be conservative and report possible dependency whenever the 
analyzer cannot guarantee independence. However, going further 
and analyzing the dependencies is a fundamental, deep problem and 
beyond the scope of the present paper. We return to this issue in 
the conclusion. 

quently useful to suppress detail and express the cos t  
of  that procedure as a single entity. For example, time 
of NOT defined as NOT(X) =-- if X then false else true 
is represented by the simple symbolic expression not. 

As an example, consider EQ3 which tests whether its 
three arguments are identical: 

EQ3(X, Y,Z) - 
if N O T ( X  = Y) then false 
else if N O T ( X  = Z)  then false 
else true 

EQ3 has three branches with probabilities ( 1 -  a), 
(1 - a).a,  and a 2 respectively, where a is the probabili ty 
of  EQ returning T. Under the measure time, the costs 
are 

Cl = 2.vref  + eq + fncall + not + cref, 

c., = 4. vref + 2. eq + 2.fncall + 2. not + cref, 

and c2 respectively; hence, performance is: 

(Cl, C2, Cl "~ a. (c2 -- cl), cl 2 + a. c22 -- a.  cl 2 
- ( c l  + a . ( c ,  - Cl))2). 

Since terminal conditions of these paths are false, 
false, and true respectively, the probability of  EQ3 
returning the result true is determined to be a 2. This 
would be computed, by analyzing EQ3 under the mea- 
sure probability, if EQ3 appeared as the test in another 
procedure. 

4.3 Closed Procedures 
Closed procedures are assigned costs by processing 

their definitions, assigning local costs to primitive and 
fixed constituents as described above, but giving special 
treatment to directly recursive calls a n d  calls on other 
closed procedures. We consider direct recursion first. 
The essential idea & to map a recursive procedure P into 
a new recursive procedure whose value is the cost o f  P. 
Recursive calls are marked with the measure being used 
in the current analysis. That  is, if the definition of P 
being analyzed under measure M contains a subexpres- 
sion P(el, . . . ,  en), then, when the  cost assignment 
phase encounters this and detects recursion, it returns 
the symbolic expression M(P(el,  . . . ,  on)). For  exam- 
ple, using the definition of A P P E N D  given in Section 2: 

length(APPEND(X, Y) ) =- 
if NULL(X)  then length(Y) 
else 1 q- Iength(APPEND(CDR(X),  Y)) 

Recursion analysis, discussed in the next section, uses 
this to determine, symbolically, how the arguments are 
modified from call to embedded call. 

Calls from a closed procedure to another closed pro- 
cedure are handled by analyzing the called procedure 
recursively to obtain its cost--possibly under a differ- 
ent measure. For  example, consider determining the 
time of REVERSE.  An intermediary representation 
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would be: 

i f  NULL(L) then null q- vref q- cref 
else null q- 3. vref q- cref q- 2. cr q- cons + 2 .fncall 

time(REVERSE(CDR(L))) + 
time(APPEND(REVERSE(CDR(L)),  
CONS(CAR(L), {I))) 

Since the symbolic expression time(APPEND(RE- 
VERSE(CDR(L)), CONS(CAR(L), {}))) invokes 
another closed procedure, the local analysis phase in- 
vokes the system recursively to obtain a closed-form 
expression for this in terms of primitive operations. This 
is carried out in the following steps. 
(i) APPEND is analyzed under the measure time. The 
system is thereby invoked recursively; it runs through 
all three phases in carrying out this analysis and pro- 
duces the answer: time(APPEND(X,Y)) = Co + c1" 
length(X) and computes the constants co and c1. The 
process by which the answer is obtained is developed in 
this and the next two sections. Here, it suffices to con- 
tinue with the result. 
(ii) Since the length of the first argument to APPEND 
is needed, REVERSE is analyzed under the measure 
length. 

length(REVERSE(L)) --- 
if NULL(L) then 0 
else length(APPEND(REVERSE(CDR(L)), 

CONS(CAR(L),  {}))) 

Again, instead of returning the result in this form, 
Metric attempts to determine the value of length(AP- 
PEND(REVERSE(CDR(L)),  CONS(CAR(L), {}))). 
(iii) To do so, it analyzes APPEND under the measure 
length. The phase (l) result is shown above. Phases (2) 
and (3) eventually result in: length(APPEND(X, }1)) = 
length(X) + length(Y). 
(iv) To use the result of step (iii) in step (ii), length- 
(CONS(CAR(L), { })) and length(REVERSE(CDR(L))) 
are needed. The former is 1. The latter is a use of length 
(REVERSE) while analyzing REVERSE under the 
measure length; consequently, it is represented as length 
( REVERSE( C D R(L ) ) ). 
(v) Substituting (iii) and (iv) into (ii), length of RE- 
VERSE is expressed as 

if  NULL(L) then 0 
else 1 + Iength(REVERSE(CDR(L))) 

From this, subsequent phases find that length(RE- 
VERSE(L)) = length(L). 
(vi) The result of (v) is combined with the result of (i), 
to obtain : time( APP END( REVERSE( C D R(L ) ) , 
CONS(CAR(L), {}))) = Co q- cl. (length(L) -- 1) where 
the ei's are the constants from step (i). This, then, is 
used to obtain an expression for the time of REVERSE. 

This process wherein the analysis of a procedure 
under one measure invokes the analysis of called pro- 
cedures under different measures is somewhat analogous 

to the generation and proof of subsidiary lemmas in 
automatic program verification. In Metric, it is used 
frequently. In addition to cases like the above, a de- 
fined predicate encountered as the conditional-test in a 
procedure definition is analyzed for probability of its 
returning the value true. It is useful in this regard to 
treat each measure as imposing an interpretation (i.e. 
model) on the primitive operator names and local cost 
assignment as evaluation in this model. Local cost as- 
signment maps fixed procedures into fixed cost expres- 
sions and recursive procedures into recursive cost ex- 
pressions. 

When Metric discovers that one recursive procedure 
calls another, it temporarily suspends analysis of the 
first, analyzes the second to obtain its cost in closed 
form, and substitutes a closed-form expression in place 
of the call to the second procedure. Called procedures 
are thus systematically eliminated from subsequent 
consideration. Hence, the recursive cost expressions pro- 
duced by the local cost phase contain only one function 
letter, which simplifies the construction of difference 
equations in the next phase. This elimination method 
works only for certain call disciplines: define a set of 
procedures to be well nested if, whenever A calls B, no 
procedure called by B calls A. Note the analogy with 
well-nested loops. Also, note the specific relation that 
any well-nested iterative loop structure can be turned 
into a set of well-nested recursive procedure's--each 
label is turned into a procedure name, and each back- 
ward goto into a procedure call. The elimination method 
works only on well-nested procedures. If  the nesting 
structure is viewed as a tree, the processing order corre- 
sponds to a prefix walk. 

5. Analyzing Recursion 

The recursion analysis phase attempts to map the 
recursive cost expression for a procedure into a set of 
difference equations whose solution gives the perfor- 
mance of the original procedure. This takes place in three 
steps: (1) reduction to normal form; (2) construction of 
recursion equations by symbolic evaluation and case 
discrimination; and (3) projection into the integers. 

5.1 Reduction to Normal  Form 
A recursive cost expression for the procedure P 

under measure M contains one or more execution paths 
which include M(P(argl, . . . ,  argn)) and one or more 
paths free of recursion. The normal form for such a 
cost expression is a conditional: 

if p l  then c~ else if p2 then c2 else i f . . .  else Ck 

where the ci's are free of conditionals. 
The recursive cost expression for any pure Lisp pro- 

cedure can be reduced to this form by moving all tests 
backward along the execution path and replacing em- 
bedded conditionals by conjunctions of the outer tests 
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and inner tests. In the case of well-nested procedures 
analyzed by the elimination method of the previous 
section, the only nonprimitive procedure in the c~'s is 
P, the procedure being analyzed. 

To simplify subsequent processing, it is desirable to 
eliminate all argument positions which are constant in 
all uses or which are manifestly irrelevant to the value of 
the cost expression. When an argument position is thus 
eliminated, the corresponding formal parameter is 
treated as a free variable. For  example, to illustrate the 
elimination of constant argument positions, consider 
SUBST which substitutes X for the atom Y in Z 

SUBST(X, r , z )  ------- 
if ATOM(Z) then if Y = Z then X 

else Z 
else CONS(SUBST(X,Y,CAR(Z) ), 

SUBST(X, r, CDR(Z))) 

Each recursive call on SUBST uses X as the first argu- 
ment while X is also the first parameter in the defining 
form. Hence, the first argument position is constant 
over the course of recursion and may therefore be 
eliminated. The formal parameter X is then treated as a 
free variable. Similar considerations apply to the formal 
parameter Y and the second argument position. Thus, 
under the measure size, the cost has normal form: 

size( SUBST(Z) ) =- 
if ATOM(Z)  & Y = Z then size(X) 
else if ATOM(Z) then size(Z) 
else 1 -b size(SUBST(CAR(Z))) 

q- size(SUBST(CDR(Z))) 

An argument position may vary during the recursion 
and still be irrelevant to the value of the cost expression. 
Define a relevant argument position as follows: A 
formal parameter which appears in a nonrecursive cost 
expression is relevant, since the value of that cost ex- 
pression depends on it; hence, the corresponding argu- 
ment position is relevant. A formal parameter which 
appears in a test is relevant if the test actually depends 
on its value; hence, the corresponding argument position 
is relevant. Finally, a formal parameter is relevant if it 
appears as an argument in a recursivc call within a posi- 
tion previously labeled as relevant; again, the argument 
position corresponding to the formal parameter is then 
relevant. An argument position is manifestly irrelevant 
if it is not shown to be relevant by the above rules. For  
example, consider the time of FLAT2 defined in Section 
2. Its normal form before parameter elimination is: 

time( FLAT2( X, Y) ) =- 
if ATOM(X) then Co 
else cl q- time(FLAT2(CDR(X), Y)) 

q- time(FLAT2(CAR(X), FLAT2(CDR(X),Y)))  

Although the second argument to FLAT2 varies--being 
Y in the definition and FLAT2(CDR(X),Y) in one re- 
cursive call--its value is manifestly irrelevant to the 

value of the cost function. Parameter elimination re- 
sults in: 

time(FLAT2(X)) =- 
if ATOM(X) then co 
else cl + time(FLAT2(CDR(X))) 

q- time(FLAT2( CAR( X) ) ) 

5.2 Construction of Recursion Equations 
The second step constructs a set of recursion equa- 

tions, converting the cost expression from procedural 
to declarative form. We begin with an example, con- 
tinuing the above processing of SUBST. Let E(Z) = 
size(SUBST(Z)), let a~ be some unspecified atom, let 
sl and s2 be unspecified values. Then size(SUBST(Z)) is 
defined by the recursion equations: 

E(al) = size(X) when Y = Z;  
0 when Y ~ Z 

E({sl.s2}) = 1 + E(sx) + E(s~) 

This is obtained by employing two processes simultane- 
ously: symbolic evaluation and case discrimination. We 
consider these in turn. 

Symbolic evaluation constructs a partial model of 
the data structures and values as specified by an execu- 
tion path; it uses this model to partially evaluate subse- 
quent expressions on that path. The model is repre- 
sented in a symbolic association list, alist, which stores 
the values of variables and expressions as determined by 
tests: the left hand side of each conditional alternative 
is given an input alist and generates two output alists: 
with its truth (falsity) conjoined as a new binding for its 
Yes (No) output branch. The Yes output branch is used 
in evaluating the right hand side of the alternative; the 
No output branch is given as input to the next condi- 
tional alternative. In the above example, ATOM(Z)  
adds (Z = al) to the Yes alist and (Z = {sl.s~}) to 
the No alist. By convention, a~'s stand for unspecified 
atoms, si's for unspecified S-expressions, and ni's for 
unspecified nonnegative integers. 

Each form encountered during symbolic evaluation 
is evaluated so far as possible by using the information 
in the current alist. In outline, partial evaluation of a 
form using an alist proceeds as follows. A variable is 
replaced by its alist binding (e.g. Z by a~ on the Yes arm 
after ATOM(Z))  or by itself if no binding is present. 
CONS(el, ez) is replaced by {el.ez}; CDR({el.e2}) is 
replaced by e2, size(a~) is replaced by 0, etc. Invoca- 
tions of defined procedures are replaced by expressions 
for their definition (copy rule) up to the first recursive 
call, which evaluates to a (recursive) function applica- 
tion: dummy function symbol applied to the partial 
evaluation of the arguments. Symbolic evaluation only 
affects the right hand sides of conditional alternatives, 
i.e. their symbolic costs. 

Case discrimination converts an initial sequence of  
conditional left hand sides pl, . . . ,  pk into a pattern Pk 
which describes the situation in which the kth condi- 
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tional alternative will be chosen. The pattern pe is 
divided into two parts: a structural portion, e.g. E(al), 
and a when qualification, e.g. when (Y = Z).  The struc- 
tural portion models that aspect of  the arguments on 
which recursion is performed. The relevant properties 
in the case of list structure is distinguishing {}, 
atomic, and dotted pairs; in the case of  dotted pairs, the 
system models as many levels as are manifest from the 
program tests. For  example, on the path which takes 
the No branches of NULL(X) and NULL(CDR(X)) ,  
the binding for X establishes that 2" = {Sl. {s2 . s3} } 
meaning: the car of X is some S-expression while its 
cdr is a dotted pair. In forming a set of  recursion equa- 
tions, the structural portion becomes the left hand side 
while the conditional alternative and when qualifica- 
tion become the right hand side. Right hand sides with 
identical left hand sides are grouped together. 

The effect of symbolic evaluation combined with 
case discrimination is illustrated by the following re- 
cursion equations: 

(1) Let E(L) = time(REVERSE(L)). Then 
E({}) = do 
E({Sl . s2}) = d l  + dz.length(s2) + E(s2) 

for appropriate constant do, d~, and d2. 

(2) Let E(L) = length(UNION(L,Y)), 
where Y is treated as a free variable. Then 

E({}) = length(Y) 
E({sx . s2 } ) = E(s2) when MEMBER(s1, ]I) ; 

1 + E(s2) when ~,~MEMBER(s~, Y). 

(3) Let E(X) = time(FLAT2(X,Y) ), 
where Y has been dropped, since step (i) finds that it is 
manifestly irrelevant. Then 

E(al) = co 
E({Sl . s2}) = Cl + E(sx) + E(s2). 

(4) Under the measure length, however, Y is quite rele- 
vant to FLAT2. Hence, let E(X, Y) = length(FLAT2 
(X,Y)) .  Then 

E(ax, Y) = 1 + length(Y) 
E({sx . s2}, Y) = E(sl, E(sz, Y)). 

5.3 Projection onto the Integers 
The final step in analyzing recursion is mapping the 

recursion equations where the arguments are list struc- 
tures into a set of  difference equations where the argu- 
ments are integers. Define E(arg~, . . . ,  argn) to be 
F(bx, . . . ,  b,) where each b~ is some integer valued func- 
tion of argo, b~ is said to be an abstraction ofargl. The 
abstractions are chosen such that: (a) the replacement 
of  E(argl, . . . ,  argo) by F(bx, . . . ,  b,) can be done 
consistently, (b) all variables which are not integer- 
valued are replaced (except from when qualifications 
which are left unaltered). The current system uses only 
the abstraction's length and size3 To a first approxima- 
tion, length is used if each recursive form involves only 
some nth cdr of the input, while size is used if some 
recursive form depends on car and cdr links. For  ex- 

ample, the first two recursion equations above depend 
only on s2, since sl is ignored. As this is the complete 
recursive description of E, the dependence only on s2 
carries to all levels, i.e. only the length of the argument 
to E is relevant. Hence, a new function F is defined, 
which makes this dependence explicit, F(length(L)) = 
E(L). Since length({sl.s2}) = 1 + length(s2), the cor- 
responding difference equations are: 

(1') Let F(length(L)) = E(L). 
F(0) = do 
F(n2 + I) = dl + d2.n2 + F(n2). 

(2') Let r(length(L)) = E(L). 
F(O) = length(Y) 
F(n2 + 1) = F(n2) when MEMBER(sl ,  Y); 

1 + F(n2) when ,~MEMBER(sl ,  Y). 

Where both sl and s~ appear as arguments to E recur- 
sively, the dependency is on size. A new function F is 
therefore defined as F(size(X)) = E(X). Since size • 
({Sl . s2}) = 1 + size(s1) + size(s~), the difference 
equation corresponding to (3) is: 

(3') Let r(size(X)) = E(X). 
F(0) = c0 
F(nl + n2 + 1) = cl + F(nl) + F(n2). 

The appearance of an explicit length or size of an argu- 
ment forces the abstraction of that argument position. 
Thus, in case (4): 

(4') F(size(X), length(Y)) = E(X,Y) .  
F(O, m) = 1 + m 
F(nl + n2 + 1, m) = F(nl, F(n2, m)). 

Note that the abstraction to the integers treats only the 
structural part  of  the pattern in the recursion equations. 
The when qualifications remain unchanged-- to  be used 
in subsequent processing. 

6. Solving Difference Equations 

The final phase solves difference equations such as 
the above to produce closed-form expressions. Differ- 
ence equations may be considered in two groups de- 
pending on the absence or presence of when qualifications. 
Those without qualifications can have exact solutions. 
When qualifications give rise to performance expres- 
sions for which the range is obtained by considering 
best and worst cases and the moments are obtained f rom 
the derivatives of  generating functions. 

5 Other possible abstractions include car-length, max-length 
(maximum path along any combination of car or cdr links), and 
min-length. Adding these to the system would not be difficult. More 
difficult but essentially understood is how to extend these to a 
language with multiple record types; for example, in such a lan- 
guage, each pointer field of a record defines a separate length class, 
etc. What is not well understood is how to synthesize an abstraction 
from the program when the correct one is not already known by the 
system; this is currently being studied. 
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6.1 Unqualified Difference Equations 
M a n y  of  the unqualified difference equations can be 

solved very simply. For  example, consider the differ- 
ence equations for the time of  R E V E R S E :  

F(O) = do 
F(n + 1) = dl + d2.n + F(n). 

This may be summed directly: 

F(n) = do + d l .n  + (1 /2 ) .d2 .n . (n  - 1). 

Rewrit ing this as a polynomial  in n, 

F(n) = do + (dx -- d2/2) .n  + (1/2).d2n 2. 

Letting Co = do, c~ = (dl -- d2/2), and c2 = d2/2, the 
time expression given in Section 2 is obtained: 

F(n) = Co + c l .n  + c2.n 2. 

Similarly, the system: 

F(0) = Co 
F(n + 1) = cl + b .F(n)  

has the solution: 

F(n) = cl/(1 -- b) + b n ( c o -  cl)/(1 - b)). 

A related class of  simple difference equations arises 
f rom programs where some variables are being built up 
( C O N S ,  or A D D I )  while other variables are being de- 
composed  (CDR,  or SUB1) .  For  example, a procedure 
for reversing a list in linear time is given by:  

R E V ( L )  =-- REV2(L ,  {}) 

R E V 2 ( X ,  Y)  =- 
if N U L L ( X )  then Y 
else R E V 2 ( C D R ( X ) ,  

C O N S ( C A R ( X ) ,  Y))  

Comput ing  length of  R E V 2  gives rise to the difference 
equat ions:  

F(0, m) = m 
F(n + 1, m) = F(n, m + 1) 

with solution F(n,m) = n + m. 
The use o f  a size abstract ion caused by simultaneous 

car and cdr recursion creates complications.  Consider,  
for example, the difference equations for length of  
FLAT2:  

F(O, m) = 1 + m 
F(nl  + n2 + 1, m) = F(nl,  F(no., m)).  

The appearance o f  two variables, such as nl + n2 in an 
argument  posit ion implies potential  indeterminacy since, 
in general, the value o f  the right hand  expression depends 
on the part icular  choice of  n~ and n2. Were this the case, 
it would be necessary to average over all choices of  (i,j) 
pairs weighted by their computed  or measured fre- 
quency.  However ,  for a c o m m o n  class of  programs,  
this is not  the case- - the  value of  the right hand  side 
depends  only on the sum nl + n2, not  on the particular 
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values of  nl and n2. The system first guesses that  this 
simple situation occurs• Under  this hypothesis,  it is free 
to consistently substitute for either nl or n2 on the right 
and left hand  sides• It  chooses a constant  which simpli- 
fies the p rob lem--here ,  nl = 0- -s ince  this is a known 
base case. The result: 

F(0, m) = 1 + m 
F(nz + 1, m) = 1 + F(n2, m) 

is then readily solved: F(n,m) = m + n + 1. Finally, 
the guess is checked. Here, 

F(1 + nl + n~,m) = 2 + n l +  n2 + m, 

so the guess is confirmed. 

6.2 Qualified Difference Equations 
I f  there is a when qualification, then a per formance  

must  be computed.  We begin with an example. The 
difference equat ions for time of  M E M B E R  are: 

F(0) = cO 
F(n + I) = cl when X = C A R ( Y ) ;  

c2 + F(n) when X # C A R ( Y ) .  

(min, max)  is obtained by best-case/worst-case analysis. 
Min(F(n) ) = minimum(el ,  cO + n. c2), while m a x ( F ( N )  ) 
= c2 . (n  --  1) + m a x i m u m  (el, e0 + c2). To obtain 
the moments  (mean, variance), Metric uses generating 
funct ions? Let a = probabi l i ty(X = C A R ( Y ) ) .  Let 
pk be the probabil i ty that  F(n) has value k. Lett ing z be 
the formal  variable, define G,(z)  = po + p l . z  + p2z 2 + 
• • • + p k ' z  k + " " ". F r o m  the above difference equat ions 
for F(n), Metric obtains difference equations for G(n, z),  
using a t ransformat ion discussed below: 

G(0, z) = z °° 
G(n + 1, z) = a . z  cl + (1 -- a) .zc2 .G(n ,z ) .  

Treat ing z as a parameter ,  this is a simple system in n, 
having the form:  

H0 = do 
H , + I  --- d l +  d2. H , .  

Hence, its solution has been discussed previously: 

G(n, z) = az' l /(1 -- (1 --  a)z c2) 
+ (1 -- a)"z""2(z c ° -  azc'/(1 -- (1 -- a)z~O). 

Since G(n, z) is a probabil i ty generating funct ion:  

mean(G,)  = G ' , ( I )  
variance(G,) = G",(1)  + G' , (1)  --  (G ' , ( I ) )  2. 

Taking  the first and second derivatives of  the above ex- 
pression forG(n,  z) and simplifying, Metric obtains the 

6 In the interest of brevity, we refer the reader to other sources 
for the development of generating functions and their use in pro- 
gram analysis: [17] contains a good introduction to generating 
functions; [16] discusses the use of generating functions where the 
program is modeled as a discrete Markov process; and [9] makes 
extensive use of generating functions in the analysis of algorithms. 
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desired mean and variance: 

mean(F(n)) = e0 q- el" (1 -- a)" 
variance(F(n)) = e2 q- e~.(1 -- a) n q- e4.n(l -- a)"  

+ es.( l  -- a) 2~ 

where the e~'s are functions of  the ci's. For  example: 

el = null + 3. vref + fncall + cdr 
- (null-t- 5 .vre fq- fncal l  q- 2.cdr-t-  eq)/a. 

As a final comment  on this example, we note the 
crucial role of algebraic simplification in both comput-  
ing and presenting the final result. In carrying out alge- 
braic manipulation, it is usually necessary to simplify 
the result at each stage; otherwise, intermediate expres- 
sion swell can consume unreasonable amounts of  stor- 
age. The system, in fact, simplifies the result of  every 
algebraic operation. For  example, a sum of terms is 
represented by an n-ary "bush"  in which cancellation 
has been carried out and, more generally, in which terms 
differing only by a constant factor have been grouped 
together. The algebraic plus routine constructs this 
simplified representation in forming its answer. A second 
role of algebraic simplification is expressing final re- 
sults in a form which clearly displays the dependence 
on the parameter(s),  e.g. n in the above example. Metric 
simplifies the final result explicitly to achieve this: let 
Xl, . . -  , x ,  be the parameters. Each term of the re- 
sult is written in the form Di.F~(xI, . . .  , x ,)  where D~ 
is independent of  the Xl'S but may depend on free vari- 
ables. Terms which differ only in D~ are collected to- 
gether; the result is a sum o n j  of  terms (Dj 1 q- . . .  A- 
Dj kt~) .Fi(xx , . . .  , x,) .  The form is then simplified by 
defining new constants Cj = (D~ x + . . .  -? D~k[JJ). 

We next consider the treatment of when qualifica- 
tions in the general case. The performance is computed 
by obtaining the range and the moments. Consider ob- 
taining max. First, the difference equations are rewritten 
by replacing any performance subexpressions with their 
max component,  r Next, a reduced system is formed by 
eliminating any early exit cases which allow termination 
short of  recursion down to the base case; the solution R 
to the reduced system is obtained. I f  there are no early 
exit cases, then R is the desired maximum. I f  there are 
early exits, then the maximum obtained by taking such 
an exit occurs if it is taken at the last possible recursion 
step. Hence, the system is next solved under this assump- 
tion. The desired max is the maximum of the two solu- 
tions thus obtained. The min is computed analogously. 
Then the min and max are compared. I f  they are equal, 
a scalar result is returned; otherwise, the moments must 
be computed to complete the performance expression. 

The computation of moments is somewhat complex. 

This assumes that all performances can attain their maxima 
simultaneously. This is another instance of assuming independent 
tests, and is not always correct. It may be that, due to some cou- 
pling, when one module has worst case behavior, some subsequent 
module cannot. In general, the computed max and rain are upper 
and lower bounds but are not necessarily attained. 

First, the generating function is obtained. Deriving a 
difference equation for the generating function is es- 
sentially syntactic: on the left hand side of a case defini- 
tion, F(n) is replaced by G(n, z) ; on the right hand side 
of  a case definition, the transformation g is applied. 

(1) g(al; a2) = g(al) + g(a2) 
(2) g(c when e) = probability(e).g(c) 
(3) g(cl q- c2) = g(cl) .g(c2)  
(4) g(F(n)) = G(n, z) 
(5) g(s) = z" if s is a scalar independent of  n 
(6) g(r) = R(z) if r is a nonscalar performance inde- 

pendent of n, where R is a new function letter. 

The first rule establishes that if the right hand side is a 
set of alternatives, then the transforms of the alterna- 
tives are to be summed. The second rule establishes 
that the generating function for a when qualified case 
is the probability of  the event times the generating func- 
tion for the case. 

The last rule brings up a new point. I t  maps a non- 
scalar performance r into a function R(z)- - the  generat- 
ing function for the probability distribution of that 
performance. R is not explicitly known. However, an 
explicit representation of R is not really necessary. The 
mean and variance of G depends on R only through the 
values of its zeroth, first, and second derivatives evalu- 
ated at z = 1. Since R is a probability generating func- 
tion, R(1) = 1, R'(1) = mean(r), R"(1) = variance(r) 
-- mean(r) + mean(r) 2. The mean and variance of a 
performance r are known. Hence, R can be treated as a 
formal function having these properties. It  will be noted 
that rule (5) is a special case of  this rule, since for any 
scalar S, mean(S) = S while variance(S) = O. 

As an example of  how the transformation g operates, 
consider the difference equation for the time of CO UNT: 

F ( 0 )  = cO 

F(n + 1) = el + F(n) when X = sl; 
c2 q- F(n) when X ~ sl. 

The result of  g is a simple difference equation for the 
generating function: 

G ( 0 ,  z) = z °° 

G(n q- 1, z) = (a.z °1 q- (1 -- a)zc2).G(n,z) 

where a = probability(X = Sl). As a second example, 
suppose that in COUNT the operation ADD1 was re- 
placed by some other operation having an execution time 
described by a nonscalar performance (cf. Section 4.1). 
In that case, the coefficient corresponding to cl would be 
a nonscalar performance and, under the transforma- 
tion g, this would be mapped into a probability 
distribution Rl(Z)--using rule (6) above. Hence, the dif- 
ference equation for the generating function would then 
be: 

G(0, z) = z c° 
G(n d- 1, z) = (a.Rl(Z) q- (I -- a).z~2).G(n, z). 
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Next, a closed form for the generating function is 
obtained by applying the difference equation solver to 
the new difference equation. With a closed form thus 
produced, obtaining the first and second derivatives is 
straightforward. If  Ri's are present, their first and sec- 
ond derivatives are represented formally. The only 
complication is the pervasive use of algebraic simplifica- 
tion to control the size of the expressions [13]. Evaluat- 
ing at z = 1 and using the known values of the zeroth, 
first, and second derivatives of the R / s  yields the de- 
sired results. 

7. Concluding Remarks 

The development of Metric has been concerned with 
complete automation: mechanical analysis of programs 
with no assistance. As such, it complements work such 
as [5] on providing interactive tools for use by the pro- 
grammer. In its current state, Metric can analyze only 
fairly simple Lisp programs, whereas an interactive 
system has the potential for handling programs of arbi- 
trary difficulty. It therefore is appropriate to address the 
issue of extending this work, i.e. to identify the problems 
which must be solved in scaling up the system to handle 
a richer class of programs. 

Languages such as Fortran, Algol, or PL/I present a 
large variety of constructs absent from our simple Lisp 
subset. However, the treatment of many of these within 
our framework is basically understood. 

(1) Control structure. Well-nested loop constructs (e.g. 
do, for, while) correspond directly to nested recursive 
procedure calls. 

(2) Side effects. Assignments in straight line code can 
be modeled by successive substitutions. Assignments 
around a loop are modeled by the recursion relations 
they define. 

(3) I f  and case statements. Test and branch statements 
of all sorts are syntactic variants of conditionals. The 
C O U N T  example shows the treatment and resulting 
analysis of loops with embedded if statements. The 
M E M B E R  example shows the treatment of a for loop 
with an exit condition. 

(4) Optimization. As noted in Section 2, if the source 
program is not mapped one-for-one onto the machine 
then the local cost assignment should be performed 
after all significant optimization has been performed. 

It appears that the most significant problems are 
more fundamental, having more to do with the theory 
of computation than with programming languages. The 
most important is the probabilistic treatment of tests. 
As noted in Section 4, all tests are currently treated as 
independent events. This simplifying assumption is often 
wrong, e.g.: 

i f x  = y t h e n . . . i f x  = y . . .  
if x <  y t h e n . . . i f y < z . . .  

Once detected, repeated identical tests such as the first 
example can be handled satisfactorily; the probability 
of the redundant test failing is zero. The problem of 
detecting simple common cases here is identical to that 
required for test elision in an optimizing compiler, e.g 
as discussed in [18]. The more complex situation where 
the outcome of one test forces the outcome of a subse- 
quent nonidentical test reduces to proving the validity 
of a logical implication. Domain-specific theorem 
provers such as those being developed for program 
verification can be employed here. The difficult problem 
is cases like the second where the conditional probability 
of t e sh  given the success of test1 is neither 0, 1, nor the 
same as the unconditional probability of t e sh .  Detecting 
the possibility of conditioning or, equivalently, guaran- 
teeing its absence is fairly straightforward. If  the condi- 
tional probability is constant, it can be measured. How- 
ever, the important case where t e sh  is conditioned and 
nonconstant is difficult. Mechanization' would seem to 
be beyond the range of current techniques. 

A possible prospect may be to proceed by analogy 
with program verification: to allow the addition to the 
program of performance specifications by the pro- 
grammer, which the system then checks for consistency. 
That is, performance expressions are treated as asser- 
tions and the task of the system is to verify that the 
resource analysis provided by the programmer is correct. 

The analogy with verification is further evidenced 
when we observe that the correct determination of con- 
ditional probability is required not only to obtain mean  
and variance,  but also m a x  as well. Consider, for ex- 
ample, the following simple program to sort an array 
All : n] 

f l a g  ~ true; 
while flag do 
begin f l a g  *--- false; 

for i from 2 to n do 
i f A [ i - -  1] > A[ i ] then  
begin f l a g  ~-- true; e x c h a n g e  (A [i - -  1 ], A [i]) 
end 

end 

Since the outer loop is executed until some pass on which 
no exchange occurs, termination depends on the test 
A[i -- 1] > A[i] being affected by prior tests and ex- 
changes. 

Beyond this, there are a number of defects in the 
current system whose solutions are understood. The alge- 
braic manipulation subsystem could be augmented with 
a radical simplification package [13]. Similarly, the 
methods used for solution of difference equations could 
be extended. Also, the current organization into phases 
is only a linear approximation to the right one: cur- 
rently, the source program is transformed in successive 
phases until an answer is obtained; however, guesses are 
made along the way and if certain of these are wrong, 
the system fails. An obvious improvement would be a 
more flexible organization where a later phase can report  
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back reasons for failure, earlier stages can ask for ad- 
vice from later ones, and several approaches can be tried 
in parallel. Another area for improvement is the final 
representation of analyses: algebraic expressions are 
sometimes advantageously presented by approximating 
an exact but complex solution. Some facilities for deal- 
ing with approximations are therefore desirable. 
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