
A PROGRAM TESTING SYSTEM* 

Lori A. Clarke 
Computer and Informatlon S~ience Dept. 

University of Massachusetts 
Amherst, Massachusetts 01002 

A system that aids in testing programs is described. Thle system symbolically executes program paths 
and creates symbolic representations of the output variables that aid in verifying a path's computations. 
The conditional statements that affect the flow of control are also symbolically represented by a set of 
inequalities. The inequalities are then evaluated to determine input data that would cause execution of 
the path. The system also does extensive error checking by simulating possible data dependent errors 
and then attempting to detect data sets that would cause execution errors. 

i. INTRODUCTION 

Typically programmers are very lax about testing 
their code. One study found that programmers 
tend to test less than half of the source 
statements and only about one third of the 
possible branch conditions [i]. On the other 
hand, exhaustively testing a program is gen- 
erally impractical and undesirable. Testing 
methods that are more rigorous than the curren T 
haphazard approach yet less comprehensive than 
exhaustive testing need to be explored. In 
addition selecting test data that will exercise 
a program is a complex and tedious task, 
especially for a large program. Therefore, 
automated tools are needed to alleviate the 
problems of program testing. This paper de- 
scribes an automated system that aids in testing 
programs by generating test data, symbolically 
representing the program's output, and exten- 
sively checking for errors. This system 
analyzes programs written in ANSI FORTRAN and 
is also written in ANSI FORTRAN. 

Automatic test data generation is a powerful 
tool that can assure that the code is adequate- 
ly tested. It can be used to select test data 
that executes every statement, executes all 
possible branch conditions, or satisfies any 
desired testing criteria. 

Executing a particular program path will not 
guarantee the path is correct for all possible 
input data. Therefore, to aid program testing 
further, the system displays symbolic repre- 
sentations of the path's output variables. The 
symbolic representations are similar to 
algebraic expressions and aid in verifying 

*Supported in part by the National Science 
Foundation under grant GJ-36461 

a path's computations. The symbolic representa- 
tions are useful not only in detecting errors but 
also in detecting the source of the errors. 

Though a path's symbolic representation may ap- 
pear to be correct, errors may still exist. 
Perhaps for some input data a subscript bounds 
error could occur or perhaps a divisor could 
evaluate to zero. It is often difficult to 
detect these types of error conditions by examin- 
ing the symbolic representations and even more 
difficult to detect them by examining the source 
code. Therefore, the system also attempts to 
detect errors. 

2. SYMBOLIC REPRESENTATION GENERATION 

The system analyzes selected program paths in 
three phases; the symbolic execution phase, the 
inequality simplification phase, and the inequal- 
ity solver phase. During the symbolic execution 
phase the symbolic representations are generated. 
In this phase the system executes a path's 
instructions. Instead of using input data, 
however, the system symbolically represents the 
input data with system generated variables. 
Since it is later necessary to distinguish real 
and integer input values, the system uses two 
arrays, I and X, to represent the input data. 
If th~ nth input datum is integer and the next 
input datum is real then l(n) and X(n+l) would 
be used to represent these items respectively. 
Thus, a path's computations are represented sym- 
bolically by algebraic expressions in terms of 
the array elements of I and X. 

~enever an output statement is encountered dur- 
ing the symbolic execution of a path, the sym- 
bolic representations of the output variables 
are displayed. These symbolic representations 

488 



are often more useful in testing a program than a 
computed value. The symbolic representations 
contain information about the evolution of a 
variable and represent the variable for all input ~ 
values that would cause the selected path to be 
executed. Thus, the symbolic representations 
represent the results for a class of input data 
instead of Just one set of input data• 

3. TEST DATA GENERATION 

To generate test data that will cause the execu- 
tion of a particular program path requires that 
the conditional statements on the path be satis- 
fied. Therefore, the system first determines 
the conditional statements and then attempts to 
find a set of test data satisfying these 
relationships• 

The conditional statements are represented during 
the symbolic execution phase. For example, the 
true branch of the FORTRAN statement: 

IF (A. GT.B) GO TO I0 

is represented by the inequality S(A) > S(B), 
where S(A) and S(B) represent the symbolic rep- 
resentations of variables A and B at the given 
point in the path. If the false branch of this 
conditional statement is chosen then the expres- 
sion is represented by (S(A) > S(B)). Each 
conditional branch in the path is represented by 
an inequality. The path, therefore, is repre- 
sented by a set of inequalities where the unknown 
variables represent input data. A solution to 
the system of inequalities is test data that will 
cause execution of the path. If the set of in- 
equalities is inconsistent then the selected path 
is nonexecutable. 

During the symbolic execution phase, conditional 
statements often can be evaluated to a true or 
false value. If an inequality evaluates to the 
value true, then no further analysis of that in- 
equality is necessary. If an inequality evalu- 
ates to the value false, then the path is non- 
executable. 

Usually the values of all the inequalities can 
not be computed and therefore, the set of 
inequalities must be evaluated to determine if 
the path is executable or not. The inequalities 
however may be long and complex• Thus, it is 
necessary to simplify these expressions before 
a solution can be attempted. The second phase 
of the system, inequality simplification, is 
accomplished by an ALTRAN program. ALTRAN is 
a portable system that does symbolic algebraic 
manipulations [2]. Then the third phase of the 
system, the inequality solver, attempts to find 
a solution to the set of inequalities or to de- 
termlne if the inequalities are inconsistent. In 
general, evaluating an arbitrary set of inequal- 
ities is an unsolvable problem [3]. Experience 
with the system has demonstrated, however, that 
the inequalities are usually linear [4]. A 
linear programming system [5] has successfully 
been used to evaluate the linear inequalities. 
Only when the inequalities are nonlinear is it 
necessary to manually attempt a solution. 

In order to determine the subject program's non- 
executable subpaths, the inequalities are passed 
to the inequality solver one at a time. The 
inequality solver first checks to see if the 
previous solution satisfies the new inequality. 
If so, the next inequality is attempted. If not, 
the inequality solver attempts a new solution. 
If the set of inequalities is found to be incon- 
sistent then the subpath from the start of the 
path to the statement where the current inequal- 
ity was generated is nonexecutable. This 
subpath should not be included in future test 
paths. 

Some language dependent properties, in addition 
to the condition statement, must be represented 
by inequalities when generating test data. One 
such property in FORTRAN is integer truncatlon. 
for example, in the statement J-Y where J is 
integer and Y is real, the value of Y is truncated 
and assigned to J. If the value of Y can be 
computed for the path then the actual value of J 
is also computed and assigned to J. If the value 
of J depends on an input variable, however, the 
truncation is represented symbolically. To rep- 
resent the truncation, a new symbolic variable is 
introduced and constrained to be the truncated 
value. The integer variable is then assigned this 
new symbollc variable. For example, let I(n) be 
the symbolic value assigned to represent the 
truncated value of Y in the above expression. 
Then J - I(n) and I(n) is constrained by the fol- 
lowlng inequality where S(Y) is the symbolic rep- 
resentation of variable Y. 

((S(Y)>O) ^ (SCY)zI(n)) ^ (SCY)-l<I(n))) v 

((SCY)<O) ^ (SCY)<ICn)) A (SCY)+l>ICn))) 

Figures 1-3 demonstrate a path where an additional 
constraint representing integer truncation is 
necessary. Assume the statements in Figure 1 are 
statements on a path and that variable Z depends 
on an input variable. Figure 2 dlsplays the 
generated constraints when truncation is not con- 
sidered. From these constraints it appears that 
the GO TO i0 statement is executable on this 
path. Figure 3 displays the generated constraints 
when truncation is considered. I(n) represents 
the new variable that is introduced to represent 
the truncated value of VAL + Z. S(VAL) and S(Z) 
represent the symbolic representations of varia- 
bles VAL and Z. The constraints in Figure 3 are 
inconsistent and correctly represent the path as 
nonexecutable. 

There are several other properties of FORTRAN that 
require the assertion of additional constraints 
in order for the generated test data to be valid. 

IF (O..GT. VAL) STOP 

IF (Z.LT.O..OR. Z. GE.I.) 

K=VAL+ Z 

STOP 

Y=K 

IF (Y. GT. VAL) GO TO I0 

Figure i. 

489 



o. ~ S(VAL) 

O. ~ SCZ) < I. 

SCVAL) + SCZ) > S(VAL) 

Figure 2. 

O. ~ SCVAL) 

O. ~ S(Z) < I. 

(CSCVAL) + SCZ) > O) A 
(S(VAL) + SCZ) > I(n)) ^ 
(SCVAL) + S(Z) - I < ICn))) 

v 

((S(VAL) + S(Z) < O) A 
(SCVAL) + SCZ) < ICn)) ^ 
(SCVAL) + S(Z) + 1 > ICn))) 

ICn) > S (VAL) 

Figure 3. 

4. ERROR DETECTION 

Generating data to force execution down a path 
can assure that the code has been tested but 
cannot assure that all errors have been detected. 
Some errors will occur only wlth a specific set 
of input data. The system, therefore, tries to 
detect data dependent errors by temporarily 
generating artificial inequalities that simulate 
these error conditions. The system then attempts 
to solve the set of inequalities with each 
additional artificial inequality. If there exits 
a solution to any of the augmented sets of in- 
equalities then data exists that would cause an 
error while executing the code and a message is 
issued. 

Division by zero is one of the errors that the 
system attempts to detect and wlll be used to 
illustrate the error detection process. Assume 
that during the symbolic execution phase the 
assignment statement W - P/R is encountered on 
the path. If the divisor R evaluates to a 
constant value then a check Is made to assure 
the value is not zero. If the divisor does not 
evaluate to a constant value then an artificial 
inequality is created that sets the symbolic 
representation of the divisor to zero (e.g. 
S(R) - 0.). Thls inequality is simplified and 
then during the inequality solver phase tempo- 
rarlly added to the set of previously generated 
constraints. If the system can solve the new 
set of constraints then test data exists that 
would cause a division by zero error. If a 
solution exists or not, the artificial inequality 
is removed from the set of constraints and the 
analysis of the path continues. 

The system currently checks for the following 
errors: 

1) Division by zero 
2) Subscripts out of bounds 
3) Illegal variable dimensions 
4) Illegal DO parameters 

5) Illegal mixed mode expressions 
6) References to undefined variables 

The error checking capabilities have proven to be 
quite useful and may be extended to include other 
error conditions in the future. 

5. RELATED WORK 

A technique slmllar to symbolic execution was 
proposed by Balzer in the EXDAMS system [6]. 
More recently others have also independently 
developed symbolic execution [7,8]. There are 
several systems that detect the path constraints 
[7,8,9,10,11]. The EFFIGY [7] and SELECT [8] 
systems analyze programs written in a subset of 
PL/I and LISP, respectlvely. It is felt that a 
standard user language poses a wider range of 
problems and is a more realistic test for a 
testing system. The system developed by Howden 
[9], Miller [i0], and Huang [ii] do not attempt 
to simplify the constraints or generate test 
data. Experience with thls testing system has 
demonstrated that often manually analyzing the 
inequalities is a difficult process and automated 
assistance is desired. 

An interactive system developed at TRW recognizes 
some nonexecutable paths and alds the user in 
selecting test data [12]. Goodenough and Gerhart 
have proposed a method of selecting test data 
using decision tables [13]. Both these methods 
require more user participation than the other 
systems mentioned here. 

The error checking capability is similar to the 
technique proposed by Sites [14]. To the 
author's knowledge, none of the other testing 
systems do extensive error checking of thls type. 

6. CONCLUSION 

It is felt that the testing tools of this system, 
automatic test data generation, symbolic repre- 
sentation of the output variables, and extensive 
error checking, provide the user with powerful 
tools to ald In program testing. Initial tests 
of the system have been quite promising. 

The symbolic execution phase has proved to be 
qulte useful. It supplies the user wlth valuable 
informatlon about the variable relationships that 
evolve executing a program path. Thls information 
is used to describe the flow of control relation- 
ships as well as the computational relationships. 
During this phase the system detects soma infea- 
sible paths as well as program errors, such as 
illegal mixed mode expressions and references to 
undefined variables. 

The simplification phase has been reasonably 
reliable. However, the simplification process 
is relatlvely expensive and since thls phase of 
the system is written in ALTRAN it is not as 
portable as the other phases. 

The inequality solver phase has been very 
satisfactory. Though it cannot handle nonlinear 
constraints this problem has occurred relatively 
infrequently. Even when the inequality solver 
cannot analyze the constraints the system provides 
the user wlth a wealth of information. 

490 



REFERENCES 

[i] L. G. Stucki~,"Automatlc generation of self- 
metric softwareg" in Rec. 1973 IEEE Symp. 
Software Reliability, pp. 94-100. 

[2] W, S. Brown, Altran User's Manual, Bell 
Telephone Lab., vol. 1, 1973. 

[3] M. Davis, "Hilbert's tenth problem is 
unsolvable," Amer. Math. Mon., vol. 80, 
pp. 233-269, Mar. 1973. 

[4] L. A. Clarke, "Test Data Generation and 
Symbolic Execution of Programs as an Aid to 
Program Validation," Ph.D. Thesis, Univ. of 
Colorado~ 1976. 

[5] F. Glover, private communlcatlons. 
[6] R. M. Balzer, "EXDAMS--Extendable debugging 

and monitoring system," in 1969 Sprln~ Joint 
Computer Conf.~ AFIPS Conf. Proc. voi. 34.. 
Monvale, NJ: AFIPS Press, 1969, pp. 567-580. 

[7] J. C. King, "A new approach to program 
testing," in Proc. Int. Conf. Reliable 
Software, Apr. 1975, pp. 228-233. 

[8] R. S. Boyer, B. Elspas, and K. N. Levitt, 
"SELECT--A formal system for testing and 
debugging programs by symbolic execution," 
in Proc. Int. Conf. Reliable Software, 
Apr. 1975, pp. 234-244. 
W. E. Howden, "Methodology for the gener- 
ation of program test data," IEEE Trans. 
Comput., vol. C-24, pp. 554-559, May 1975. 
E. F. Miller, and R. A. Melton, "Automated 
generation of test case datasets," in 
Proc. Int. Conf. Reliable Software, 
Apr. 1975, pp. 51-58. 
J. C. Huangp "Program testing," Dep. 
Comput. Sci., Univ. Houston, Houston, TX, 
May 1974. 
K. W° Krause, R. W. Smith, and M- A. Good- 
win, "Optimal software test planning 
through automated network analysis," in 
Rec. 1973 IEEE Sym~. Software Rellabillty, 
pp. 18"22. 
J. B, Goodenough, and S. L. Gerhart, 
"Toward a theory of test data selection," 
Proc. Int. Conf..Reliable Software, 
Apr. 19751 pp. 493-510. 
S. L. Sites, "Proving that computer 
programs terminate clearly," Dept. 
Comput. Sci., Stanford Univ., Stanford, 
CA. 

[9] 

[io] 

[11] 

[12] 

[13] 

[14] 

491 


