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Abstract

We present in this paper a shallow embedding of Linear Temporal Logic in the Calculus
of Inductive Constructions. Our axiomatization is based on a co-inductive representation
of program executions. Temporal operators are implemented as co-inductive (respectively
inductive) types when they are greatest (respectively least) fixpoints, and several generic
lemmas are proved to allow elegant and efficient reasoning in practical cases. This work
results in several reusable libraries in the Coq proof-assistant.
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1 Introduction

Formal specification combined with mechanical verification is a profitable approach
for achieving the high levels of assurance demanded of safety-critical systems. More-
over, establishing the correctness of such systems often requires reasoning about time,
and, in this framework, temporal logics are now widely used.

In this paper, we present an axiomatization of Linear Temporal Logic (LTL) in the
Calculus of Inductive Constructions.

The motivation for choosing this logical framework is threefold. First, its great expres-
siveness makes it possible to give clear, accurate and generic specifications, to reason
elegantly on them, and to obtain general and reusable results. Second, it rests on firm
logical foundations. Third, it is implemented as a proof assistant, the Coq system
[16]. The latter, as it relies on a small kernel of rules, can be regarded as very reliable.

As far as temporal logics are concerned, most systems can be classified along various
axes such as branching versus linear, higher order versus first order or propositional,
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or past versus future-tense logics. It is a matter of debate whether branching or lin-
ear time is preferable (see for example [17]). The µ-Calculus ([7]), which subsumes
LTL, CTL∗, and CTL, provides an elegant framework for reasoning about theoretical
aspects of temporal logics. However, it is not really convenient for actual case stud-
ies. Our emphasis is on developing an apparatus that is useful in practice and from
this point of view, higher order linear temporal logic is expressive enough to handle
the actual applications ([18]) and being more natural, closer to the designer’s intu-
ition, it is pleasant to work with. Finally, the complexity of model-checking, which is
an argument in favor of the branching time paradigm, is not relevant in our approach.

We opt for a shallow embedding of the logic in which program executions are rep-
resented by infinite co-inductive lists and temporal operators as co-inductive or in-
ductive types, depending on whether they are greatest or least fixpoints. This leads
to clean and natural specifications, without any time parameter, and to an elegant
way of reasoning. Consequently, we work with an “anchored” version of the logic, in
which only formulas that hold at position 0 in a program execution are considered.
Let us mention that this approach does not make possible to define past operators.
But this is not a real drawback since it has been proved that the future fragment of
Temporal Logic is expressively complete ([4]).

In our axiomatization, the rules of LTL correspond to lemmas that express either
termination properties or invariance properties that are proved by induction or co-
induction. This work results in several reusable Coq libraries that can be found in
The Users’s Contributions [2]. Let us mention that the feasibility of this approach is
demonstrated in [3], by a non trivial verification of an incremental mark-and-sweep
garbage collector.

This paper is self-contained and organized as follows. In section 2, we give a short
overview of the Calculus of (Co)Inductive Constructions (CC). Section 3 is dedicated
to the axiomatization of LTL in CC : infinite transition systems, temporal operators,
and several properties of program executions (such as fairness) are defined. In section
4 we prove LTL rules and termination lemmas. Related work is discussed in section
5, and the conclusion is given in the same section.

2 A brief overview of the Calculus of
(co-)Inductive Constructions

The Calculus of Constructions (CoC) has been introduced by T.Coquand and G.Huet
[1] and enriched with inductive types by C.Paulin-Mohring [12] and co-inductive types
by E. Giménez [5]. Simultaneously, successive versions of the system were imple-
mented, resulting in the proof assistant Coq [16].
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The Calculus of Constructions

CoC is a higher order λ-calculus which provides in a uniform logical framework both
a functional programming language for specifying and a higher order intuitionistic
logic for reasoning about specifications, via the Curry-Howard isomorphism. The
system relies on a dual interpretation of types, either as sets or as propositions (a
proposition is in fact considered as the set of its effective proofs). Thus a term
t, inhabitant of a type A, can be both interpreted as an element of the set A and
as a proof of the proposition A. CoC is obtained by enriching the simply typed λ-
calculus in the following way. First, one allows types to depend on terms. For
that, a sort * is introduced and A:* means “A is a type”. New type constructors
such as P:A→* can be interpreted both as predicates on the set A or as a family
of sets, indexed by A. One can then construct types (P a) depending on terms a of
type A. Under the assumptions x:A, h:(P x) one can derive ⊢ λx:A.h : (∀x:A)(P
x). The type (∀x:A)(P x) denotes either the product of a family of sets indexed
by A or a universally quantified proposition. Polymorphism is also introduced by
abstracting terms with respect to types. One can then define the polymorphic identity:
(λA:*)(λx:A)x:(∀A:*)A→A as well as the conjunction A∧B of two propositions A and
B by the type: (∀C:*)(A→B→C)→C. Finally, abstracting types with respect to types
is also possible. The conjunction ∧ for example, can be defined in the following way:
∧ := (λA:*)(λB:*)(∀C:*)(A→B→C)→C.

Sort * versus sorts Prop and Set

As the underlying logic is constructive, proofs are effective. This implies in particular
that any proof of a statement of the form: (∀x:A)(∃y:B)(P x y) is a pair (f:A→B,
p) where f is a program that, for all x:A, computes a witness y=(f x) and p is a
proof of the proposition: (∀x:A)(P x (f x)). In this sense, such a term can be
viewed as a certified program since f is accompanied with a “certificate” p ensuring
that it meets some property. It is then interesting to be able to erase the logical part
of the proof term, exactly as a compiler ignores comments, and, in such a way, to
get the purely computational component f which has been proved to be correct. But
this is meaningless in a system as the one we have presented, since proofs and pro-
grams are essentially the same objects, namely λ-terms. These considerations lead to
splitting the sort * into two twin sorts called Set and Prop, enforcing the distinction
between the two possible type semantics. That is how the system Coq can provide a
mechanism which automatically extracts from a term the certified computational part.

Induction, Co-induction

Finally the Calculus of (Co)-Inductive Constructions (CC) is obtained by adding to
CoC the possibility of defining inductive and co-inductive types. Such a type is char-
acterized by a finite set of typed constructors. Each constructor corresponds to an
introduction rule of the underlying natural deduction system. For example, if A is of
type Set, one can define the two following types:
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Inductive list : Set := nil : list | cons : A→list→list

or

CoInductive list : Set := nil : list | cons : A→list→list

with two constructors nil and cons.

An induction principle is associated with each inductive type (and is automatically
generated by the system Coq). It corresponds to an elimination rule for reasoning on
the terms in the free algebra generated by the constructors. The inductive type list
represents the set of finite lists the elements of which are in A. Total functions can be
defined on inductive types by structural recursion.

In a dual way, the co-inductive type list corresponds to a greatest fixpoint, and
denotes the set of all the finite and infinite lists of elements in A. The proofs of co-
inductive statements are co-recursive terms (representing non ending processes that
build infinite objects step by step) which must meet a guard condition to be well-
formed. More precisely, a recursive call, within such a term, must occur just under a
constructor. This ensures the singleness of the fixpoint.

Let us now illustrate this section by presenting a shallow embedding of Linear Tem-
poral Logic in this logical framework.

3 Axiomatization of Linear Temporal Logic

We have chosen to specify all the temporal notions without introducing any quantifica-
tion on time parameters. The representation of infinite state sequences as co-inductive
lists instead of functions on the set of the successive steps of time (usually modelled by
natural numbers) leads to a direct axiomatization of the future temporal operators as
least or greatest fixpoints using inductive or co-inductive predicates on these infinite
traces.

3.1 Transition Systems

Here are the basic definitions introduced when encoding transition systems. The
specification is parameterized by:

• the set state of the states and the set label of the actions labelling the tran-
sitions,

• two predicates init state and fair characterizing respectively the initial states
and the actions for which a fairness condition is required,

• a function transition which associates with each label a a binary relation on
the states denoted by a→.
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The relations step−→ and fair−→ between states are inductively defined respectively as the
union of all the transition relations a→, a∈label and as the union of all transition
relations a→, a∈label and (fair a). The reflexive closure of the relation step−→ is
denoted by =−→ and for all state relations r a predicate (enabled r) is defined on
the states by:

(enabled r) :=λs:state. (∃t:state) (r s t).

Our encoding relies on the following co-inductive specification of infinite sequences of
states (streams) :

CoInductive stream: Set := cons: state → stream → stream.

We then define the temporal formulas as being the predicates on streams (stream
formulas).

The head and the tail of a stream σ are respectively denoted by (hd σ) and (tl σ).
We will sometimes write σ0 for (hd σ) and more generally σn for (hd(tln(σ)).

Every state formula P (P is a predicate on states) is coerced to the corresponding
stream formula P as follows: ∀σ:stream. (P σ) := (P σ0)

For each transition a→, a predicate (taken
a→) is defined on the streams by:

(taken
a→) := λσ:stream. σ0

a→σ1

The relation leads to on the state formulas is defined by:
(leads to P Q) := (∀s, t : state) (P s)→(s

step−→t)→(Q t).

and the fact that a state formula P is invariant if encoded by:
(invariant P) := (leads to P P).

3.2 Temporal Operators

In temporal logics with past operators, the definition of the interpretation of temporal
operators ([10]) is based on the notion of a formula P holding at a position j (j ≥ 0), in
a sequence σ. This is denoted by (σ, j) |=P. This version of the logic, when restricted
to formulas without past operators, is equivalent in fact to considering formulas that
hold at position 0 in the suffix starting at the jth element of σ. That is why we have
chosen a version of LTL in which parameter j is “anchored” at 0, instead of being
allowed to “float”. Only models σ such that P holds at position 0 are considered. The
temporal formulas are thus simply predicates on the sequences σ and (P σ) stands
for (σ, 0) |=P. The only suffixes to be examined are tails, when using structural re-
cursion on sequences. This approach does not decrease the expressive power of LTL
and leads to neat and uniform specifications.

Let us now review the LTL basic operators. Throughout this subsection, P, Q, and
R are stream formula variables (of type stream →Prop). For each operator, we first
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recall the informal definition, then we give our representation in CC.

• The Next operator ⃝

⃝P(σ0, σ1, . . . , σn, . . .) := P(σ1, . . . , σn, . . .).

⃝P : stream → Prop := λσ:stream.(P (tl σ)).

• The henceforth operator ✷

✷P(σ0, σ1, . . . , σn, . . .) := ∀i∈ IN P(σi, . . . , σn, . . .)

CoInductive ✷P : stream → Prop :=
C always : (∀s:state)(∀σ:stream)
(P (cons s σ)) →(✷P σ) →(✷P (cons s σ))).

• The Eventually operator ✸

✸P(σ0, σ1, . . . , σn, . . .) := ∃i∈ IN P(σi, . . . , σn, . . .)

Inductive ✸P : stream → Prop :=
ev h : (∀σ:stream)(P σ) →(✸P σ) |
ev t : (∀s:state)(∀σ:stream)

(✸P σ) →(✸P (cons s σ)).

• The Until operator U

PUQ(σ0, σ1, . . . , σn, . . .) :=
∃i∈ IN (∀j∈ {0, ...,i-1} P(σj , . . . , σn, . . .))∧Q(σi, . . . , σn, . . .)

Inductive P U Q : stream → Prop :=
until h : (∀σ:stream)(Q σ)→((P U Q) σ) |
until t : (∀s:state)(∀σ:stream)

(P (cons s σ))→((P U Q) σ)→
((P U Q)(cons s σ)).

• The Unless (Waiting-for) operator W

PWQ(σ0, σ1, . . . , σn, . . .) :=
(∃i∈ IN (∀j∈ {0, ...,i-1} P(σj, . . . , σn, . . .))∧ Q(σi, . . . , σn, . . .)) ∨
∀i∈ IN P(σi, . . . , σn, . . .).

CoInductive P W Q : stream → Prop :=
unless h : (∀σ:stream)(Q σ)→((P W Q) σ) |
unless t : (∀s:state)(∀σ:stream)

(P (cons s σ)) →((P W Q) σ)→
((P W Q)(cons s σ)).

6



At this point, one can notice the duality between the Until and the Unless operators.
PUQ and PWQ both mean that P holds as long as Q does not hold, but contrary to the
latter, the former states that Q will eventually hold. The types of the constructors
follow the same syntax. The difference lies in the operator type which is inductive for
Until and co-inductive for Unless.

From these basic definitions, one can obtain classically derived operators such as :

• (infinitely often P) := ✷✸P
• (eventually permanently P) := ✸✷P

• (is followed P Q) := λσ:stream. (P σ)→(✸Q σ)

• (is always followed P Q) := ✷(is followed P Q)

• (P ↪→ Q) := ✷(λσ:stream. (P σ)→(Q σ))

• (once always P Q) := ✷(P ↪→ ✷Q)

• (leads to via P Q R) := P ↪→ (Q U R)

• (once until P Q) := (leads to via P P Q)

3.3 Infinite Computation Properties

Infinite state sequences are classified using the notions of trace and run. A trace is
a sequence σ0, σ1 , . . . , σi, σi+1, . . ., such that for each position i, either σi = σi+1,
or there exists a label a such that σi

a→ σi+1. This definition allows us to represent
finite computations as infinite sequences, with an idle transition looping on the last
state. If, in addition, the first element belongs to the set of initial states, the trace is
called a run. Formally we write:

trace := ✷(λσ:stream. σ0
=−→σ1).

run := λσ:stream. (trace σ)∧(init state σ0).

Now, a stream formula P is said to be safe if it is satisfied by the suffixes of all runs.
That is:

(safe P) := ∀σ:stream. (run σ)→(✷P σ)

As far as fairness is concerned, several notions can be introduced. In the following, we
will say that a sequence is a fair stream if it satisfies the process justice requirement
as introduced in [10].

fairstr :stream formula :=
(infinitely often λσ.(enabled

fair−→ σ0)→ (taken
fair−→ σ)).

We also introduce a strong fairness condition that requires the fair set of actions to
be served infinitely often :
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strong fair := (infinitely often (taken
fair−→))

Let us now present some of the lemmas we have established for temporal reasoning.

4 Reasoning on temporal formulas

Co-inductive reasoning is a valuable tool that clarifies and simplifies the work when
handling temporal aspects of infinite executions properties. Exploiting the duality
between induction and co-induction leads to a uniform and systematic treatment of
goals and hypotheses. Inductive hypotheses are eliminated whereas co-inductive ones
are inverted. Inductive goals are proved by applying constructors (introduction rules)
whereas goals with a co-inductive conclusion are established by considering the goal
as an hypothesis that can be applied under a constructor of the conclusion (this will
be explained in detail in the sequel). The structure of the proof is then closely con-
nected to the structure (defined by means of their own constructors) of the operators
involved in the statement under consideration. This is much more understandable
than handling a unique time parameter which is shared by all operators.

Let us first focus on co-inductive proofs.

4.1 Safety

Let us consider as a simple example the lemma establishing the idempotence of the
✷ operator.

Lemma 1 (∀P:stream formula)(∀σ:stream) (✷Pσ) → (✷✷Pσ).

Proof A proof term for such a proposition is obtained co-recursively as follows :

νX.λP λσ λH (C always s σ’ H (X P σ’ q))

where :

• ν is the fixpoint operator

• P has type stream formula, σ has type stream and H is a proof of (✷P σ)

• σ=(cons s σ’) where s is a state and σ’ is a stream (deconstruction of σ).

• H=(C always s σ’ p q) where p is a proof of (P σ) and q is a proof of (✷P σ’)
(deconstruction of H).

The recursive call (X P σ’q) in the proof term above is of type (✷✷ P σ’), that
amounts to assuming that the property holds on the tail σ’ of σ. This recursive
call occurs just under the constructor C always which is the guard condition to be
satisfied for the term to be well formed.
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Even such a simple example can illustrate the benefit taken from the use of co-
inductive types. The usual definition of the ✷ operator semantics:

(✷P σ) := (∀i∈ IN)(P σ|i) where σ|i = (σi, . . . , σn, . . .)

requires manipulating quantifiers and arithmetics on the indices, which obfuscates the
temporal reasoning. We would have had to prove:

(∀t ∈ IN)(P σ|t) → (∀t ∈ IN)(∀t′ ∈ IN)(P (σ|t)|t′)

and then to handle suffixes of suffixes and to establish some additional properties such
as

(∀t ∈ IN)(∀t′ ∈ IN)(σ|t)|t′ = σt+t′

Our approach is more elegant in the sense that the temporal part of the reasoning
simply consists in deconstructing σ and proving that its tail satisfies the univer-
sally quantified formula stated in the lemma, which follows immediately from the
co-induction hypothesis. The resulting proof term is extremely terse. In general, the
more complex the formula, the more important the gain in clarity.

In our certified library, we establish several results that simplify the work in the
subsequent case studies, in particular in treating once and for all the co-inductive
temporal aspects of the goal. Let us give some examples. The safety theorem is the
basis for proving that a state formula is safe, i.e. that it is continuously satisfied by
all runs.

Theorem 2 (safety) (∀P:state formula)
((∀s:state) (init state s) -> (P s)) ->
(invariant P)->
(safe P).

Proof This theorem is a corollary of the next lemma.

Lemma 3 (∀P:state formula)
(invariant P)->
(∀σ:stream)(trace σ) -> (P σ0) ->(✷P σ).

Proof The proof is performed by co-induction.

The next result generalizes lemma 1. It reduces a proof of a co-inductive goal of the
form (✷P σ) under a co-inductive hypothesis to a simpler goal (P σ).

Lemma 4 (∀P,Q:stream formula)
(∀σ:stream)((✷Q σ)→(P σ))→(∀σ:stream)(✷Q σ)→(✷P σ).

Proof As previously, after having discharged all the hypotheses, the proof of the
goal ✷Pσ is performed in two steps:

• the proof of (P σ)

• the proof of ✷P(tl σ)
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The first one follows immediately from the hypothesis : (∀σ:stream)(✷Qσ →Pσ).
The second is proved by applying the “co-induction hypothesis” (that is the property
stated in the lemma) to (tl σ).

The next lemma is particularly useful when reasoning on runs. Actually, the notion
of a run involves a condition on the initial state of a stream, which prevents us from
reasoning co-inductively on it (unlike the traces). In general, the initial condition is
needed to prove that a property which is stable by transition, continuously holds on
the sequence. Thus we can replace an awkward hypothesis of the form (run σ) by
(trace σ)∧(✷I σ) provided that I continuously holds on all the runs (I is safe).

Lemma 5 Let P and Q be temporal formulas and let I be a safe property. Then
assuming that: ∀σ:stream (trace σ)→(✷I σ)→(✷Q σ)→(P σ)
one can prove that ∀σ:stream (run σ)→(✷Q σ)→(✷P σ).

As in lemma 4, this result highly simplifies the future work. To prove that a property
P continuously holds on the runs σ, it will be sufficient to prove merely that it holds
(initially) on the traces that always satisfy a certain safe property.

Let us now consider some lemmas that mix inductive and co-inductive reasoning.

4.2 Monotonicity

Establishing the monotonicity of temporal operators generally requires both induction
and co-induction. The monotonicity of the basic temporal operators can be stated as
follows.

Theorem 6 Let P, Q, P’, and Q’ be stream formulas. Then, for all streams σ:
1- ((P↪→Q) σ) → ((✷P)↪→(✷Q) σ)
2- ((P↪→Q) σ) → ((✸P)↪→(✸Q) σ)
3- ((P↪→P’) σ) → ((Q↪→Q’) σ) → ((P U Q)↪→(P’U Q’) σ)
4- ((P↪→P’) σ) → ((Q↪→Q’) σ) → ((P W Q)↪→(P’W Q’) σ)

This theorem is obtained as a corollary of a simpler result.

Lemma 7 Let P, Q, P’, and Q’ be stream formulas. Then, for all streams σ:
1- ((P↪→Q) σ) → (✷P σ)→(✷Q σ)
2- ((P↪→Q) σ) → (✸P σ)→(✸Q σ)
3- ((P↪→P’) σ) → ((Q↪→Q’) σ) → ((P U Q) σ)→((P’U Q’) σ)
4- ((P↪→P’) σ) → ((Q↪→Q’) σ) → ((P W Q) σ)→((P’W Q’) σ)

Proof of theorem 6. Statements 1 and 2 follow straightforwardly from the cor-
responding statements in lemma 7 by applying lemma 4. Statements 3 and 4 are
obtained from the corresponding statements in lemma 7 by co-induction.

Proof of lemma 7. Classically, the proofs require the inversion of the co-inductive
hypotheses. Statements 1 and 4 are proved by co-induction whereas statement 2 is
proved by induction on the hypothesis (✸P σ), and statement 3 by induction on the
hypothesis (P U Q).

The monotonicity of derived operators follows immediately from that of the basic
operators.
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4.3 Liveness

As far as liveness is concerned, the next theorem states a useful property of traces
that satisfy the weak fairness condition.

Theorem 8 Let P and Q be state formulas such that (leads to P Q) and that
(∀s:state)(P s)→(enabled

fair−→ s). Then:
(∀σ:stream)(trace σ)→(fairstr σ)→(once until P Q σ).

Proof This theorem is obtained by co-induction from the following result.

Lemma 9 Let P and Q be state formulas such that (leads to P Q) (1) and that
(∀s:state)(P s)→(enabled

fair−→ s) (2). Then:
(∀σ:stream)(trace σ)→(fairstr σ)→(P σ)→(P U Q σ).

Proof Let σ be a trace such that (fairstr σ). It follows from the definition of
fairstr that: (✸(λτ(enabled

fair−→ τ0)→(τ0
fair−→ τ1)) σ). We prove by induction

on this term that σ satisfies (trace σ)→(P σ)→(P U Q σ) .

Base case. Let us assume that (enabled
fair−→ σ0)→(σ0

fair−→ σ1). From (P σ) we
have (P σ0). Therefore, it follows from the hypothesis (2) that (enabled fair−→ σ0),
and thus that σ0

fair−→ σ1 hold. From (1) we can deduce (Q σ1). Then, obviously the
formula (P U Q σ) holds.

Induction step. Let s be a state and σ be a stream such that:

– H1 : ✸(λτ(enabled
fair−→ τ0)→(τ0

fair−→ τ1)) σ)
– H2 : (trace σ)→ (P σ)→(P U Q σ)
– H3 : (trace (cons s σ))
– H4 : (P(cons s σ))

Let us prove that (P U Q (cons s σ)) holds. As s satisfies P from H4, it is sufficient
to establish (P U Q σ), that is, from H2, that σ is a trace that satisfies (P σ0). From
H3 we know that σ is a trace. Moreover, as (cons s σ) is a trace, either σ0= s or
s

step−→ σ0. In the first case, (P σ0) follows from H4. In the second case, from (1), we
have (Q σ0), and then (P U Q (cons s σ)) also holds.

The CC underlying logic being intuitionistic, it is worth establishing some properties
on decidable temporal formulas such as the following one.

Lemma 10 Let P be a decidable predicate on the streams, that is such that:
(∀σ:stream)(P σ)∨¬(P σ) .

Then, for all streams σ,
(is followed P ¬P σ)→(P U¬P σ) .

Proof If ¬(P σ) holds, the goal is proved immediately by applying the first con-
structor. If (P σ) holds, we can deduce (✸¬P σ). The goal is proved by induction
on this term.
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Liveness properties are often expressed by means of leads to via operators (as ex-
amplified in [3]). The next lemma makes it possible to decompose complex liveness
proofs into simpler ones.

Lemma 11 Let A, B, C, D, and E stream formulas and σ a stream. Then:
(leads to via A B C)→
(leads to via C D E )→
(leads to via A∨C B∨D E ).

Among the liveness lemmas, those of the next subsection are essential in order to
establish that a program eventually terminates.

4.4 Termination

The main termination lemma is classical. It makes it possible to conclude that,
provided that a property A initially holds on a stream, a property B continuously
holds until a property C is eventually satisfied. The proof is based on the existence
of a measure on the states ranging over a set equipped with a well-founded relation.
We assume that eventually, either the measure strictly decreases, or C becomes true.
Meanwhile, B remains true.

Theorem 12 Let Alpha be a set, ≺ a well-founded relation on Alpha and meas a
measure specified as a relation of type state→Alpha→Prop. Let P, Q, and R be state
formulas, v a value in Alpha and σ a stream. If σ satisfies the formula
(leads to via λσ.(P σ0)∧(meas σ0 v)

Q
(λσ.(P σ0)∧((∃t:Alpha)(meas σ0 t)∧(t≺v))) ∨ (R σ0))

then it satisfies:
(leads to via (λσ.(P σ0) ∧(∃ v:Alpha)(meas σ0 v)) Q R)

Proof It is obtained by co-induction from the following lemma.

Lemma 13 Under the same hypotheses as those in lemma 12, the stream σ satisfies:
(P σ0) ∧(∃v:Alpha)(meas σ0 v) → (Q U R σ)

Proof The proof is performed by induction on the accessibility of the measure v of
σ0 for the well-founded relation ≺.

5 Related Work and Conclusion

We have taken advantage of the powerful features of the CC type system to give nat-
ural operational definitions to the temporal operators. We have shown that the use of
co-inductive types to specify infinite executions and temporal operators interpreted
as greatest fixpoints leads to elegant reasoning and concise proofs. Thus, we have
developed a certified library of LTL lemmas, reusable in practical cases to establish
safety or liveness properties.

In this field several other studies have been performed.
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In [13], the author presents a system for verifying concurrent systems on the Boyer-
Moore theorem prover. It is based on a model of concurrency suggested in [9]. A
concurrent program is a finite set of processes represented as directed graphs whose
edges are labelled with a pre-condition and a transition value. Program executions
are axiomatized using time parameters (natural numbers) and the author uses the im-
plicit universal quantification of variables in the Boyer-Moore logic to encode always
formulas. The formulation of eventuality properties is complicated by the absence of
existential quantifiers and requires the introduction of an additional axiom.

In [6], an encoding of Unity is presented and a proof of consistency and completeness
of the logic with respect to operational definitions is given. The executions are rep-
resented as functions defined on the natural numbers and the operational temporal
operators are classically defined by means of quantifications on time parameters.

In [15] a verified library for temporal rules for Unity is set up but no execution se-
mantics is formalized. Temporal operators are defined in terms of the structure of
the transition system, in the tradition of the Floyd-Hoare method, but not relative to
particular executions. A drawback of this approach is that it does not make different
fairness requirements possible.

Let us also mention the Coq contribution in [8] where co-induction is used to axiom-
atize CTL, but as far as we know, this work is not documented.

Several formalizations of the µ-calculus have been set up in CC ([11], [14]). The
µ-calculus subsumes LTL, CTL, CTL* but it is not comfortable to work with when
verifying actual case studies, especially when it is specified as a deep embedding, and
either interpreted over labelled transition systems ([14]) or associated with a proof
system in Natural Deduction Style ([11]).

As an illustration of our approach and as a demonstration of the utility of our axiom-
atization, we have performed a rather complex formal certification of an incremental
garbage collector ([3]) in Coq that relies of the libraries resulting of this study.
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