
A Survey of Symbolic Execution Techniques

Roberto Baldoni

1
, Emilio Coppa

2
, Daniele Cono D’Elia

2
,

Camil Demetrescu

2
, and Irene Finocchi

2

1Cyber Intelligence and Information Security Research Center, Sapienza University of Rome
2SEASON Lab, Sapienza University of Rome

{baldoni,coppa,delia,demetres}@dis.uniroma1.it, finocchi@di.uniroma1.it

Abstract

Many security and software testing applications require checking whether certain proper-
ties of a program hold for any possible usage scenario. For instance, a tool for identifying
software vulnerabilities may need to rule out the existence of any backdoor to bypass a pro-
gram’s authentication. One approach would be to test the program using di↵erent, possibly
random inputs. As the backdoor may only be hit for very specific program workloads, au-
tomated exploration of the space of possible inputs is of the essence. Symbolic execution
provides an elegant solution to the problem, by systematically exploring many possible ex-
ecution paths at the same time without necessarily requiring concrete inputs. Rather than
taking on fully specified input values, the technique abstractly represents them as symbols,
resorting to constraint solvers to construct actual instances that would cause property vio-
lations. Symbolic execution has been incubated in dozens of tools developed over the last
four decades, leading to major practical breakthroughs in a number of prominent software
reliability applications. The goal of this survey is to provide an overview of the main ideas,
challenges, and solutions developed in the area, distilling them for a broad audience.

“Sometimes you can’t see how important something is in its moment, even

if it seems kind of important. This is probably one of those times.”

(Cyber Grand Challenge highlights from DEF CON 24, August 6, 2016)

1 Introduction

Symbolic execution is a popular program analysis technique introduced in the mid ’70s in the
context of software testing to check whether a certain property can be violated by a program [King,
1975, Boyer et al., 1975, King, 1976, Howden, 1977]. Aspects of interest could be that no division
by zero is ever performed, no NULL pointer is ever dereferenced, no backdoor exists that can bypass
authentication, etc. While in general there is no automated way to decide some properties (e.g.,
the target of an indirect jump), heuristics and approximate analyses can prove useful in practice
in a variety of settings, including mission-critical and security applications.

In a concrete execution, a program is run on a specific input and a single control flow path
is explored. Hence, in most cases concrete executions can only underapproximate the analysis
of the property of interest. In contrast, symbolic execution can simultaneously explore multiple
paths that a program could take under di↵erent inputs. This paves the road to sound analyses
that can yield strong guarantees on the checked property. The key idea is to allow a program
to take on symbolic – rather than concrete – input values. Execution is performed by a symbolic
execution engine, which maintains for each explored control flow path: (i) a first-order Boolean
formula that describes the conditions satisfied by the branches taken along that path, and (ii) a
symbolic memory store that maps variables to symbolic expressions or values. Branch execution

1

ar
X

iv
:1

61
0.

00
50

2v
1 

 [c
s.S

E]
  3

 O
ct

 2
01

6

http://www.cis.uniroma1.it/
season-lab.github.io
https://www.researchgate.net/publication/305260115_A_new_approach_to_program_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/305260115_A_new_approach_to_program_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220423278_Symbolic_Execution_and_Program_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220071078_Symbolic_Testing_and_the_DISSECT_Symbolic_Evaluation_System?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/profile/Camil_Demetrescu?el=1_x_100&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/profile/Irene_Finocchi?el=1_x_100&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/profile/Emilio_Coppa?el=1_x_100&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


1. void foobar(int a, int b) {
2. int x = 1, y = 0;
3. if (a != 0) {
4. y = 3+x;
5. if (b == 0)
6. x = 2*(a+b);
7. }
8. assert(x-y != 0);
9. }

Figure 1: Warm-up example: which values of a and b make the assert fail?

updates the formula, while assignments update the symbolic store. A model checker, typically
based on a satisfiability modulo theories (SMT) solver [Biere et al., 2009], is eventually used to
verify whether there are any violations of the property along each explored path and if the path
itself is realizable, i.e., if its formula can be satisfied by some assignment of concrete values to the
program’s symbolic arguments.

Symbolic execution techniques have been brought to the attention of a heterogenous audience
since DARPA announced in 2013 the Cyber Grand Challenge, a two-year competition seeking
to create automatic systems for vulnerability detection, exploitation, and patching in near real-
time [Shoshitaishvili et al., 2016].

More remarkably, symbolic execution tools have been running 24/7 in the testing process
of many Microsoft applications since 2008, revealing for instance nearly one third of the bugs
discovered during the development of Windows 7, which were missed by other program analyses
and blackbox testing techniques [Godefroid et al., 2012].

In this article, we survey the main aspects of symbolic execution and discuss its extensive
usage in software testing and computer security applications, where software vulnerabilities can
be found by symbolically executing programs at the level of either source or binary code. We start
with a simple example that highlights many of the fundamental issues addressed in the remainder
of the article.

1.1 A Warm-up Example

Consider the C code of Figure 1 and assume that our goal is to determine which inputs make the
assert at line 8 of function foobar fail. Since each input parameter can take as many as 232

distinct integer values, the approach of running concretely function foobar on randomly generated
inputs will unlikely pick up exactly the assert-failing inputs. By evaluating the code using symbols
for its inputs, instead of concrete values, symbolic execution overcomes this limitation and makes
it possible to reason on classes of inputs, rather than single input values.

In more detail, every value that cannot be determined by a static analysis of the code, such
as an actual parameter of a function or the result of a system call that reads data from a stream,
is represented by a symbol ↵

i

. At any time, the symbolic execution engine maintains a state
(stmt, �, ⇡) where:

• stmt is the next statement to evaluate. For the time being, we assume that stmt can be an
assignment, a conditional branch, or a jump (more complex constructs such as function calls
and loops will be discussed in Section 2 and Section 5, respectively).

• � is a symbolic store that associates program variables with either expressions over concrete
values or symbolic values ↵

i

.

• ⇡ denotes the path constraints, i.e., is a formula that expresses a set of assumptions on the
symbols ↵

i

due to branches taken in the execution to reach stmt. At the beginning of the
analysis, ⇡ = true.

Depending on stmt, the symbolic engine changes the state as follows:

2

https://www.researchgate.net/publication/220309880_SAGE_Whitebox_Fuzzing_for_Security_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


Figure 2: Symbolic execution tree of function foobar given in Figure 1. Each execution state,
labeled with an upper case letter, shows the statement to be executed, the symbolic store �, and
the path constraints ⇡. Leaves are evaluated against the condition in the assert statement.

• The evaluation of an assignment x = e updates the symbolic store � by associating x with
a new symbolic expression e

s

. We denote this association with x 7! e
s

, where e
s

is obtained
by evaluating e in the context of the current execution state and can be any expression
involving unary or binary operators over symbols and concrete values.

• The evaluation of a conditional branch if e then s
true

else s
false

a↵ects the path constraints
⇡. The symbolic execution is forked by creating two execution states with path constraints
⇡
true

and ⇡
false

, respectively, which correspond to the two branches: ⇡
true

= ⇡ ^ e
s

and
⇡
false

= ⇡ ^ ¬e
s

, where e
s

is a symbolic expression obtained by evaluating e. Symbolic
execution independently proceeds on both states.

• The evaluation of a jump goto s updates the execution state by advancing the symbolic
execution to statement s.

A symbolic execution of function foobar, which can be e↵ectively represented as a tree, is shown
in Figure 2. Initially (execution state A) the path constraints are true and input arguments a

and b are associated with symbolic values. After initializing local variables x and y at line 2,
the symbolic store is updated by associating x and y with concrete values 1 and 0, respectively
(execution state B). Line 3 contains a conditional branch and the execution is forked: depending
on the branch taken, a di↵erent statement is evaluated next and di↵erent assumptions are made
on symbol ↵

a

(execution states C and D, respectively). In the branch where ↵
a

6= 0, variable y is
assigned with x+ 3, obtaining y 7! 4 in state E because x 7! 1 in state C. In general, arithmetic
expression evaluation simply manipulates the symbolic values. After expanding every execution
state until the assert at line 8 is reached on all branches, we can check which input values for
parameters a and b can make the assert fail. By analyzing execution states {D,G,H}, we can
conclude that only H can make x-y = 0 true. The path constraints for H at this point implicitly
define the set of inputs that are unsafe for foobar. In particular, any input values such that:

2(↵
a

+ ↵
b

)� 4 = 0 ^ ↵
a

6= 0 ^ ↵
b

= 0

will make assert fail. An instance of unsafe input parameters can be eventually determined by
invoking a model checker [Biere et al., 2009] to solve the path constraints, which in this example
would yield a = 2 and b = 0.

3



1.2 Challenges in Symbolic Execution

In the example discussed in Section 1.1 symbolic execution can identify all the possible unsafe in-
puts that make the assert fail. This is achieved through an exhaustive exploration of the possible
execution states. From a theoretical perspective, exhaustive symbolic execution provides a sound
and complete methodology for any decidable analysis. Soundness prevents false negatives, i.e., all
possible unsafe inputs are guaranteed to be found, while completeness prevents false positives, i.e.,
input values deemed as unsafe are actually unsafe. As we will discuss later on, exhaustive symbolic
execution is unlikely to scale beyond small applications. Hence, in practice we often settle for less
ambitious goals, e.g., by trading soundness for performance.

Challenges that symbolic execution has to face when processing real-world code can be signif-
icantly more complex than those illustrated in our warm-up example. Several observations and
questions naturally arise:

• Memory: how does the symbolic engine handle pointers, arrays, or other complex objects?
Any arbitrarily complex object can be regarded as an array of bytes and each byte associated
with a distinct symbol. However, when possible, exploiting structural properties of the data
may be more convenient: for instance, relational bounds on the class fields in object-oriented
languages could be used for refining the search performed by symbolic execution.

• Environment: how does the symbolic engine handle interactions with the environment?
Real-world applications constantly interact with the environment (e.g., the file system or
the network) through libraries and system calls. These interactions may cause side-e↵ects
(such as the creation of a file) that could later a↵ect the execution and must be therefore
taken into account. Evaluating any possible interaction outcome is generally unfeasible: it
could generate a large number of execution states, of which only a small number can actually
happen in a non-symbolic scenario. A typical strategy is to consider popular library and
system routines and create models that can help the symbolic engine analyze only significant
outcomes.

• Loops: how does the symbolic engine handle loops? Choosing the number of loop iterations
to analyze is especially critical when this number cannot be determined in advance (e.g.,
depends on an input parameter). The naive approach of unrolling iterations for every valid
bound would result in a prohibitively large number of states. Typical solutions are to
compute an underapproximation of the analysis by limiting the number of iterations to
some value k, thus trading speed for soundness. Other approaches infer loop invariants
through static analysis and use them to merge equivalent states.

• State space explosion and path selection: how does symbolic execution deal with path ex-
plosion? Language constructs such as loops might exponentially increase the number of
execution states. It is thus unlikely that a symbolic execution engine can exhaustively ex-
plore all the possible states within a reasonable amount of time. In practice, heuristics
are used to guide exploration and prioritize certain states first (e.g., to maximize code cov-
erage). In addition, symbolic engines can implement e�cient mechanisms for evaluating
multiple states in parallel without running out of resources.

• Constraint solver: what can a constraint solver do in practice? Constraint solvers su↵er
from a number of limitations. They can typically handle complex constraints in a reasonable
amount of time only if they are made of linear expressions over their constituents. Symbolic
execution engines normally implement a number of optimizations to make queries as much
solver-friendly as possible, for instance by splitting queries into independent components to
be processed separately or by performing algebraic simplifications.

• Binary code: what issues can arise when symbolically executing binary code? While the
warm-up example of Section 1.1 is written in C, in several scenarios binary code is the only

4



concrete symbolic abstract

concolic

Figure 3: Concrete and abstract execution machine models.

available representation of a program. However, having the source code of an application
can make symbolic execution significantly easier, as it can exploit high-level properties (e.g.,
object shapes) that can be inferred statically by analyzing the source code.

Depending on the specific context in which symbolic execution is used, di↵erent choices and
assumptions are made to address the questions highlighted above. Although these choices typically
a↵ect soundness or completeness, in several scenarios a partial exploration of the space of possible
execution states may be su�cient to achieve the goal (e.g., identifying a crashing input for an
application) within a limited time budget.

1.3 Organization of the Article

The remainder of this article is organized as follows. In Section 2, we discuss the overall principles
and evaluation strategies of a symbolic execution engine. Section 3 through Section 8 address the
key challenges that we listed in Section 1.2. Prominent applications based on symbolic execution
techniques are discussed in Section 9, while concluding remarks are addressed in Section 10.

2 Symbolic Execution Engines

In this section we describe some important principles for the design of symbolic executors as well
as crucial tradeo↵s that arise in their implementation. Moving from the concepts of concrete and
symbolic runs, we also introduce the idea of “concolic” execution.

2.1 Concrete, Symbolic, and Concolic Execution

As shown in the warm-up example (Section 1.1), a symbolic execution of a program can generate
– in theory – all possible control flow paths that the program could take during its concrete
executions on specific inputs. While modeling all possible runs allows for very interesting analyses,
it is typically unfeasible in practice, especially on real-world software, for a variety of reasons.

First, as extensively discussed in Section 6, the number of control flow paths to be generated
and analyzed could be prohibitively large, due to branch instructions and loops. In the worst case,
if the code contains an unbounded loop, symbolic execution could keep running forever, generating
a potentially infinite number of paths (we refer to Section 5 for an example).

Moreover, as observed in Section 1, symbolic engines are clients of SMT solvers, which are
continuously invoked during the analysis. Although powerful SMT solvers are currently available,
the time spent in constraint solving is still one of the main performance barriers for symbolic
engines. It may also happen that the program yields constraints that the solver cannot handle
well (e.g., non-linear constraints), in spite of the fact that symbolic executors often use more than
one solver in order to support as many decidable logical fragments as possible.

A standard approach to limit the resources (running time and space usage) required by the
execution engine and to handle complex constraints is to mix concrete and symbolic execution:
this is dubbed concolic execution, where the term concolic is a portmanteau of the words concrete
and symbolic. The basic idea is to have the concrete execution drive the symbolic execution (see
also Figure 3). Besides the symbolic store and the path constraints, a concolic execution engine
also maintains a concrete store �

c

. After choosing an arbitrary input to begin with, it executes
the program both concretely and symbolically by simultaneously updating the two stores and the
path constraints. In order to explore di↵erent paths, the path conditions given by one or more

5



branches can be negated and the SMT solver invoked to find a satisfying assignment for the new
constraints, i.e., to generate a new input.

Example. Consider the C function in Figure 1 and suppose to choose a = 1 and b = 1 as input
parameters. Under these conditions, the concrete execution takes path A B  C  E  G in
the symbolic tree of Figure 2. Besides the symbolic stores shown in Figure 2, the concrete stores
maintained in the traversed states are the following:

� �
c

= {a 7! 1, b 7! 1} in state A;

� �
c

= {a 7! 1, b 7! 1, x 7! 1, y 7! 0} in states B and C;

� �
c

= {a 7! 1, b 7! 1, x 7! 1, y 7! 4} in states E and G.

After checking that the assert conditions at line 8 succeed, we can generate a new control flow
path by negating the last path constraint, i.e., ↵

b

6= 0. The solver at this point would generate a
new input that satisfies the constraints ↵

a

6= 0 ^ ↵
b

= 0 (for instance a = 1 and b = 0) and the
execution would continue in a similar way along the path A B  C  E  F .

As shown by the example, the symbolic information maintained during a concrete run can be
exploited by the execution engine, for instance, to obtain new inputs and explore new control flow
paths. We will further discuss this aspect in Section 6.2.

It is worth noticing that concolic execution trades soundness for performance: false negatives
are indeed possible, because some program executions – and therefore possible erroneous behaviors
– may be missed. In the literature, this is also regarded as an under-approximate form of program
analysis.

Many papers exploit variants of concolic execution or di↵erent ways of mixing concrete and
symbolic runs. For instance, in execution-generated testing (see, e.g., KLEE [Cadar et al., 2008],
EXE [Cadar et al., 2006], and [Cadar and Sen, 2013], the symbolic engine always executes con-
cretely the operations that involve only concrete values. This makes it possible to reason even
over complex (e.g., non-linear) operations if they involve only concrete values. Selective symbolic
execution [Chipounov et al., 2012] takes a di↵erent approach, by interleaving portions of code that
are concretely run with fully symbolic phases. The interleaving must be done carefully in order
to preserve the meaningfulness of the whole exploration. When an argument x for a function call
to concretize is symbolic, the engine should convert it to some concrete value in order to perform
the call, which is equivalent to corseting the exploration to a single path in the callee. When the
call returns and the symbolic phase resumes, the concrete value for x becomes part of the path
constraints for the remainder of the exploration. However, a large number of paths may be then
excluded. S2E [Chipounov et al., 2012] presents a systematic approach to consistently cross the
symbolic/concrete boundary in both directions: it describes a strategy to deal with constraints
introduced on symbolic values as a consequence of concretization, and introduces a number of
consistency models – where a state is consistent when there exists a feasible path to it from the
initial state – which suit di↵erent analyses. Constraints updated to account for concrete values
are marked as soft, and whenever a branch in the symbolic domain is disabled because of a soft
constraint, execution goes back and picks a value for the concrete call that would enable that
branch. Throughout this article, we will see other uses of concretization (see, e.g., Section 3 and
Section 7) and of concolic execution (see Section 6).

2.2 Design Principles of Symbolic Executors

A number of performance-related design principles that a symbolic execution engine should follow
are summarized in [Cha et al., 2012]. Most notably:

1. Progress: the executor should be able make forward progress for an arbitrarily long time
without exceeding the given resources. Memory consumption can be especially critical, due
to the potentially gargantuan number of distinct control flow paths.

6

https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


2. Work repetition: no execution work should be repeated, avoiding to restart a program several
times from its very beginning in order to analyze di↵erent paths that might have a common
prefix.

3. Analysis reuse: analysis results from previous runs should be reused as much as possible.
In particular, costly invocations to the SMT solver on previously solved path constraints
should be avoided.

Due to the large size of the execution state space to be analyzed, di↵erent symbolic engines have
explored di↵erent tradeo↵s between, e.g., running time and memory consumption, or performance
and soundness/completeness of the analysis.

Symbolic executors that attempt to execute multiple paths simultaneously in a single run – also
called online executors – clone the execution state at each input-dependent branch. Examples are
given in KLEE [Cadar et al., 2008], AEG [Avgerinos et al., 2011], S2E [Chipounov et al., 2012].
These engines never re-execute previous instructions, thus avoiding work repetition. However, since
many active states need to be kept in memory, they put a huge burden on memory consumption,
possibly hindering progress. E↵ective techniques for reducing the memory footprint include copy-
on-write, which tries to share as much as possible between di↵erent states [Cadar et al., 2008].
Moreover, executing multiple paths in parallel requires to ensure isolation between execution
states, e.g., keeping di↵erent states of the OS by emulating the e↵ects of system calls.

Reasoning about a single path at a time, as in concolic execution, is the approach taken by so-
called o✏ine executors, such as SAGE [Godefroid et al., 2008]. Running each path independently
of the others results in low memory consumption with respect to online executors and in the
capability of reusing immediately analysis results from previous runs. On the other side, work can
be largely repeated, since each run usually restarts the execution of the program from the very
beginning. In a typical implementation of o✏ine executors, runs are concrete and require an input
seed: the program is first executed concretely, a trace of instructions is recorded, and the recorded
trace is then executed symbolically.

Hybrid executors such as Mayhem [Cha et al., 2012] attempt at balancing between speed and
memory requirements: they start in online mode and generate checkpoints, rather than forking new
executors, when memory usage or the number of concurrently active states reaches a threshold.
Checkpoints maintain the symbolic execution state and replay information. When a checkpoint is
picked for restoration, the concrete state is restored and the online exploration resumes.

2.3 Caching

Caching is a powerful technique to achieve time-space tradeo↵s and is embodied in symbolic
executors in di↵erent ways. Most prominently:

• Function caching. A function f , and more in general any part of a program, may be called
multiple times during an execution, either at the same calling context or at di↵erent ones.
The traditional symbolic execution approach requires to symbolically execute f at each call.
[Godefroid, 2007] proposes a compositional approach that dynamically generates function
summaries, allowing the symbolic executor to e↵ectively reuse prior discovered analysis
results. A similar idea has been also proposed in [Boonstoppel et al., 2008]. The main
intuition is that, if two program states di↵er only for some program values that are not read
later, the executions generated by the two program states will produce the same side e↵ects.
Side e↵ects of a portion of code can be therefore cached and possibly reused later.

• Loop summarization. In order to avoid redundant executions of the same loop under the
same program state, loop summaries can be computed and cached for later reuse, similarly
to function summaries. We refer to Section 5 for details on a loop summarization strategy
proposed in [Godefroid and Luchaup, 2011].

• Constraint reuse. In order to speed up constraint solving, di↵erent works support the reuse of
constraint solutions based on syntactic or semantic equivalence of the constraints. Examples

7

https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655409_Automated_Whitebox_Fuzz_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220997530_Compositional_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


Symbolic engine References Project URL (last retrieved: August 2016)

CUTE [Sen et al., 2005] –
DART [Godefroid et al., 2005] –
jCUTE [Sen and Agha, 2006] https://github.com/osl/jcute

KLEE [Cadar et al., 2006, Cadar et al., 2008] https://klee.github.io/

SAGE [Godefroid et al., 2008, Elkarablieh et al., 2009] –
BitBlaze [Song et al., 2008] http://bitblaze.cs.berkeley.edu/

CREST [Burnim and Sen, 2008] https://github.com/jburnim/crest

PEX [Tillmann and De Halleux, 2008] http://research.microsoft.com/en-us/projects/pex/

Rubyx [Chaudhuri and Foster, 2010] –
Java PathFinder [Păsăreanu and Rungta, 2010] http://babelfish.arc.nasa.gov/trac/jpf

Otter [Reisner et al., 2010] https://bitbucket.org/khooyp/otter/

BAP [Brumley et al., 2011] https://github.com/BinaryAnalysisPlatform/bap

Cloud9 [Bucur et al., 2011] http://cloud9.epfl.ch/

Mayhem [Cha et al., 2012] –
SymDroid [Jeon et al., 2012] –
S2E [Chipounov et al., 2012] http://s2e.epfl.ch/

FuzzBALL [Martignoni et al., 2012, Caselden et al., 2013] http://bitblaze.cs.berkeley.edu/fuzzball.html

Jalangi [Sen et al., 2013] https://github.com/Samsung/jalangi2

Pathgrind [Sharma, 2014] https://github.com/codelion/pathgrind

Kite [do Val, 2014] http://www.cs.ubc.ca/labs/isd/Projects/Kite

SymJS [Li et al., 2014] –
CIVL [Siegel et al., 2015] http://vsl.cis.udel.edu/civl/

KeY [Hentschel et al., 2014] http://www.key-project.org/

Angr [Shoshitaishvili et al., 2015, Shoshitaishvili et al., 2016] http://angr.io/

Triton [Saudel and Salwan, 2015] http://triton.quarkslab.com/

PyExZ3 [Ball and Daniel, 2015] https://github.com/thomasjball/PyExZ3

JDart [Luckow et al., 2016] https://github.com/psycopaths/jdart

CATG – https://github.com/ksen007/janala2

PySymEmu – https://github.com/feliam/pysymemu/

Miasm – https://github.com/cea-sec/miasm

Figure 4: Selection of symbolic execution engines, along with their reference article(s) and software
project web site (if any).

are given in EXE [Cadar et al., 2006], KLEE [Cadar et al., 2008], and [Yang et al., 2012,
Visser et al., 2012]. We will further discuss this optimization in Section 7.

2.4 Tools

Table 4 lists a number of symbolic execution engines that have worked as incubators for sev-
eral of the techniques surveyed in this article. The novel contributions introduced by tools that
represented milestones in the area are described in the appropriate sections throughout the article.

3 Memory model

Our warm-up example of Section 1.1 presented a simplified memory model where data are stored
in scalar variables only, with no indirection. A crucial aspect of symbolic execution is how memory
should be modeled to support programs with pointers and arrays. This requires extending our
notion of memory store by mapping not only variables, but also memory addresses to symbolic
expressions or concrete values. In general, a store � that explicitly models memory addresses can
be thought as a mapping that associates memory addresses (indexes) with either expressions over
concrete values or symbolic values. We can still support variables by using their address rather
than their name in the mapping. In the following, when we write x 7! e for a variable x and an
expression e we mean &x 7! e, where &x is the concrete address of variable x. Also, if v is an array
and c is an integer constant, by v[c] 7! e we mean &v + c 7! e. A memory model is an important
design choice for a symbolic engine, as it can have a significant influence on the coverage achieved
by symbolic execution, as well as on the scalability of constraint solving [Cadar and Sen, 2013].

The symbolic memory address problem [Schwartz et al., 2010] arises when the address refer-
enced in the operation is a symbolic expression derived from user input instead of a concrete value.
In the remainder of this section, we discuss a number of popular solutions.

8

https://github.com/osl/jcute
https://klee.github.io/
http://bitblaze.cs.berkeley.edu/
https://github.com/jburnim/crest
http://research.microsoft.com/en-us/projects/pex/
http://babelfish.arc.nasa.gov/trac/jpf
https://bitbucket.org/khooyp/otter/
https://github.com/BinaryAnalysisPlatform/bap
http://cloud9.epfl.ch/
http://s2e.epfl.ch/
http://bitblaze.cs.berkeley.edu/fuzzball.html
https://github.com/Samsung/jalangi2
https://github.com/codelion/pathgrind
http://www.cs.ubc.ca/labs/isd/Projects/Kite
http://vsl.cis.udel.edu/civl/
http://www.key-project.org/
http://angr.io/
http://triton.quarkslab.com/
https://github.com/thomasjball/PyExZ3
https://github.com/psycopaths/jdart
https://github.com/ksen007/janala2
https://github.com/feliam/pysymemu/
https://github.com/cea-sec/miasm
https://www.researchgate.net/publication/301428545_SymJS_automatic_symbolic_testing_of_JavaScript_web_applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/289669528_HI-CFG_Construction_by_Binary_Analysis_and_Application_to_Attack_Polymorphism?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271515524_SymDroid_Symbolic_Execution_for_Dalvik_Bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/266656883_Exploiting_undefined_behaviors_for_efficient_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262352357_Green_Reducing_reusing_and_recycling_constraints_in_program_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262352357_Green_Reducing_reusing_and_recycling_constraints_in_program_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/228517853_Path-Exploration_Lifting_Hi-Fi_Tests_for_Lo-Fi_Emulators?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220883167_Symbolic_PathFinder_symbolic_execution_of_Java_bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


3.1 Fully Symbolic Memory

At the one end of the spectrum, an engine may treat memory addresses as fully symbolic. This
is the approach taken by a number of works (e.g., BitBlaze [Song et al., 2008], [Thakur et al.,
2010], BAP [Brumley et al., 2011], and [Trt́ık and Strejček, 2014]). Two fundamental approaches,
pioneered by King in its seminal paper [King, 1976], are the following:

• State forking. If an operation reads from or writes to a symbolic address, the state is forked
by considering all possible states that may result from the operation. The path constraints
are updated accordingly for each forked state.

Example. Consider the example shown in Figure 5. The write operation at line 4 a↵ects
either a[0] or a[1], depending on the unknown value of array index i. State forking creates two
states after executing the memory assignment to explicitly consider both possible scenarios
(Figure 6). The path constraints for the forked states encode the assumption made on the
value of i. Similarly, the memory read operation a[j] at line 5 may access either a[0] or a[1],
depending on the unknown value of array index j. Therefore, for each of the two possible
outcomes of the assignment a[i]=5, there are two possible outcomes of the assert, which
are explicitly explored by forking the corresponding states.

1. void foobar(unsigned i, unsigned j) {
2. int a[2] = { 0 };
3. if (i>1 || j>1) return;
4. a[i] = 5;
5. assert(a[j] != 5);
6. }

Figure 5: Memory modeling example: which values of i and j make the assert fail?

Figure 6: Fully symbolic memory via state forking for the example of Figure 5.

• if-then-else formulas. An alternative approach consists in encoding the uncertainty on the
possible values of a symbolic pointer into the expressions kept in the symbolic store and
in the path constraints, without forking any new states. The key idea is to exploit the
capability of some solvers to reason on formulas that contain if-then-else expressions of the
form ite(c, t, f), which yields t if c is true, and f otherwise1. The approach works di↵erently
for memory read and write operations. Let ↵ be a symbolic address that may assume the
concrete values a1, a2, . . .:

– reading from ↵ yields the expression ite(↵ = a1,�(a1), ite(↵ = a2,�(a2), . . .));

1In propositional logic, the ite(c, t, f) expression could be replaced with the formula (c ^ t) _ (¬c ^ f).

9

https://www.researchgate.net/publication/301929260_Symbolic_Memory_with_Pointers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221403525_Directed_Proof_Generation_for_Machine_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221403525_Directed_Proof_Generation_for_Machine_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220423278_Symbolic_Execution_and_Program_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


Figure 7: Fully symbolic memory via if-then-else formulas for the example of Figure 5.

– writing an expression e at ↵ updates the symbolic store for each a1, a2, . . . as �(ai) 
ite(↵ = a

i

, e,�(a
i

)).

Notice that in both cases, a memory operation introduces in the store as many ite expressions
as the number of possible values the accessed symbolic address may assume. The ite approach
to symbolic memory is used, e.g., in Angr [Shoshitaishvili et al., 2016] (Section 3.3).

Example. Consider again the example shown in Figure 5. Rather than forking the state
after the operation i=5 at line 4, the if-then-else approach updates the memory store by
encoding both possible outcomes of the assignment, i.e., a[0] 7! ite(↵

i

= 0, 5, 0) and a[1] 7!
ite(↵

i

= 1, 5, 0) (Figure 7). Similarly, rather than creating a new state for each possible
distinct address of a[j] at line 5, the uncertainty on j is encoded in the single expression
ite(↵

j

= 0,�(a[0]),�(a[1])) = ite(↵
j

= 0, ite(↵
i

= 0, 5, 0), ite(↵
i

= 1, 5, 0)).

In general, a symbolic address may reference any cell in memory, making the approaches described
above intractable. Fortunately, in many practical cases the set of possible addresses a memory
operation may reference is small [Song et al., 2008], as in the example shown in Figure 5 where
indexes i and j range in a bounded interval.

To model fully symbolic pointers, an extensive line of research (e.g., EXE [Cadar et al., 2006],
KLEE [Cadar et al., 2008], SAGE [Elkarablieh et al., 2009]) leverages the expressive power of some
SMT solvers, which can model operations on arrays as first-class entities in constraint formulas
using theories of arrays in their decision procedures [Ganesh and Dill, 2007].

3.2 Address Concretization

In all cases where the combinatorial complexity of the analysis explodes as pointer values cannot
be bounded to su�ciently small ranges, address concretization, which consists in concretizing a
pointer to a single specific address, is a popular alternative. This can reduce the number of states
and the complexity of the formulas fed to the solver and thus improve running time, although may
cause the engine to miss paths that, for instance, depend on specific values for some pointers.

Concretization is a natural choice for o✏ine executors (Section 2.2) such as DART [Godefroid
et al., 2005] and early SAGE releases [Godefroid et al., 2008] that concretely execute one path at a
time while collecting path constraints along executed paths. Systems such as CREST [Burnim and
Sen, 2008] and CUTE [Sen et al., 2005] are capable of reasoning only about equality constraints
for pointers, as they can be solved e�ciently, and resort to concretization for general symbolic
references.

3.3 Partial Memory Modeling

To mitigate the scalability problems of fully symbolic memory and the loss of soundness of memory
concretization, Mayhem [Cha et al., 2012] explores a middle point in the spectrum by introducing

10

https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655409_Automated_Whitebox_Fuzz_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221560458_CUTE_A_concolic_unit_testing_engine_for_C?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402853_A_Decision_Procedure_for_Bit-Vectors_and_Arrays?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


a partial memory model. The key idea is that written addresses are always concretized and
read addresses are modeled symbolically if the contiguous interval of possible values they may
assume is small enough. This model is based on a trade-o↵: it uses more expressive formulas than
concretization, since it encodes multiple pointer values per state, but does not attempt to encode
all of them like in fully symbolic memory [Avgerinos, 2014]. A basic approach to bound the set
of possible values that an address may assume consists in trying di↵erent concrete values and
checking whether they satisfy the current path constraints, excluding large portions of the address
space at each trial until a tight range is found. This algorithm comes with a number of caveats:
for instance, querying the solver on each symbolic dereference is expensive, the memory region
may not be continuous, and the values within the memory range of a symbolic pointer might
have structure. Mayhem [Cha et al., 2012] thus performs a number of optimizations, including
Value Set Analysis [Duesterwald, 2004] and forms of query caching (Section 7), to refine ranges
e�ciently. If at the end of the process the range size exceeds a given threshold (e.g., 1024), the
address is concretized. Angr [Shoshitaishvili et al., 2016] also adopts the partial memory model
idea and extends it by optionally supporting write operations on symbolic pointers that range
within small contiguous intervals (up to 128 addresses).

3.4 Complex Objects

[Khurshid et al., 2003] introduces a generalization of traditional symbolic execution to advanced
constructs of object-oriented languages such as Java and C++. The authors describe a verification
framework that combines symbolic execution and model checking to handle dynamically allocated
data structures such as lists and trees.

In particular, they generalize symbolic execution by introducing lazy initialization to e↵ectively
handle dynamically allocated objects. Compared to our warm-up example (Section 1.1), the state
representation is extended with a heap configuration used to maintain such objects. Symbolic
execution of a method taking complex objects as inputs starts with uninitialized fields, and assigns
values to them in a lazy fashion, i.e., they are initialized when first accessed during execution.

When an uninitialized reference field is accessed, the algorithm forks the current state with
three di↵erent heap configurations, in which the field is initialized with: (1) null, (2) a reference
to a new object with all symbolic attributes, and (3) a previously introduced concrete object of the
desired type, respectively. This on-demand concretization enables symbolic execution of methods
without requiring an a priori bound on the number of input objects. Also, forking the state as in
(2) results into a systematic treatment for aliasing, i.e., when an object can be accessed through
multiple references.

[Khurshid et al., 2003, Visser et al., 2004] combine lazy initialization with user-provided method
preconditions, i.e., conditions which are assumed to be true before the execution of a method. Pre-
conditions are used to characterize those program input states in which the method is expected
to behave as intended by the programmer. For instance, we expect a binary tree data structure
to be acyclic and with every node - except for the root - having exactly one parent. Conser-
vative preconditions are used to ensure that incorrect heap configurations are eliminated during
initialization, speeding up the symbolic execution process.

Further refinements to lazy initialization are described in a number of works, e.g., [Deng et al.,
2012, Geldenhuys et al., 2013, Rosner et al., 2015], which all share the goal of reducing the number
of heap configurations to generate when forking the state. [Deng et al., 2012] also provides a formal
treatment of lazy initialization in Java.

Of a di↵erent flavor is the technique presented in [Shannon et al., 2007] for symbolic execution
over objects instantiated from commonly used libraries. The authors argue that performing sym-
bolic execution at the representation level might be redundant if the aim is to only check the client
code, thus trusting the correctness of the library implementation. They discuss the idea of sym-
bolically executing methods of the Java String class using a finite-state automaton that abstracts
away the implementation details. They present a case study of an application that dynamically
generates SQL queries: symbolic execution is used to check whether the statements conform to the
SQL grammar and possibly match injection patterns. The authors mention that their approach

11

https://www.researchgate.net/publication/251339390_Efficient_and_formal_generalized_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/251339390_Efficient_and_formal_generalized_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/251339390_Efficient_and_formal_generalized_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4279333_Abstracting_Symbolic_Execution_with_String_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


might be used to symbolically execute over standard container classes such as trees or maps. It
is worth mentioning that symbolic execution is used to detect SQL injection vulnerabilities also
in [Fu et al., 2007].

4 Interaction with the environment

When a program interacts with its environment – e.g., file system, environment variables, network
- a symbolic executor has to take into account the whole software stack surrounding it, including
system libraries, kernel, drivers, etc.

A body of early works (e.g., DART [Godefroid et al., 2005], CUTE [Sen et al., 2005], and
EXE [Cadar et al., 2006]) includes the environment in symbolic analysis by actually executing
external calls using concrete arguments for them. This indeed limits the behaviors they can explore
compared to a fully symbolic strategy, which on the other hand might be unfeasible. In an online
executor this choice also results in having calls from distinct execution paths interfere with each
other.

Another way to tackle the problem is to create an abstract model that captures these interac-
tions. For instance, in KLEE [Cadar et al., 2008] symbolic files are supported through a simple
symbolic file system, which is private for each execution state. In particular, it consists of a direc-
tory with n symbolic files whose number and sizes are specified by the user. An operation on a
symbolic file results in forking n+1 state branches: one for each possible file, plus an optional one
to capture unexpected errors in the operation. As the number of functions in a standard library
is typically large and writing models for them is an error-prone and rather expensive process [Ball
et al., 2006], models are generally implemented at system call-level rather than library level. An
additional benefit of this approach is that it allows for symbolic exploration of the libraries as well.

AEG [Avgerinos et al., 2011] models most of the system environment that an attacker can
possibly use as an input source, including the file system, network sockets, and environment
variables. Additionally, more than 70 library and system calls are emulated, including thread-
and process-related system calls, and common formatting functions to capture potential bu↵er
overflows. Symbolic files are handled as in KLEE [Cadar et al., 2008], while symbolic sockets are
dealt with in a similar manner, with packets and their payloads being processed as in symbolic
files and their contents. Cloud9 further extends support to many other POSIX libraries, allowing
the user to also control advanced conditions in the testing environment. For instance, Cloud9 is
able to simulate delay, reordering, and dropping of packets caused by a fragmented network data
stream.

S2E [Chipounov et al., 2012] remarks that models, other than expensive to write, rarely achieve
full accuracy, and also lose it as the modeled system evolves. It would be thus preferable to have
analyzed programs to interact with the real environment while exploring multiple paths. In their
S2E platform the authors rely on virtualization to perform the desired analysis on the real software
stack, preventing side e↵ects from propagating across independent execution paths.

The approach followed in DART [Godefroid et al., 2005] is di↵erent, as the goal is to enable
automated unit testing. DART deems as foreign interfaces all the external variables and functions
referenced in a C program along with the arguments for a top-level function. External functions
are simulated by nondeterministically returning any value of their specified return type. Library
functions are normally not considered external functions as they are controlled by the program, but
in practice the user can adjust the boundary between library and external functions to simulate
the desired e↵ects.

5 Loops

Loops are one of the main causes of path explosion: each iteration of a loop can be seen as an
if-goto statement, leading to a conditional branch in the execution tree. If the loop condition
involves one or more symbolic values, the number of generated branches may be potentially infinite.

12

https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221560458_CUTE_A_concolic_unit_testing_engine_for_C?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221351655_Thorough_static_analysis_of_device_drivers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221351655_Thorough_static_analysis_of_device_drivers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


1. int x = sym_input (); // e.g., read from file
2. while (x > 0) {
3. x = sym_input ();
4. }

Figure 8: Loop example with input read from the environment [Cadar and Sen, 2013].

Example. Consider the code fragment of Figure 8 [Cadar and Sen, 2013], where sym input()

is an external routine that interacts with the environment (e.g., by reading input data from a
network) and returns a fresh symbolic input. The path constraint set at any final state has the
form:

⇡ =

0

@
^

i2[1,k]

↵
i

> 0

1

A ^ (↵
k+1  0)

where k is the number of iterations and ↵
i

is the symbol produced by sym input() at the i-th
iteration.

The problem of path explosion due to symbolic execution of loops has been attacked from di↵erent
sides. A first natural strategy adopted by many symbolic engines is to limit the loop exploration
up to a certain number of iterations. Obviously, this may lead to missing interesting paths in the
program. For this reason, some works (e.g., AEG [Avgerinos et al., 2011]) have also considered
the opposite strategy, allowing the engine to fully explore some loops. To mitigate the path
explosion problem, only a single instance of the symbolic executor is allowed to fully unroll a
loop, while other instances conservatively explore other paths. This approach has been shown to
be e↵ective in some application contexts such as security (e.g., identification of bu↵er overflows)
where interesting behavior may be observed at the loop boundaries.

By using static or dynamic analysis techniques, it may be possible to derive properties over
a loop that can be exploited by the symbolic engine to significantly prune branching paths. For
instance, knowledge of the exact number of loop iterations - or at least a constant upper bound
on it - can significantly help the engine. Section 6.4 provides a more general discussion of how
preconditions can help symbolic execution. Nevertheless, even symbolic execution can be used to
derive loop invariants. Indeed, if a program contains an assertion after the loop, the approach
presented in [Păsăreanu and Visser, 2004] works backwards from the property to be checked and it
iteratively applies approximation to derive loop invariants. The main idea is to pick the asserted
property as the initial invariant candidate and then to exploit symbolic execution to check whether
this property is inductive. If the invariant cannot be verified for some loop paths, it is replaced
by a di↵erent invariant. The next candidate for the invariant is generated by exploiting the path
constraints for the paths on which the verification has failed. Additional refinements steps are
performed to guarantee termination.

[Godefroid and Luchaup, 2011] presents a technique that automatically derives partial sum-
marizations for loops. A loop summarization is similar to a function summary (Section 2.3), using
a set of preconditions and a set of postconditions. These are computed dynamically during the
symbolic execution by reasoning on the dependencies among loop conditions and symbolic vari-
ables. As soon as a loop summary is computed, it is cached for possibly subsequent reuse. This
not only allows the symbolic engine to avoid redundant executions of the same loop under the
same program state, but also makes it possible to generalize the loop summary to cover even
di↵erent executions of the same loop that run under di↵erent conditions. A main limitation of
this approach is that it can generate summaries only for loops that iteratively update symbolic
variables across loop iterations by adding a constant, non-zero amount.

[Slaby et al., 2013] introduces a technique of a di↵erent flavor that analyzes cyclic paths in
the control flow graph of a given program and produces templates that declaratively describe the
program states generated by these portions of code into a symbolic execution tree. By exploit-
ing templates, the symbolic execution engine needs to explore a significantly reduced number of
program states. A drawback of this approach is that templates introduce quantifiers in the path

13

https://www.researchgate.net/publication/258725161_Compact_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221105739_Verification_of_Java_Programs_Using_Symbolic_Execution_and_Invariant_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220854526_Automatic_partial_loop_summarization_in_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


if (a > 0) {
...

}

if (a > 1) {
...

}

(a) (b)

Figure 9: Pruning unrealizable paths example: (a) Fragment of code; (b) Symbolic execution
of the fragment of code: the true branch in node D is not explored since its path constraints
(↵

a

 0 ^ ↵
a

> 1) are not satisfiable, i.e., there exists no assignment of variable a that can drive
a concrete execution first toward node D and then through its true branch.

constraints: in turn, this may significantly increase the burden on the constraint solver.
It has also been observed that loop executions may strictly depend on input features. Loop-

extended symbolic execution [Saxena et al., 2009] is able to e↵ectively explore a loop whenever
a grammar describing the input program is available. Relating the number of iterations with
features of the program input can guide the exploration of the program states generated by a
loop.

6 Path explosion

One of the main challenges of symbolic execution is the path explosion problem. Since symbolic
execution may fork o↵ a new execution engine instance at every branch, the total number of
executors may be exponential in the number of branches in the program. This impacts both
time and space, as a symbolic executor may need to keep track of an exponential number of
pending branches to be explored. A common approach is to compute an under-approximation of
the analysis that only explores a relevant subset of the state space.

6.1 Pruning Unrealizable Paths

A first natural technique for reducing the path space is invoking the constraint solver at each
branch, pruning branches that are not realizable. Indeed, if the constraint solver is able to prove
that the logical formula given by the path constraints of a branch is not satisfiable, then there
exists no assignment of the program input values that would drive a real execution toward that
path. For this reason, the symbolic engine can safely discard the path involving that branch
without a↵ecting soundness of the approach.

Example. Consider the example shown in Figure 9. Assuming that a is a local variable bound to
an unconstrained symbol ↵

a

, a symbolic engine would start the execution of the code fragment
in Figure 9a by evaluating the branch condition a > 0. Before expanding both branches, the
symbolic engine queries a constraint solver to verify that no contradiction arises when adding to
the path constraints ⇡ the true branch condition (↵

a

> 0) or the false branch condition (↵
a

 0).
Since both paths are feasible, the engine forks the execution states B and D (Figure 9b). A similar
scenario happens when the engine evaluates the branch condition a > 1. However, since ↵

a

is
not unconstrained anymore, some contradictions may be actually possible. The engine queries the
solver to check the following path constraints: (1) ↵

a

> 0 ^ ↵
a

> 1, (2) ↵
a

> 0 ^ ↵
a

 1, (3)
↵
a

 0 ^ ↵
a

> 1, and (4) ↵
a

 0 ^ ↵
a

 1. Notice that formula ↵
a

 0 ^ ↵
a

> 1 does not
admit a valid solution and thus the related path can be safely dropped by the engine since it is
unrealizable. On the other hand, other paths admit a valid solution and can be further explored
by the engine.

This approach is commonly referred as eager evaluation of path constraints since path constraints

14



Heuristic Goal

BFS
Maximize coverage

[Chipounov et al., 2012, Tillmann and De Halleux, 2008]

DFS
Exhaust paths, minimize memory usage

[Cadar et al., 2006, Chipounov et al., 2012]
[Tillmann and De Halleux, 2008, Godefroid et al., 2005]

Random path selection
Randomly pick a path with probability based on its length

[Cadar et al., 2008]

Code coverage search
Prioritize paths that may explore unexplored code

[Cadar et al., 2006, Cadar et al., 2008, Cha et al., 2012]
[Chipounov et al., 2012, Groce and Visser, 2002]

Buggy-path-first
Prioritize bug-friendly path

[Avgerinos et al., 2011]

Loop exhaustion
Fully explore specific loops

[Avgerinos et al., 2011]

Symbolic instruction pointers
Prioritize paths with symbolic instruction pointers

[Cha et al., 2012]

Symbolic memory accesses
Prioritize paths with symbolic memory accesses

[Cha et al., 2012]

Fitness function
Prioritize paths based on a fitness function

[Xie et al., 2009, Cadar and Sen, 2013, Xie et al., 2009]

Subpath-guided search
Use frequency distributions of explored subpaths to prioritize

less covered parts of a program

[Li et al., 2013]

Figure 10: Common path selection heuristics discussed in literature.

are eagerly checked at each branch and is typically the default approach adopted by most symbolic
engines. We refer to Section 7 for a discussion of the possible benefits given by the opposite
strategy, i.e., lazy evaluation, where path constraints are lazily checked in order to possibly reduce
the burden on the solver.

6.2 Bounding Computational Resources

Another common approach is to limit the amount of resources symbolic execution is allowed to use.
For instance, the computation may time out after a certain amount of time. Since only a fraction
of paths may be explored, the search should be prioritized by looking at the most promising paths
first. There are several strategies for selecting or generating the next path to be explored. We
now briefly overview some of the most interesting techniques that have been shown to be e↵ective
in the literature.

Search Heuristics. Given a set of unexplored paths, a search heuristic should select the most
promising path to explore. Many works have introduced novel search strategies, showing their
e↵ectiveness in specific application contexts. These heuristics have often been tailored to help the
symbolic engine achieve a specific goal (e.g., overflow detection). Finding a universally optimal
strategy for prioritizing path exploration remains an open problem. Table 10 provides a sample
of prominent search heuristics discussed in prior works.

The most common strategies are depth-first search (DFS) and breadth-first search (BFS). DFS
continuously expands a path as much as possible, before backtracking to the deepest unexplored
branch. BFS explores all unexplored paths in parallel, repeatedly expanding each of them by a
fixed slice. DFS is often adopted for minimizing the memory usage of the symbolic engine: since
the chosen path will be sooner or later fully explored, the memory needed for keeping its state
will be released as well. Unfortunately, paths containing loops and recursive calls can easily stall
the symbolic engine. For this reason, some tools prefer prioritizing paths using BFS. Although
memory pressure can be higher, this strategy may allow an engine to quickly explore diverse paths
and possibly detecting interesting behaviors. On the other hand, if the ultimate goal requires to
fully terminate the exploration of one or more paths, BFS may take a very long time.

15

https://www.researchgate.net/publication/311471839_Steering_symbolic_execution_to_less_traveled_paths?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


Another popular strategy is random path selection that, as its name would suggest, randomly
picks a path for exploration. This heuristic has been refined in several variants. For instance,
KLEE [Cadar et al., 2008] assigns probabilities to paths based on their length and on the branch
arity. Namely, it favors paths that have been explored fewer times, preventing starvation caused
by loops and other path explosion factors.

Several works, such as EXE [Cadar et al., 2006], KLEE [Cadar et al., 2008], Mayhem [Cha
et al., 2012], and S2E [Chipounov et al., 2012], have discussed heuristics aimed at maximizing
code coverage. For instance, the coverage optimize search discussed in KLEE [Cadar et al., 2008]
computes a weight for each state and then randomly selects a state according to these weights.
The weight is obtained by taking into account the minimum distance to an uncovered instruction,
the call stack of the state, and whether the state has recently covered new code. Of a similar
flavor is the heuristic proposed in [Li et al., 2013], called subpath-guided search, which attempts to
explore less traveled parts of a program by selecting the subpath of the control flow graph that has
been explored fewer times. This is achieved by maintaining a frequency distribution of explored
subpaths, where a subpath is defined as a consecutive subsequence of length n from a complete
path. Interestingly, the value n plays a crucial role with respect to the code coverage achieved
by a symbolic engine using this heuristic and no specific value has been shown to be universally
optimal.

Other search heuristics try to prioritize paths likely leading to states that are interesting
according to some goal. For instance, the buggy-path first strategy in AEG [Avgerinos et al., 2011]
picks paths whose past states have contained small but unexploitable bugs. The intuition is that if
a path contains some small errors, it is likely that it has not been properly tested. There is thus a
good chance that future states may contain interesting, and hopefully exploitable, bugs. Similarly,
the loop exhaustion strategy discussed in AEG [Avgerinos et al., 2011] explores paths that visit
loops. This approach is inspired by the practical observation that common programming mistakes
in loops may lead to bu↵er overflows or other memory-related errors. In order to find exploitable
bugs, Mayhem [Cha et al., 2012] instead gives priority to paths where symbolic memory accesses
are identified or symbolic instruction pointers are detected.

Fitness functions have been largely used in the context of search-based test generation [McMinn,
2004]. A fitness function measures how close an explored path is to achieve the target test cov-
erage. Several papers, e.g., [Xie et al., 2009, Cadar and Sen, 2013, Xie et al., 2009], have applied
this idea in the context of symbolic execution. As an example, [Xie et al., 2009] introduces fitnex,
a strategy for concolic execution that prioritizes paths that are closer to take a specific branch.
In more detail, given a branch condition of the form |a� c| == 0 and a path that has reached the
branch, fitnex computes a closeness equal to |a � c| by leveraging the concrete values of the two
variables a and c in that path. Similar fitness values can be computed for other kinds of branch
conditions. The path with the lowest fitness value for a branch is selected by the symbolic engine.
Paths that have not reached the branch yet get the worst-case fitness value.

Dynamic Test Generation. Traditional symbolic execution does not scale over large programs.
Although search heuristics may help prioritize some interesting paths, symbolic execution may
still proceed extremely slow. Indeed, the engine must simulate any instruction in the program and
heavily relies on the constraint solver in order to make any progress in the execution. Dynamic
test generation, initially introduced in DART [Godefroid et al., 2005], is a technique that can help
symbolic execution scale to large programs. The main idea is to execute a program both concretely
and symbolically. This kind of execution is often referred to as concolic execution (Section 2.1).
Initially, a random input is generated and a concrete execution is started. In parallel, a symbolic
execution is also started. Whenever the concrete execution takes a branch, the symbolic execution
is directed toward the same branch and the constraints extracted from the branch condition are
added to the current set of path constraints. In other words, the symbolic execution is driven by
a specific concrete execution. A consequence of this approach is that the symbolic engine does
not need to invoke the constraint solver to decide whether a branch condition is (un)satisfiable,
since this is directly tested by the concrete execution. Other paths of the program execution can
be then explored by selecting a previously taken branch and negating its constraints. Using a

16

https://www.researchgate.net/publication/311471839_Steering_symbolic_execution_to_less_traveled_paths?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


int bar(int x, int y) {
if (x < 5 && y >= 6)

if (x > 1) return 1;
else return 2;

else return 3;
}

(a) (b) (c)

Figure 11: Dynamic test generation example. (a) Source code of function bar. (b) Symbolic
execution tree for the function bar. Solid edges show the path taken by the concolic execution
when x = 2 and y = 6. These input values have been randomly chosen. (c) Concolic execution
when x = 1 and y = 6. These input values have been obtained using a constraint solver, after
negating the path constraints of node B in the function bar.

constraint solver, the symbolic engine can generate a new (random) input that drives the concrete
execution toward a new path. This strategy can be repeated as much as needed to achieve the
desired coverage.

Example. An example of dynamic test generation is shown in Figure 11. Consider the function
bar (Figure 11a) that takes two integer inputs x and y. To start a first concrete execution, a
symbolic engine may initially randomly pick x = 2 and y = 6 as input values. The concrete
execution induced by these inputs is presented in Figure 11b: both the first and second branch
condition (nodes A and B) are satisfied, directing the execution toward the first return statement
(node D). Nodes C and E are skipped since their associated branch conditions are not met by
the current input values. For instance, node E is not executed since the condition x > 1 (node
B) directs the path toward the node D. An engine that desires to symbolically execute a path
containing the node E must track the constraints during the concrete execution over x = 2 and
y = 6 and then negate the branch condition x > 1. To generate a new input, the engine then
invokes a solver over the constraints ¬(↵

x

> 1)^ (↵
x

< 5^↵
y

> 5), getting, e.g., x = 1 and y = 6

(Figure 11c). Notice that since y is not involved in the branch condition that is currently negated,
the engine may reuse its value and include an additional constraint ↵

y

= 6. This optimization
may drastically reduce the solving time required to obtain a solution from the constraint solver.

Although dynamic test generation uses concrete inputs to drive the symbolic execution toward a
specific path, it still needs to pick a branch to negate whenever a new path has to be explored.
Notice also that each concrete execution may add new branches that will have to be visited. Since
the set of non-taken branches across all the performed concrete executions can be very large, the
search heuristics discussed in Section 6.2 still play a crucial role. For instance, DART [Godefroid
et al., 2005] chooses the next branch to negate using a DFS strategy. Additional strategies for
picking the next branch to negate have been presented in literature. For instance, the generational
search algorithm discussed in SAGE [Godefroid et al., 2008] systematically yet partially explores
the state space, maximizing the number of new tests generated while also avoiding redundancies in
the search. This is achieved by negating constraints following a specific order and by limiting the
backtracking of the search algorithm. Since the state space is only partially explored, the initial
input plays a crucial role in the e↵ectiveness of the overall approach. The importance of the first
input is similar to what happens in traditional black-box fuzzing and, for this reason, symbolic
engines such as SAGE are often referred as white-box fuzzers.

6.3 Under-Constrained Symbolic Execution

A possible approach to avoid path explosion is to cut the code to check, say a function, out of
its enclosing system and check it in isolation. Lazy initialization with user-specified preconditions
(Section 3.4) follows this principle in order to automatically reconstruct complex data structures.

17

https://www.researchgate.net/publication/221655409_Automated_Whitebox_Fuzz_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


However, taking a code region out of an application has proven to be quite di�cult due to the
entanglements with the surrounding environment [Engler and Dunbar, 2007].

The main issue is that errors detected in a function analyzed in isolation may be false positives,
as the input may never assume certain values when the function is executed in the context of a
full program. Some prior works, e.g., Check ’n’ Crash [Csallner and Smaragdakis, 2005], first
analyze the code in isolation and then test the generated crashing inputs using concrete executions.

Under-constrained symbolic execution [Engler and Dunbar, 2007] is a twist on symbolic exe-
cution that allows for the analysis of a function in isolation by marking some symbolic inputs as
under-constrained. Intuitively, a symbolic variable is under-constrained when in the analysis we
do not account for constraints on its value that should have been collected along the path prefix
from the program’s entry point to the function to analyze. Under-constrained variables have the
same semantics as classic symbolic variables except when used in an expression that can cause
an error to occur. In particular, an error is reported only if all the solutions for the currently
known constraints on the variable cause it to occur, i.e., the error is context-insensitive and thus
a true positive. Otherwise, its negation is added to the path constraints and execution resumes as
normal. This choice can be regarded as an attempt to reconstruct preconditions from the checks
inserted in the code: any subsequent action violating an added negated constraint will be reported
as an error.

Although this technique is not sound as it may miss errors, it can still scale to find interesting
bugs in larger programs. Also, the application of under-constrained symbolic execution is not
limited to functions only: for instance, if a code region (e.g., a loop) may be troublesome for the
symbolic executor, it can be skipped by marking the locations a↵ected by it as under-constrained.

6.4 Preconditioned Symbolic Execution

AEG [Avgerinos et al., 2011] proposes preconditioned symbolic execution as a novel method to
drive symbolic execution toward certain subsets of the input space. A subset is determined by a
precondition predicate: inputs that do not satisfy it will not be explored. The intuition behind
preconditioned symbolic execution is that we can narrow down the state space we are exploring by
specifying goal-oriented (e.g., exploitability) conditions as a precondition, e.g., all symbolic inputs
should have the maximum size to expose bu↵er overflow bugs. The main benefit of preconditioned
symbolic execution is simple: by limiting the size of the input state space before execution begins,
we can prune program paths and therefore explore the target program more e�ciently. Indeed,
preconditions need to be selected carefully. If a precondition is too specific, no bug may be
detected; if it is too general, almost the entire state space will be explored.

This technique enforces a precondition by adding the precondition constraints to the path
predicate during initialization. Adding constraints may seem counterintuitive since there are more
checks to perform at branch points during symbolic execution. However, the state space shrink
caused by the precondition constraints outweighs the decision procedure overhead at branching
points. When the precondition for a branch is unsatisfiable, neither further checks are made, nor
a new execution engine instance is forked for the branch.

Four prominent categories of preconditions are:

• None: there is no precondition, thus space exploration proceeds as normal;

• Known length: symbolic inputs are of known maximum length, e.g., a network packet has a
fixed size, or static analysis can determine the input length;

• Known prefix: symbolic inputs have a known prefix, e.g., a fixed header string such as the
initial magic code in a binary, or a network packet header.

• Fully known: all input bytes are concrete, as in a concolic execution; it can be used, for
instance, to generate a working exploit from a known crashing input.

18

https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221555021_Check_'n'_crash_Combining_static_checking_and_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


// N symbolic branches
if (input [0] < 42) [...]
[...]
if (input[N-1] < 42) [...]

// symbolic loop
strcpy(dest , input);

// M symbolic branches
if (input[N] < 42) [...]
[...]
if (input[N+M-1] < 42) [...]

(a)

1. void foo(int x, int y) {
2. if (x < 5)
3. y = y * 2;
4. else
5. y = y * 3;
6. return y;
7. }

(b)

Figure 12: (a) Preconditioned symbolic execution example [Avgerinos et al., 2011]; (b) State
merging example

Example. Consider the code fragment in Figure 12a where input is an array of s � n+m bytes.
The impact of preconditions on the state space size is as follows:

• None: the input space size is 256s, and up to 2n ·s ·2m execution engine instances are needed,
due to n+m symbolic branches and up to S loop iterations;

• Known length: if we assume a string length s, i.e., the first (s � 1) bytes of input are not
\0, the loop is concretized, and the state space size is reduced to 2n+m;

• Known prefix: if a prefix of p < n bytes is known for input, the first p branches and p loop
iterations are concrete, and the state space size becomes 2n�p · s · 2m;

• Fully known: as all input bytes are concrete, the state space size is trivially 1.

6.5 State Merging

Several static program analysis techniques such as abstract interpretation merge states correspond-
ing to di↵erent paths into a state that over-approximates them. In a precise symbolic execution,
however, merging is not allowed to introduce any approximation or abstraction, and therefore can
only change formulas to have them characterize sets of execution paths. In other words, a merged
state will be described by a formula that represents the disjunction of the formulas that would
have described the individual states if they were kept separate.

Example. Consider the function of Figure 12b and its symbolic execution tree shown in Fig-
ure 13a. Initially (execution state A) the path constraints are true and input arguments x and y

are associated with symbolic values ↵
x

and ↵
y

, respectively. Line 2 contains a conditional branch
and the execution is forked: depending on the branch taken, a di↵erent statement is evaluated
next and di↵erent assumptions are made on symbol ↵

x

(execution states C and D, respectively).
After expanding every execution state until the return at line 6 is reached on all branches, the
symbolic execution tree gets populated with two additional states D and E. If a symbolic execu-
tion engine desires to reduce the number of active states, then state merging can be performed.
For instance, Figure 13b shows the symbolic execution DAG for the same piece of code when a
state merging operation is performed before evaluating the return statement at line 6: D0 is now
a merged state that fully captures the former execution states D and E using the ite expression
ite(↵

x

< 5, 2 ⇤ ↵
y

, 3 ⇤ ↵
y

) (Section 3.1). Note that the path constraints of the execution states D
and E can be merged into the disjunction formula ↵

x

< 5_ ↵
x

� 5 and then simplified to true in
D0.

Trade-O↵s: to Merge or Not to Merge? Early works [Godefroid, 2007, Hansen et al., 2009]
have shown that merging techniques e↵ectively decrease the number of paths to explore, but

19

https://www.researchgate.net/publication/220997530_Compositional_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


(a) (b)

Figure 13: Symbolic execution of function foo of Figure 12b: (a) without state merging; (b) with
state merging.

also put a burden on constraints solvers, which typically encounter di�culties when dealing with
disjunction. Merging can also introduce new symbolic expressions in the code, for instance when
merging di↵erent concrete values from a conditional assignment into a symbolic expression over
the condition. [Kuznetsov et al., 2012] provides an excellent discussion of the design space of
state merging techniques. At the one end of the spectrum, complete separation of the paths
does not perform any merge and is used in search-based symbolic execution (Section 6.2). At
the other end, static state merging combines states at control-flow join points, thus essentially
representing a whole program with a single formula. Static state merging is used in whole-program
verification condition generators, e.g.,[Xie and Aiken, 2005, Babic and Hu, 2008]), which typically
trade precision for scalability by, for instance, unrolling loops only once.

Merging Heuristics. Intermediate merging solutions adopt heuristics to identify state merges
that can speed the exploration process up. Indeed, generating larger symbolic expressions and
possibly extra solvers invocations can outweigh the benefit of having fewer states, leading to
poorer overall performance [Hansen et al., 2009, Kuznetsov et al., 2012]. Query count estima-
tion [Kuznetsov et al., 2012] relies on a simple static analysis to identify how often each variable
is used in branch conditions past any given point in the CFG. The estimate is used as a proxy for
the number of solver queries that a given variable is likely to be part of. Two states make a good
candidate for merging when their di↵ering variables are expected to appear infrequently in later
queries. Veritesting [Avgerinos et al., 2014] implements a form of merging heuristic based on a dis-
tinction between easy and hard statements. Hard statements are those that involve system calls,
indirect jumps, and other operations that are di�cult to reason about statically. Static merging is
performed on sequences of easy statements, whose e↵ects are captured using ite expressions, while
per-path symbolic exploration is done whenever a hard-to-analyze statement is encountered.

Dynamic State Merging. Ideally, in order to maximize the opportunities for merging, a sym-
bolic execution engine should traverse a CFG so that a combined state for a program point can be
computed from its predecessors, e.g., if the graph is acyclic, by following a topological ordering.
However, this would prevent search exploration strategies aiming at prioritizing more “interesting”
states over others. [Kuznetsov et al., 2012] introduces dynamic state merging to identify opportu-
nities for merging regardless of the exploration order imposed by the search strategy. Suppose the
symbolic engine maintains a worklist of states and a bounded history of their predecessors. When
the engine has to pick the next state to explore, it first checks whether there are two states s1 and
s2 from the worklist such that they do not match for merging, but s1 and a predecessor of s2 do.
If the expected similarity between s2 and a successor of s1 is also high, the algorithm attempts a
merge by advancing the execution of s1 for a fixed number of steps. This captures the idea that
if two states are similar, then also their respective successors are likely to become similar in a few
steps. If the merge fails, the algorithm lets the search heuristic pick the next state to explore.

20

https://www.researchgate.net/publication/254461759_Efficient_State_Merging_in_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/254461759_Efficient_State_Merging_in_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/254461759_Efficient_State_Merging_in_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221553376_Calysto_Scalable_and_Precise_Extended_Static_Checking?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


6.6 Leveraging Program Analysis and Optimization Techniques

A deeper understanding of a program’s behavior can help a symbolic engine to focus on promising
states, e.g., by pruning uninteresting parts of the computation tree. Several classical program
analysis techniques have been explored in the symbolic execution literature. Some prominent
examples are listed below:

• Program slicing is a method that, starting from a subset of a program’s behavior, extracts
from the program the minimal sequence of instructions that faithfully represents that be-
havior [Weiser, 1984]. This information can help a symbolic engine in several ways: for
instance, given a program slice related to a target program point, symbolic exploration can
be restricted to paths contained in the program slice. We discuss an example of use in
Section 9.3.

• Taint analysis attempts to identify variables that can be modified by predefined taint sources
such as user input and can be performed both statically and dynamically. Dynamic taint
analysis typically yields more accurate results, and is often employed to explore symbolically
only the parts of an execution that depend upon tainted values [Schwartz et al., 2010].

• Fuzzing is a software testing technique that randomly mutates user-provided test inputs to
cause crashes or assertion failures and find potential memory leaks. Fuzzing, as discussed in
Section 6.2, can be augmented with symbolic execution to collect constraints for an input
and negate them to generate new inputs. On the other hand, a symbolic executor can be
augmented with fuzzing to reach deeper states in the exploration more quickly and e�ciently:
we present two embodiments of this approach in Section 9.1.

• Branch predication is a strategy for mitigating misprediction penalties in pipelined execu-
tions by avoiding jumps over very small sections of code: for instance, control-flow forking
constructs such as the C ternary operator can be replaced with a predicated select instruc-
tion. [Collingbourne et al., 2011] reports an exponential decrease in the number of paths
to explore from the adoption of this strategy when cross-checking two implementations of a
program using symbolic execution.

• State matching determines whether an abstract state is subsumed by another, and can be
used to analyze an under-approximation of a program’s behavior. For instance, [Anand
et al., 2006, Visser et al., 2006] explore di↵erent heap shapes in the context of test generation
for data structures, using subsumption checking to determine whether a symbolic state is
being revisited.

• Type checking can be e↵ectively mixed with symbolic analysis [Khoo et al., 2010]; for in-
stance, type checking can determine the return type of a function that is di�cult to analyze
symbolically: such information can then potentially be used by the executor to prune certain
paths2.

7 Constraint solving

Constraint satisfaction problems arise in many domains, including analysis, testing, and verifi-
cation of software programs. Constraint solvers are decision procedures for problems expressed
in logical formulas: for instance, the boolean satisfiability problem (also known as SAT) aims at
determining whether there exists an interpretation of the symbols of a formula that makes it true.
Although SAT is a well-known NP-complete problem, recent advances have moved the boundaries
for what is intractable when it comes to practical applications [De Moura and Bjørner, 2011].

2Interestingly, [Khoo et al., 2010] discusses also how symbolic analysis can help a type checker. For instance,
a symbolic engine can provide context-sensitive properties over a variable that would rule out certain type errors,
improving the precision of the type checker.

21



Observe that some problems are more naturally described with languages that are more ex-
pressive than the one of boolean formulas with logical connectives. For this reason, satisfiability
modulo theories (SMT) generalize the SAT problem with supporting theories to capture formulas
involving, for instance, linear arithmetic inequalities and operations over arrays (see, e.g., Sec-
tion 3.1). SMT solvers map the atoms in an SMT formula to fresh boolean variables: a SAT
decision procedure checks the rewritten formula for satisfiability, and a theory solver checks the
model generated by the SAT procedure.

In a symbolic executor, constraint solving plays a crucial role in checking the feasibility of a
path, generating assignments to symbolic variables, and verifying assertions. The two most popular
solvers used in symbolic executors are STP and Z3. STP [Ganesh and Dill, 2007, Ganesh, 2007] is
an SMT solver with bitvector and array theories initially developed at Stanford and employed in,
e.g., EXE [Cadar et al., 2006], KLEE [Cadar et al., 2008], MineSweeper [Brumley et al., 2008],
and AEG [Avgerinos et al., 2011]. Z3 [De Moura and Bjørner, 2008] is an SMT solver developed
at Microsoft with support for nonlinear arithmetic, bitvector, and array theories, and is used in,
e.g., Mayhem [Cha et al., 2012], SAGE [Godefroid et al., 2012], and Angr [Shoshitaishvili et al.,
2016]. CVC3 [Barrett and Tinelli, 2007] is another SMT solver that supports theories for linear
arithmetic, bitvectors, arrays, and quantifiers, and is employed in Java PathFinder [Păsăreanu
and Rungta, 2010] along with CHOCO [Prud’homme et al., 2015] for integer/real constraints and
CORAL [Souza et al., 2011] for complex mathematical constraints. Modern symbolic executors
can typically choose between di↵erent underlying solvers through a common API, and also resort
to a native interface to a specific solver for better performance.

However, despite the significant advances observed over the past few years – which also made
symbolic execution practical in the first place [Cadar and Sen, 2013] – constraint solving remains
one of the main obstacles to the scalability of symbolic execution engines.

In the remainder of this section, we address di↵erent techniques to extend the range of programs
that can be handled by symbolic execution and to optimize the performance of constraint solving.
Two prominent approaches consist in: (i) reducing the size and complexity of the constraints to
check, and (ii) unburdening the solver by, e.g., resorting to constraint solution caching, deferring
of constraint solver queries, or concretization.

Constraint Reduction. A common optimization approach followed by both solvers and sym-
bolic executors is to reduce constraints into simpler forms. For example, the expression rewriting
optimization can apply classical techniques from optimizing compilers such as constant folding,
strength reduction, and simplification of linear expressions (see, e.g., KLEE [Cadar et al., 2008]).

EXE [Cadar et al., 2006] introduces a constraint independence optimization that exploits
the fact that a set of constraints can frequently be divided into multiple independent subsets of
constraints. This optimization interacts well with query result caching strategies, and o↵ers an
additional advantage when an engine asks the solver about the satisfiability of a specific constraint,
as it removes irrelevant constraints from the query. In fact, real programs typically have many
independent branches, which can often introduce irrelevant constraints that add up quickly.

Another fact that can be exploited by reduction techniques is that the natural structure of pro-
grams can lead to the introduction of more specific constraints for some variables as the execution
proceeds. As path conditions are generated by conjoining new terms to an existing sequence, it
might become possible to rewrite and optimize existing constraints. For instance, adding an equal-
ity constraint of the form x := 5 enables not only the simplification to true of other constraints
over the value of the variable (e.g., x > 0), but also the substitution of the symbol x with the
associated concrete value in the other subsequent constraints involving it. The latter optimization
is also known as implied value concretization and, for instance, it is employed by KLEE [Cadar
et al., 2008].

In a similar spirit, S2E [Chipounov et al., 2012] introduces a bitfield-theory expression simplifier
to replace with concrete values parts of a symbolic variable that are masked away by bit operations.
For instance, if x is a 4-bit symbolic value, the most significant bit in the expression x | 1000 is
known to be one. The simplifier can propagate information across the tree representation of
an expression, and if all bits in an expression are known, it replaces the expression with the

22

https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221413035_CORAL_Solving_Complex_Constraints_for_Symbolic_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402853_A_Decision_Procedure_for_Bit-Vectors_and_Arrays?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220883167_Symbolic_PathFinder_symbolic_execution_of_Java_bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220309880_SAGE_Whitebox_Fuzzing_for_Security_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


1. int non_linear(int v) {
2. return (v*v) % 50;
3. }

4. void test(int x, int y) {
5. z = non_linear(y);
6. if (z == x) {
7. if (x > y + 10) ERROR;
8. }
9. }

Figure 14: Example with non-linear constraints.

corresponding constant.

Reuse of Constraint Solutions. The idea of reusing previously computed results to speed up
constraint solving can be particularly e↵ective in the setting of a symbolic executor, especially
when combined with other techniques such as constraint independence optimization. Most reuse
approaches for constraint solving are currently based on syntactic or semantic equivalence of the
constraints.

EXE [Cadar et al., 2006] caches the results of satisfiability queries and constraint solutions in
order to avoid calling the solver when possible. A cache is managed by a server process that can
receive queries from multiple parallel instances of the execution engine, each exploring a di↵erent
program state.

KLEE [Cadar et al., 2008] implements an incremental optimization strategy called coun-
terexample caching. A tree representation-based cache maps constraint sets to concrete variable
assignments, or to a special null value when a constraint set is unsatisfiable. When an unsatis-
fiable set in the cache is a subset for a given constraint set S, S is deemed unsatisfiable as well.
Conversely, when the cache contains a solution for a superset of S, the solution trivially satisfies
S too. Finally, when the cache contains a solution for one or more subsets of S, the algorithm
tries substituting in all the solutions to check whether a satisfying solution for S can be found.

Memoized symbolic execution [Yang et al., 2012] introduces a new approach for a more e�cient
application of symbolic execution. The work is motivated by the observation that applying sym-
bolic execution often requires several successive runs of the technique on largely similar underlying
problems, e.g., finding a bug and then examining the program again to check the validity of the
fix. A trie-based data structure compactly encodes the choices taken when exploring di↵erent
paths, allowing successive runs to reuse previously computed results where possible.

The Green framework [Visser et al., 2012] explores constraint solution reuse across runs of
not only the same program, but also similar programs, di↵erent programs, and di↵erent analyses.
Constraints are distilled into their essential parts through a slicing transformation and represented
in a canonical form to achieve good reuse, even within a single analysis run. [Jia et al., 2015]
presents an extension to the framework that supports constraint reuse based on the logical im-
plication relations among constraints, leading to better reuse and faster execution time for the
symbolic analysis.

Lazy Constraints. [Ramos and Engler, 2015] adopts a timeout approach for constraint solver
queries. In their initial experiments, the authors traced most timeouts to symbolic division and
remainder operations, with the worst cases occurring when an unsigned remainder operation had
a symbolic value in the denominator. They thus implemented a solution that works as follow:
when the executor encounters a branch statement involving an expensive symbolic operation, it
will take both the true and false branches and add a lazy constraint on the result of the expensive
operation to the path conditions. When the exploration reaches a state that satisfies some goal
(e.g., an error is found), the algorithm will check for the feasibility of the path, and suppress it if
deemed as unreachable in a real execution.

Compared to the eager approach of checking the feasibility of a branch as encountered (Sec-
tion 6.1), a lazy strategy may lead to a larger number of active states, and in turn to more solver
queries. However, the authors report that the delayed queries are in many cases more e�cient than
their eager counterparts: the path constraints added after a lazy constraint can in fact narrow
down the solution space for the solver.

23

https://www.researchgate.net/publication/271531907_Enhancing_Reuse_of_Constraint_Solutions_to_Improve_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262352357_Green_Reducing_reusing_and_recycling_constraints_in_program_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


Concretization. [Cadar and Sen, 2013] discusses limitations of classical symbolic execution in
the presence of formulas that cannot be (e�ciently) solved by constraint solvers.

Example. In the code fragment of Figure 14, the engine stores a non-linear constraint of the
form ↵

x

= (↵
y

⇤ ↵
y

)%50 for the true branch at line 6. A solver that does not support non-linear
arithmetic fails to generate any input for the program.

A concolic executor generates some random input for the program and executes it both concretely
and symbolically: a possible value from the concrete execution can be used for a symbolic operand
involved in a formula that is inherently hard for the solver, albeit at the cost of sacrificing soundness
in the exploration. For instance, in the presence of three nested branches with only one being
nonlinear, DART [Godefroid et al., 2005] starts from a random valid input for the function,
and then alters it when symbolically exploring the two linear branches. The work resorts to
concretization also to avoid performing expensive or imprecise alias analysis on pointers.

To partially overcome the incompleteness due to concretization, [Păsăreanu et al., 2011] sug-
gests to consider all the path constraints collectable over a path before binding one or more symbols
to specific concrete values. Indeed, DART [Godefroid et al., 2005] concretizes symbols based on
the path constraints collected up to a target branch. In this manner, a constraint contained in
a subsequent branch in the same path is not considered and it may be not satisfiable due to al-
ready concretized symbols. If this happen, DART restarts the execution with di↵erent random
concrete values, hoping to be able to satisfy the subsequent branch. The approach presented
in [Păsăreanu et al., 2011] requires instead to detect solvable constraints along a full path and to
delay concretization as much as possible.

8 Symbolic execution of binary code

The importance of performing symbolic analysis of program properties on binary code is on the
rise for a number of reasons. Binary code analysis is attractive as it reasons on code that will
actually execute: not requiring the source code significantly extends the applicability of such
techniques (to, e.g., common o↵-the-shelf proprietary programs, firmwares for embedded systems,
and malicious software), and it gives the ground truth important for security applications whereas
source code analysis may yield misleading results due to compiler optimizations [Song et al., 2008].
Binary analysis is relevant also for programs written in dynamic languages, as nowadays they are
executed in modern runtimes that deeply transform and optimize their code before just-in-time
compiling it.

Analyzing binary code is commonly seen as a challenging task due to its complexity and lack
of a high-level semantics. Modern architectures o↵er complex instruction sets: modeling each
instruction can be di�cult, especially in the presence of multiple side e↵ects on processor flags to
determine branch conditions. The second major challenge comes from the lack of the higher-level
semantics present in source code, especially when no debugging information is available. Types
are not explicitly encoded in binary code: even with register types, it is common to store values
as one type and read them as another. Similar considerations can be made for array bounds as
well. Also, control-flow graph information is not explicitly available, as control flow is performed
through jump instructions at both inter- and intra-procedural level. The function abstraction at
the binary level does not exist as we intend it at source-code level: functions can be separated
in non-contiguous pieces, and code may also call in the middle of a code block generated for a
source-level function.

In the remainder of this section we provide an overview of how symbolic executors can address
some of the most significant challenges in the analysis of binary code.

8.1 Lifting to an Intermediate Representation

Motivated by the complexity in modeling native instructions and by the variety of architectures
on which applications can be deployed (e.g., x86, x86-64, ARM, MIPS), symbolic executors for

24

https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


Figure 15: Lowering and lifting processes in native vs. source code processing.

binary code typically rely on a lifter that transforms native instructions into an intermediate
representation (IR), also known as bytecode. Modern compilers such as LLVM [Lattner and Adve,
2004] typically generate IR by lowering the user-provided source code during the first step of
compilation, optimize it, and eventually lower it to native code for a specific platform. Source-
code symbolic executors can resort to compiler-assisted lowering to reason on bytecode rather
than source-language statements: for instance, KLEE [Cadar et al., 2008] reasons on the IR
generated by the LLVM compiler for static languages such as C and C++. Figure 15 summarizes
the relationships between source code, IR, and binary code.

Reasoning at the intermediate representation level allows program analyses to be written in an
architecture-independent fashion. Translated instructions will always expose all the side-e↵ects of
a native instruction, and support for additional platforms can be added over time. A number of
symbolic executors use VEX, the intermediate representation format from the Valgrind dynamic
instrumentation framework [Nethercote and Seward, 2007]. VEX is a RISC-like language designed
for program analysis that o↵ers a compact set of instructions for expressing programs in static
single assignment (SSA) form [Cytron et al., 1991]. Lifters are available for both 32-bit and 64-bit
ARM, MIPS, PPC, and x86 binaries.

Angr [Shoshitaishvili et al., 2016] performs analysis directly on VEX IR. Authors chose VEX
over other IR formats as at that time it was the only choice that o↵ered a publicly available
implementation with support for many architectures. Also, they mention that writing a binary
lifter can be a daunting task, and a well-documented and program analysis-oriented solution
can be a bonus. BitBlaze [Song et al., 2008] uses VEX too, although it translates it to a
custom intermediate language. The reason for this is that VEX captures the side e↵ects of some
instructions only implicitly, such as what EFLAGS are set by x86 instructions: translating it to a
custom language simplified the development of BitBlaze’s analysis framework.

The authors of S2E [Chipounov et al., 2012] have implemented an x86-to-LLVM-IR lifter in
order to use the KLEE [Cadar et al., 2008] symbolic execution engine for whole-system symbolic
analysis of binary code in a virtualized environment. The translation is transparent to both the
guest operating system and KLEE, thus enabling the analysis of binaries using the full power of
KLEE. Another x86-to-LLVM-IR lifter that can be used to run KLEE on binary code is mcsema3.

8.2 Reconstructing the Control Flow Graph

A control flow graph (CFG) can provide valuable information for a symbolic executor as it captures
the set of potential control flow transfers for all feasible execution paths. A fundamental issue
that arises when reconstructing CFGs for binaries is that the possible targets of an indirect jump
may not be identified correctly. Direct jumps are straightforward to process: as they encode their
targets explicitly in the code, successor basic blocks can be identified and visited until no new edge
is found. The target of an indirect jump is determined instead at run time: it might be computed
by carrying out a calculation (e.g., a jump table) or depend on the current calling context (e.g., a
function pointer is passed as argument, or a virtual C++ method is invoked).

CFG recovery is typically an iterative refinement process based on a number of program analysis
techniques. For instance, Value Set Analysis (VSA) [Duesterwald, 2004] is a technique that can
be used to identify a tight over-approximation of certain program state properties (e.g., the set
of possible targets of an indirect jump or a memory write). In BitBlaze [Song et al., 2008] an
initial CFG is generated by inserting special successor nodes for unresolved indirect jump targets.
This choice is conceptually similar to widening a fact to the bottom of a lattice in a data-flow

3https://github.com/trailofbits/mcsema.

25

https://github.com/trailofbits/mcsema
https://www.researchgate.net/publication/246035912_Efficiently_Computing_Static_Single_Ass_ignment_Form_and_the_Program_Dependence_Graph?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4065384_LLVM_A_Compilation_Framework_for_Lifelong_Program_Analysis_Transformation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4065384_LLVM_A_Compilation_Framework_for_Lifelong_Program_Analysis_Transformation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


analysis. When an analysis requires more precise information, VSA is then applied on demand.
Angr [Shoshitaishvili et al., 2016] implements two algorithms for CFG recovery. An iterative

algorithm starts from the entry point of the program and interleaves a number of techniques
to achieve speed and completeness, including VSA, inter-procedural backward program slicing,
and symbolic execution of blocks. This algorithm is however rather slow and may miss code
portions reachable only through unresolved jump targets. The authors thus devise a fast secondary
algorithm that uses a number of heuristics to identify functions based on prologue signatures, and
performs simple analyses (e.g., a lightweight alias analysis) to solve a number of indirect jumps.
The algorithm is context-insensitive, so it can be used to quickly recover a CFG without a concern
for understanding the reachability of functions from one another.

8.3 Code Obfuscation

In recent years, code obfuscation has received considerable attention as a cheap way to hinder the
understanding of the inner workings of a proprietary program. Obfuscation is employed not only
to thwart software piracy and improve software security, but also to avoid detection and resist
analysis for malicious software [Udupa et al., 2005, Yadegari et al., 2015].

A significant motivation behind using symbolic/concolic execution in malware analysis is to
get around code obfuscations. However, current analysis techniques have trouble dealing with
some of those obfuscations, leading to imprecision and/or excessive resource usage [Yadegari and
Debray, 2015]. For instance, obfuscation tools can transform conditional branches into indirect
jumps that symbolic analysis find di�cult to analyze, while run-time code self-modification might
conceal conditional jumps on symbolic values so that they are missed by the analysis.

A few works have described obfuscation techniques aiming at thwarting symbolic execution.
[Sharif et al., 2008] introduces a conditional code obfuscation scheme based on one-way hash
functions that makes it hard to identify the values of symbolic variables for which branch conditions
are satisfied. They also present an encryption scheme for the code to execute based on a key
derived from the value that satisfies a branch condition. [Wang et al., 2011] takes a step forward
by proposing an obfuscation technique that works in spite of the fact that it uses linear operations
only, for which symbolic execution usually works well. The obfuscation tool inserts a simple
loop incorporating an unsolved mathematical conjecture that converges to a known value after a
number of iterations, and the produced result is then combined with the original branch condition.

[Hai et al., 2016] presents BE-PUM, a tool to generate a precise CFG in the presence of obfus-
cation techniques that are common in the malware domain, including indirect jumps, structured
exception handlers (SEHs), overlapping instructions, and self-modifying code. While engines such
as BitBlaze [Song et al., 2008] typically rely on existing disassemblers like IDA Pro4 for obfus-
cated code, BE-PUM relies on concolic execution for deobfuscation, using a binary emulator for
the user process and stubs for API calls.

[Yadegari and Debray, 2015] discusses the limitations of symbolic execution in the presence of
three generic obfuscation techniques: (1) conditional-to-indirect jump transformation, also known
as symbolic jump problem [Schwartz et al., 2010]; (2) conditional-to-conditional jump transfor-
mation, where the predicate is deeply changed; and (3) symbolic code, when code modification
is carried out using an input-derived value. The authors show how resorting to bit-level taint
analysis and architecture-aware constraint generation can allow symbolic execution to circumvent
such obfuscations.

9 Sample Applications

The last decade has witnessed an increasing adoption of symbolic execution techniques not only
in the software testing domain, but also to address other compelling engineering problems such
as automatic generation of exploits or authentication bypass. We now discuss three prominent

4https://www.hex-rays.com/products/ida/.

26

https://www.hex-rays.com/products/ida/
https://www.researchgate.net/publication/249843662_Reverse_Engineering_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655405_Impeding_Malware_Analysis_Using_Conditional_Code_Obfuscation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


applications of symbolic execution techniques to these domains. Examples of extensions to other
areas can be found, e.g., in [Cadar et al., 2011].

9.1 Bug Detection

Software testing strategies typically attempt to execute a program with the intent of finding bugs.
As manual test input generation is an error-prone and usually non-exhaustive process, automated
testing technique have drawn a lot of attention over the years. Random testing techniques such
as fuzzing are cheap in terms of run-time overhead, but fail to obtain a wide exploration of a
program state space. Symbolic and concolic execution techniques on the other hand achieve a
more exhaustive exploration, but they become expensive as the length of the execution grows: for
this reason, they usually reveal shallow bugs only.

[Majumdar and Sen, 2007] proposes hybrid concolic testing for test input generation, which
combines the ability of random search to reach deep program states with the ability of concolic
execution to achieve a wide exploration. The two techniques are interleaved: in particular, when
random testing saturates (i.e., it is unable to hit new code coverage points after a number of steps),
concolic execution is used to mutate the current program state by performing a bounded depth-first
search for an uncovered coverage point. For a fixed time budget, the technique outperforms both
random and concolic testing in terms of branch coverage. The intuition behind this approach is
that many programs show behaviors where a state can be easily reached through random testing,
but then a precise sequence of events - identifiable by a symbolic engine - is required to hit a
specific coverage point.

[Stephens et al., 2016] refines this idea and devises a vulnerability excavation tool based on
Angr [Shoshitaishvili et al., 2016], called Driller, that interleaves fuzzing and concolic execution
to discover memory corruption vulnerabilities. The authors remark that user inputs can be cat-
egorized as general input, which has a wide range of valid values, and specific input: a check for
particular values of a specific input then splits an application into compartments. Driller o✏oads
the majority of unique path discovery to a fuzzy engine, and relies on concolic execution to move
across compartments. During the fuzzy phase, Driller marks a number of inputs as interesting (for
instance, when an input was the first to trigger some state transition) and once it gets stuck in the
exploration, it passes the set of such paths to a concolic engine, which preconstraints the program
states to ensure consistency with the results of the native execution. On the dataset used for
the DARPA Cyber Grand Challenge qualifying event, Driller could identify crashing inputs in 77
applications, including both the 68 and 16 applications for which fuzzing and symbolic execution
alone succeeded, respectively. For 6 applications, Driller was the only one to detect a vulnerability.

9.2 Bug Exploitation

Bugs are a consequence of the nature of human factors in software development and are every-
where. Those that can be exploited by an attacker should normally be fixed first: systems for
automatically and e↵ectively identifying them are thus very valuable.

AEG [Avgerinos et al., 2011] employs preconditioned symbolic execution to analyze a poten-
tially buggy program in source form and look for bugs amenable to stack smashing or return-
into-libc exploits [Pincus and Baker, 2004], which are popular control hijack attack techniques.
The tool augments path constraints with exploitability constraints and queries a constraint solver,
generating a concrete exploit when the constraints are satisfiable. The authors devise the buggy-
path-first and loop-exhaustion strategies discussed in Section 6.2 to prioritize paths in the search.
On a set of 14 Linux applications, AEG could construct 16 control hijack exploits, 2 of which
against previously unknown vulnerabilities.

Mayhem [Cha et al., 2012] takes another step forward by presenting the first end-to-end
exploitable bug finding system working on programs in binary form. It adopts a hybrid execution
model based on checkpoints and two components: a concrete executor that injects taint-analysis
instrumentation in the code and a symbolic executor that takes over when a tainted branch or jump
instruction is met. Exploitability constraints for symbolic instruction pointers and format strings

27

https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221554878_Symbolic_execution_for_software_testing_in_practice_-_Preliminary_assessment?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220497053_Beyond_Stack_Smashing_Recent_Advances_in_Exploiting_Buffer_Overruns?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


are generated, targeting a wide range of exploits, e.g., SEH-based and jump-to-register ones. Three
path selection heuristics help prioritizing paths that are most likely to contain a bug (e.g., those
containing symbolic memory accesses or instruction pointers). A virtualization layer intercepts
and emulates all the system calls to the host OS, while preconditioned symbolic execution can
be used to reduce the size of the search space. Also, restricting symbolic execution to tainted
basic blocks only gives very good speedups in this setting, as in the reported experiments more
than 95% of the processed instructions were not tainted. Mayhem was able to find exploitable
vulnerabilities in the 29 Linux and Windows applications considered in the evaluation, 2 of which
were previously undocumented. Although the goal in Mayhem is informing the user that an
exploitable bug exists, the generated simple exploits can be likely transformed in an automated
fashion to work in the presence of OS defenses such as address space layout randomization and
data execution prevention [Schwartz et al., 2011].

9.3 Authentication Bypass

Software backdoors are a method of bypassing authentication in an algorithm, a software product,
or even in a full computer system. Although sometimes these software flaws are injected by
external attackers using subtle tricks such as compiler tampering [Karger and Schell, 1974], there
are reported cases of backdoors that have been surreptitiously installed by the hardware and/or
software manufacturers [Costin et al., 2014], or even by governments [Zitter, 2013].

Di↵erent works [Davidson et al., 2013, Zaddach et al., 2014, Shoshitaishvili et al., 2015] have
exploited symbolic execution for analyzing the behavior of binary firmwares. Indeed, an advantage
of this technique is that it can be used even in environments, such as embedded systems, where the
documentation and the source code that are publicly released by the manufacturer are typically
very limited or none at all. For instance, [Shoshitaishvili et al., 2015] proposes Firmalice, a binary
analysis framework based on Angr [Shoshitaishvili et al., 2016] that can be e↵ectively used for
identifying authentication bypass flaws inside firmwares running on devices such as routers and
printers. Given a user-provided description of a privileged operation in the device, Firmalice
identifies a set of program points that, if executed, forces the privileged operation to be performed.
The program slice that involves the privileged program points is then symbolically analyzed using
Angr. If any such point can be reached by the engine, a set of concrete inputs is generated using
an SMT solver. These values can be then used to e↵ectively bypass authentication inside the
device. On three commercially available devices, Firmalice could detect vulnerabilities in two of
them, and determine that a backdoor in the third firmware is not remotely exploitable.

10 Conclusions

Techniques for symbolic execution have evolved significantly in the last decade, leading to major
practical breakthroughs. In 2016, DARPA has challenged the global innovation community with
a $2M prize to build a computer that can hack and patch unknown software with no one at
the keyboard. The winner, Mayhem [Cha et al., 2012], was also the first autonomous computer
system to play the Capture-The-Flag contest at the DEF CON 24 hacker convention5. The
event demonstrated that tools for automatic exploit detection based on symbolic execution can
be competitive with human experts, paving the road to unprecedented applications and the rise
of start-ups that have the potential to shape software security and reliability in the next decades.

This survey has discussed some of the key aspects and challenges of symbolic execution, pre-
senting them for a broad audience. To explain the basic design principles of symbolic executors
and the main optimization techniques, we have focused on single-threaded applications with in-
teger arithmetic. Symbolic execution of multi-threaded programs is treated, e.g., in [Khurshid
et al., 2003, Sen, 2007, Bucur et al., 2011, Farzan et al., 2013, Bergan et al., 2014, Guo et al.,
2015], while techniques for programs that manipulate floating point data are addressed in, e.g.,

5https://www.defcon.org/html/defcon-24/dc-24-ctf.html.

28

https://www.defcon.org/html/defcon-24/dc-24-ctf.html
https://www.researchgate.net/publication/300924994_Firmalice_-_Automatic_Detection_of_Authentication_Bypass_Vulnerabilities_in_Binary_Firmware?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300924994_Firmalice_-_Automatic_Detection_of_Authentication_Bypass_Vulnerabilities_in_Binary_Firmware?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/299869126_Assertion_guided_symbolic_execution_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/299869126_Assertion_guided_symbolic_execution_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4001408_Multics_security_evaluation_Vulnerability_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Meudec, 2001, Botella et al., 2006, Lakhotia et al., 2010, Collingbourne et al., 2011, Barr et al.,
2013, Collingbourne et al., 2014, Ramachandran et al., 2015].

We hope that this survey will help non-experts grasp the key inventions in the exciting line of
research of symbolic execution, inspiring further work and new ideas.

Acknowledgements. This work is supported in part by a grant of the Italian Presidency of
the Council of Ministers and by the CINI (Consorzio Interuniversitario Nazionale Informatica)
National Laboratory of Cyber Security.

Live Version of this Article. We complement the traditional scholarly publication model
by maintaining a live version of this article at https://github.com/season-lab/survey-symbolic-
execution/. The live version incorporates continuous feedback by the community, providing post-
publication fixes, improvements, and extensions.

References

[Anand et al., 2006] Anand, S., Păsăreanu, C. S., and Visser, W. (2006). Symbolic execution
with abstract subsumption checking. In Proceedings of the 13th International Conference on
Model Checking Software, SPIN 2006, pages 163–181, Berlin, Heidelberg. Springer-Verlag, ISBN:
3-540-33102-6, 978-3-540-33102-5, DOI: 10.1007/11691617 10, http://dx.doi.org/10.
1007/11691617_10.

[Avgerinos, 2014] Avgerinos, A. (2014). Exploiting Trade-o↵s in Symbolic Execution for Iden-
tifying Security Bugs. PhD thesis, http://repository.cmu.edu/cgi/viewcontent.cgi?

article=1478&context=dissertations.

[Avgerinos et al., 2011] Avgerinos, T., Cha, S. K., Hao, B. L. T., and Brumley, D. (2011). AEG:
automatic exploit generation. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011. http://www.isoc.org/isoc/conferences/ndss/11/pdf/5_5.pdf.

[Avgerinos et al., 2014] Avgerinos, T., Rebert, A., Cha, S. K., and Brumley, D. (2014). En-
hancing symbolic execution with veritesting. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 1083–1094, New York, NY, USA.
ACM, ISBN: 978-1-4503-2756-5, DOI: 10.1145/2568225.2568293, http://doi.acm.org/
10.1145/2568225.2568293.

[Babic and Hu, 2008] Babic, D. and Hu, A. J. (2008). Calysto: Scalable and precise extended
static checking. In Proceedings of the 30th International Conference on Software Engineering,
ICSE 2008, pages 211–220, New York, NY, USA. ACM, ISBN: 978-1-60558-079-1, DOI:
10.1145/1368088.1368118, http://doi.acm.org/10.1145/1368088.1368118.

[Ball et al., 2006] Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C.,
Ondrusek, B., Rajamani, S. K., and Ustuner, A. (2006). Thorough static analysis of device
drivers. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, EuroSys 2006, pages 73–85, New York, NY, USA. ACM, ISBN: 1-59593-322-0,
DOI: 10.1145/1217935.1217943, http://doi.acm.org/10.1145/1217935.1217943.

[Ball and Daniel, 2015] Ball, T. and Daniel, J. (2015). Deconstructing dynamic symbolic execu-
tion. In Proceedings of the 2014 Marktoberdorf Summer School on Dependable Software Sys-
tems Engineering. IOS Press, https://www.microsoft.com/en-us/research/publication/
deconstructing-dynamic-symbolic-execution/.

[Barr et al., 2013] Barr, E. T., Vo, T., Le, V., and Su, Z. (2013). Automatic detection of floating-
point exceptions. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2013, pages 549–560, New York, NY, USA.
ACM, ISBN: 978-1-4503-1832-7, DOI: 10.1145/2429069.2429133, http://doi.acm.org/
10.1145/2429069.2429133.

29

https://github.com/season-lab/survey-symbolic-execution
https://github.com/season-lab/survey-symbolic-execution
http://dx.doi.org/10.1007/11691617_10
http://dx.doi.org/10.1007/11691617_10
http://dx.doi.org/10.1007/11691617_10
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1478&context=dissertations
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1478&context=dissertations
http://www.isoc.org/isoc/conferences/ndss/11/pdf/5_5.pdf
http://dx.doi.org/10.1145/2568225.2568293
http://doi.acm.org/10.1145/2568225.2568293
http://doi.acm.org/10.1145/2568225.2568293
http://dx.doi.org/10.1145/1368088.1368118
http://doi.acm.org/10.1145/1368088.1368118
http://dx.doi.org/10.1145/1217935.1217943
http://doi.acm.org/10.1145/1217935.1217943
https://www.microsoft.com/en-us/research/publication/deconstructing-dynamic-symbolic-execution/
https://www.microsoft.com/en-us/research/publication/deconstructing-dynamic-symbolic-execution/
http://dx.doi.org/10.1145/2429069.2429133
http://doi.acm.org/10.1145/2429069.2429133
http://doi.acm.org/10.1145/2429069.2429133
https://www.researchgate.net/publication/273351489_Symbolic_Execution_for_Checking_the_Accuracy_of_Floating-Point_Programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/263813578_Symbolic_Crosschecking_of_Data-Parallel_Floating-Point_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262357161_Automatic_Detection_of_Floating-Point_Exceptions?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262357161_Automatic_Detection_of_Floating-Point_Exceptions?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262357161_Automatic_Detection_of_Floating-Point_Exceptions?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262357161_Automatic_Detection_of_Floating-Point_Exceptions?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262357161_Automatic_Detection_of_Floating-Point_Exceptions?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262357161_Automatic_Detection_of_Floating-Point_Exceptions?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262357161_Automatic_Detection_of_Floating-Point_Exceptions?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655521_AEG_Automatic_Exploit_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221553376_Calysto_Scalable_and_Precise_Extended_Static_Checking?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221553376_Calysto_Scalable_and_Precise_Extended_Static_Checking?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221553376_Calysto_Scalable_and_Precise_Extended_Static_Checking?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221553376_Calysto_Scalable_and_Precise_Extended_Static_Checking?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221351655_Thorough_static_analysis_of_device_drivers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221351655_Thorough_static_analysis_of_device_drivers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221351655_Thorough_static_analysis_of_device_drivers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221351655_Thorough_static_analysis_of_device_drivers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221351655_Thorough_static_analysis_of_device_drivers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Barrett and Tinelli, 2007] Barrett, C. and Tinelli, C. (2007). Cvc3. In Proceedings of the 19th In-
ternational Conference on Computer Aided Verification, CAV 2007, pages 298–302, Berlin, Hei-
delberg. Springer-Verlag, ISBN: 978-3-540-73367-6, DOI: 10.1007/978-3-540-73368-3 34,
http://dl.acm.org/citation.cfm?id=1770351.1770397.

[Bergan et al., 2014] Bergan, T., Grossman, D., and Ceze, L. (2014). Symbolic execution of mul-
tithreaded programs from arbitrary program contexts. In Proceedings of the 2014 ACM In-
ternational Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2014, pages 491–506, New York, NY, USA. ACM, ISBN: 978-1-4503-2585-1, DOI:
10.1145/2660193.2660200, http://doi.acm.org/10.1145/2660193.2660200.

[Biere et al., 2009] Biere, A., Heule, M. J. H., van Maaren, H., and Walsh, T., editors (2009).
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press, ISBN: 978-1-58603-929-5, ISSN: 0922-6389.

[Boonstoppel et al., 2008] Boonstoppel, P., Cadar, C., and Engler, D. R. (2008). Rwset: Attacking
path explosion in constraint-based test generation. In 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2008, pages 351–366.
DOI: 10.1007/978-3-540-78800-3 27, http://dx.doi.org/10.1007/978-3-540-78800-3_

27.

[Botella et al., 2006] Botella, B., Gotlieb, A., and Michel, C. (2006). Symbolic execution of
floating-point computations. Software Testing, Verification & Reliability, 16(2):97–121, ISSN:
0960-0833, DOI: 10.1002/stvr.v16:2, http://dx.doi.org/10.1002/stvr.v16:2.

[Boyer et al., 1975] Boyer, R. S., Elspas, B., and Levitt, K. N. (1975). Select: a formal sys-
tem for testing and debugging programs by symbolic execution. In Proceedings of the Inter-
national Conference on Reliable Software, pages 234–245, New York, NY, USA. ACM, DOI:
10.1145/800027.808445, http://doi.acm.org/10.1145/800027.808445.

[Brumley et al., 2008] Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., and Yin,
H. (2008). Botnet Detection: Countering the Largest Security Threat, chapter Automat-
ically Identifying Trigger-based Behavior in Malware, pages 65–88. Springer US, DOI:
10.1007/978-0-387-68768-1.

[Brumley et al., 2011] Brumley, D., Jager, I., Avgerinos, T., and Schwartz, E. J. (2011). BAP:
A binary analysis platform. In Proceedings of the 23rd International Conference on Com-
puter Aided Verification, CAV 2011, pages 463–469, Berlin, Heidelberg. Springer-Verlag, ISBN:
978-3-642-22109-5, DOI: 10.1007/978-3-642-22110-1 37, http://dl.acm.org/citation.
cfm?id=2032305.2032342.

[Bucur et al., 2011] Bucur, S., Ureche, V., Zamfir, C., and Candea, G. (2011). Parallel sym-
bolic execution for automated real-world software testing. In Proceedings of the Sixth Confer-
ence on Computer Systems, EuroSys 2011, pages 183–198. ISBN: 978-1-4503-0634-8, DOI:
10.1145/1966445.1966463, http://doi.acm.org/10.1145/1966445.1966463.

[Burnim and Sen, 2008] Burnim, J. and Sen, K. (2008). Heuristics for scalable dynamic test gen-
eration. In Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2008, pages 443–446, Washington, DC, USA. IEEE Computer Soci-
ety, ISBN: 978-1-4244-2187-9, DOI: 10.1109/ASE.2008.69, http://dx.doi.org/10.1109/
ASE.2008.69.

[Cadar et al., 2008] Cadar, C., Dunbar, D., and Engler, D. (2008). KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, OSDI 2008, pages
209–224, Berkeley, CA, USA. USENIX Association, http://dl.acm.org/citation.cfm?id=
1855741.1855756.

30

http://dx.doi.org/10.1007/978-3-540-73368-3_34
http://dl.acm.org/citation.cfm?id=1770351.1770397
http://dx.doi.org/10.1145/2660193.2660200
http://doi.acm.org/10.1145/2660193.2660200
http://dx.doi.org/10.1007/978-3-540-78800-3_27
http://dx.doi.org/10.1007/978-3-540-78800-3_27
http://dx.doi.org/10.1007/978-3-540-78800-3_27
http://dx.doi.org/10.1002/stvr.v16:2
http://dx.doi.org/10.1002/stvr.v16:2
http://dx.doi.org/10.1145/800027.808445
http://doi.acm.org/10.1145/800027.808445
http://dx.doi.org/10.1007/978-0-387-68768-1
http://dx.doi.org/10.1007/978-3-642-22110-1_37
http://dl.acm.org/citation.cfm?id=2032305.2032342
http://dl.acm.org/citation.cfm?id=2032305.2032342
http://dx.doi.org/10.1145/1966445.1966463
http://doi.acm.org/10.1145/1966445.1966463
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1109/ASE.2008.69
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Cadar et al., 2006] Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and Engler, D. R.
(2006). EXE: Automatically generating inputs of death. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, pages 322–335, New York,
NY, USA. ACM, ISBN: 1-59593-518-5, DOI: 10.1145/1180405.1180445, http://doi.acm.
org/10.1145/1180405.1180445.

[Cadar et al., 2011] Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C. S., Sen, K., Tillmann,
N., and Visser, W. (2011). Symbolic execution for software testing in practice: Preliminary
assessment. In Proceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, pages 1066–1071, New York, NY, USA. ACM, ISBN: 978-1-4503-0445-0, DOI:
10.1145/1985793.1985995, http://doi.acm.org/10.1145/1985793.1985995.

[Cadar and Sen, 2013] Cadar, C. and Sen, K. (2013). Symbolic execution for software test-
ing: Three decades later. Communications of the ACM, 56(2):82–90, ISSN: 0001-0782, DOI:
10.1145/2408776.2408795, http://doi.acm.org/10.1145/2408776.2408795.

[Caselden et al., 2013] Caselden, D., Bazhanyuk, A., Payer, M., McCamant, S., and Song, D.
(2013). HI-CFG: construction by binary analysis and application to attack polymorphism. In
18th European Symposium on Research in Computer Security, ESORICS 2013, pages 164–181.
DOI: 10.1007/978-3-642-40203-6 10, http://dx.doi.org/10.1007/978-3-642-40203-6_

10.

[Cha et al., 2012] Cha, S. K., Avgerinos, T., Rebert, A., and Brumley, D. (2012). Unleash-
ing mayhem on binary code. In Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP 2012, pages 380–394, Washington, DC, USA. IEEE Computer Society, ISBN:
978-0-7695-4681-0, DOI: 10.1109/SP.2012.31, http://dx.doi.org/10.1109/SP.2012.31.

[Chaudhuri and Foster, 2010] Chaudhuri, A. and Foster, J. S. (2010). Symbolic security anal-
ysis of ruby-on-rails web applications. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, pages 585–594, New York, NY, USA.
ACM, ISBN: 978-1-4503-0245-6, DOI: 10.1145/1866307.1866373, http://doi.acm.org/
10.1145/1866307.1866373.

[Chipounov et al., 2012] Chipounov, V., Kuznetsov, V., and Candea, G. (2012). The S2E plat-
form: Design, implementation, and applications. ACM Transactions on Computer Systems,
30(1):2, DOI: 10.1145/2110356.2110358, http://doi.acm.org/10.1145/2110356.2110358.

[Collingbourne et al., 2011] Collingbourne, P., Cadar, C., and Kelly, P. H. (2011). Symbolic cross-
checking of floating-point and simd code. In Proceedings of the Sixth Conference on Computer
Systems, EuroSys 2011, pages 315–328, New York, NY, USA. ACM, ISBN: 978-1-4503-0634-8,
DOI: 10.1145/1966445.1966475, http://doi.acm.org/10.1145/1966445.1966475.

[Collingbourne et al., 2014] Collingbourne, P., Cadar, C., and Kelly, P. H. J. (2014). Symbolic
crosschecking of data-parallel floating-point code. IEEE Transactions on Software Engineering,
40(7):710–737, DOI: 10.1109/TSE.2013.2297120, http://dx.doi.org/10.1109/TSE.2013.

2297120.

[Costin et al., 2014] Costin, A., Zaddach, J., Francillon, A., and Balzarotti, D. (2014). A large-
scale analysis of the security of embedded firmwares. In Proceedings of the 23rd USENIX Se-
curity Symposium, pages 95–110. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/costin.

[Csallner and Smaragdakis, 2005] Csallner, C. and Smaragdakis, Y. (2005). Check ’n’ crash:
Combining static checking and testing. In Proceedings of the 27th International Conference
on Software Engineering, ICSE 2005, pages 422–431, New York, NY, USA. ACM, ISBN:
1-58113-963-2, DOI: 10.1145/1062455.1062533, http://doi.acm.org/10.1145/1062455.
1062533.

31

http://dx.doi.org/10.1145/1180405.1180445
http://doi.acm.org/10.1145/1180405.1180445
http://doi.acm.org/10.1145/1180405.1180445
http://dx.doi.org/10.1145/1985793.1985995
http://doi.acm.org/10.1145/1985793.1985995
http://dx.doi.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/2408776.2408795
http://dx.doi.org/10.1007/978-3-642-40203-6_10
http://dx.doi.org/10.1007/978-3-642-40203-6_10
http://dx.doi.org/10.1007/978-3-642-40203-6_10
http://dx.doi.org/10.1109/SP.2012.31
http://dx.doi.org/10.1109/SP.2012.31
http://dx.doi.org/10.1145/1866307.1866373
http://doi.acm.org/10.1145/1866307.1866373
http://doi.acm.org/10.1145/1866307.1866373
http://dx.doi.org/10.1145/2110356.2110358
http://doi.acm.org/10.1145/2110356.2110358
http://dx.doi.org/10.1145/1966445.1966475
http://doi.acm.org/10.1145/1966445.1966475
http://dx.doi.org/10.1109/TSE.2013.2297120
http://dx.doi.org/10.1109/TSE.2013.2297120
http://dx.doi.org/10.1109/TSE.2013.2297120
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
http://dx.doi.org/10.1145/1062455.1062533
http://doi.acm.org/10.1145/1062455.1062533
http://doi.acm.org/10.1145/1062455.1062533
https://www.researchgate.net/publication/289669528_HI-CFG_Construction_by_Binary_Analysis_and_Application_to_Attack_Polymorphism?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/289669528_HI-CFG_Construction_by_Binary_Analysis_and_Application_to_Attack_Polymorphism?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/289669528_HI-CFG_Construction_by_Binary_Analysis_and_Application_to_Attack_Polymorphism?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/263813578_Symbolic_Crosschecking_of_Data-Parallel_Floating-Point_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/263813578_Symbolic_Crosschecking_of_Data-Parallel_Floating-Point_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/263813578_Symbolic_Crosschecking_of_Data-Parallel_Floating-Point_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/263813578_Symbolic_Crosschecking_of_Data-Parallel_Floating-Point_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262356189_Symbolic_execution_for_software_testing_Three_decades_later?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/241633678_Unleashing_Mayhem_on_Binary_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/239761615_The_S2E_Platform_Design_Implementation_and_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221609630_Symbolic_Security_Analysis_of_Ruby-on-Rails_Web_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221609630_Symbolic_Security_Analysis_of_Ruby-on-Rails_Web_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221609630_Symbolic_Security_Analysis_of_Ruby-on-Rails_Web_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221609630_Symbolic_Security_Analysis_of_Ruby-on-Rails_Web_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221609630_Symbolic_Security_Analysis_of_Ruby-on-Rails_Web_Applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221555021_Check_'n'_crash_Combining_static_checking_and_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221555021_Check_'n'_crash_Combining_static_checking_and_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221555021_Check_'n'_crash_Combining_static_checking_and_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221555021_Check_'n'_crash_Combining_static_checking_and_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221555021_Check_'n'_crash_Combining_static_checking_and_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221554878_Symbolic_execution_for_software_testing_in_practice_-_Preliminary_assessment?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221554878_Symbolic_execution_for_software_testing_in_practice_-_Preliminary_assessment?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221554878_Symbolic_execution_for_software_testing_in_practice_-_Preliminary_assessment?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221554878_Symbolic_execution_for_software_testing_in_practice_-_Preliminary_assessment?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221554878_Symbolic_execution_for_software_testing_in_practice_-_Preliminary_assessment?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Cytron et al., 1991] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K.
(1991). E�ciently computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems, 13(4):451–490, ISSN: 0164-0925,
DOI: 10.1145/115372.115320, http://doi.acm.org/10.1145/115372.115320.

[Davidson et al., 2013] Davidson, D., Moench, B., Jha, S., and Ristenpart, T. (2013). FIE on
firmware: Finding vulnerabilities in embedded systems using symbolic execution. In Proceed-
ings of the 22nd USENIX Conference on Security, SEC 2013, pages 463–478, Berkeley, CA,
USA. USENIX Association, ISBN: 978-1-931971-03-4, http://dl.acm.org/citation.cfm?
id=2534766.2534806.

[De Moura and Bjørner, 2008] De Moura, L. and Bjørner, N. (2008). Z3: An e�cient
smt solver. In Proceedings of the Theory and Practice of Software, 14th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg. Springer-Verlag, ISBN:
3-540-78799-2, 978-3-540-78799-0, DOI: 10.1007/978-3-540-78800-3 24, http://dl.

acm.org/citation.cfm?id=1792734.1792766.

[De Moura and Bjørner, 2011] De Moura, L. and Bjørner, N. (2011). Satisfiability mod-
ulo theories: Introduction and applications. Communications of the ACM, 54(9):69–77,
ISSN: 0001-0782, DOI: 10.1145/1995376.1995394, http://doi.acm.org/10.1145/1995376.
1995394.

[Deng et al., 2012] Deng, X., Lee, J., and Robby (2012). E�cient and formal generalized sym-
bolic execution. Automated Software Engineering, 19(3):233–301, ISSN: 0928-8910, DOI:
10.1007/s10515-011-0089-9, http://dx.doi.org/10.1007/s10515-011-0089-9.

[do Val, 2014] do Val, C. G. (2014). Conflict-driven symbolic execution: How to learn to get
better. MSc thesis, University of British Columbia.

[Duesterwald, 2004] Duesterwald, E., editor (2004). Analyzing Memory Accesses in x86 Executa-
bles, CC 2004, Berlin, Heidelberg. Springer Berlin Heidelberg, ISBN: 978-3-540-24723-4, DOI:
10.1007/978-3-540-24723-4 2, http://dx.doi.org/10.1007/978-3-540-24723-4_2.

[Elkarablieh et al., 2009] Elkarablieh, B., Godefroid, P., and Levin, M. Y. (2009). Precise pointer
reasoning for dynamic test generation. In Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis, ISSTA 2009, pages 129–140, New York, NY, USA.
ACM, ISBN: 978-1-60558-338-9, DOI: 10.1145/1572272.1572288, http://doi.acm.org/
10.1145/1572272.1572288.

[Engler and Dunbar, 2007] Engler, D. and Dunbar, D. (2007). Under-constrained execution: Mak-
ing automatic code destruction easy and scalable. In Proceedings of the 2007 International
Symposium on Software Testing and Analysis, ISSTA 2007, pages 1–4, New York, NY, USA.
ACM, ISBN: 978-1-59593-734-6, DOI: 10.1145/1273463.1273464.

[Farzan et al., 2013] Farzan, A., Holzer, A., Razavi, N., and Veith, H. (2013). Con2colic test-
ing. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 37–47, New York, NY, USA. ACM, ISBN: 978-1-4503-2237-9, DOI:
10.1145/2491411.2491453, http://doi.acm.org/10.1145/2491411.2491453.

[Fu et al., 2007] Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., and Tao, L. (2007). A
static analysis framework for detecting sql injection vulnerabilities. In Proceedings of the
31st Annual International Computer Software and Applications Conference, COMPSAC 2007,
pages 87–96, Washington, DC, USA. IEEE Computer Society, ISBN: 0-7695-2870-8, DOI:
10.1109/COMPSAC.2007.43, http://dx.doi.org/10.1109/COMPSAC.2007.43.

32

http://dx.doi.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://dl.acm.org/citation.cfm?id=2534766.2534806
http://dl.acm.org/citation.cfm?id=2534766.2534806
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dx.doi.org/10.1145/1995376.1995394
http://doi.acm.org/10.1145/1995376.1995394
http://doi.acm.org/10.1145/1995376.1995394
http://dx.doi.org/10.1007/s10515-011-0089-9
http://dx.doi.org/10.1007/s10515-011-0089-9
http://dx.doi.org/10.1007/978-3-540-24723-4_2
http://dx.doi.org/10.1007/978-3-540-24723-4_2
http://dx.doi.org/10.1145/1572272.1572288
http://doi.acm.org/10.1145/1572272.1572288
http://doi.acm.org/10.1145/1572272.1572288
http://dx.doi.org/10.1145/1273463.1273464
http://dx.doi.org/10.1145/2491411.2491453
http://doi.acm.org/10.1145/2491411.2491453
http://dx.doi.org/10.1109/COMPSAC.2007.43
http://dx.doi.org/10.1109/COMPSAC.2007.43
https://www.researchgate.net/publication/251339390_Efficient_and_formal_generalized_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/251339390_Efficient_and_formal_generalized_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/251339390_Efficient_and_formal_generalized_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/246035912_Efficiently_Computing_Static_Single_Ass_ignment_Form_and_the_Program_Dependence_Graph?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/246035912_Efficiently_Computing_Static_Single_Ass_ignment_Form_and_the_Program_Dependence_Graph?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/246035912_Efficiently_Computing_Static_Single_Ass_ignment_Form_and_the_Program_Dependence_Graph?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/246035912_Efficiently_Computing_Static_Single_Ass_ignment_Form_and_the_Program_Dependence_Graph?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Ganesh, 2007] Ganesh, V. (2007). Decision Procedures for Bit-vectors, Arrays and Integers. PhD
thesis, https://ece.uwaterloo.ca/~vganesh/Publications_files/vg2007-PhD-STANFORD.
pdf.

[Ganesh and Dill, 2007] Ganesh, V. and Dill, D. L. (2007). A decision procedure for bit-vectors
and arrays. In Proceedings of the 19th International Conference on Computer Aided Verification,
CAV 2007, pages 519–531, Berlin, Heidelberg. Springer-Verlag, ISBN: 978-3-540-73367-6,
DOI: http://dx.doi.org/10.1007/978-3-540-73368-3 52, http://dl.acm.org/citation.
cfm?id=1770351.1770421.

[Geldenhuys et al., 2013] Geldenhuys, J., Aguirre, N., Frias, M. F., and Visser, W. (2013).
Bounded lazy initialization. In Brat, G., Rungta, N., and Venet, A., editors, 5th International
NASA Formal Methods Symposium, NFM 2013, pages 229–243, Berlin, Heidelberg. Springer
Berlin Heidelberg, ISBN: 978-3-642-38088-4, DOI: 10.1007/978-3-642-38088-4 16, http:
//dx.doi.org/10.1007/978-3-642-38088-4_16.

[Godefroid, 2007] Godefroid, P. (2007). Compositional dynamic test generation. In Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2007, pages 47–54, New York, NY, USA. ACM, ISBN: 1-59593-575-4, DOI:
10.1145/1190216.1190226, http://doi.acm.org/10.1145/1190216.1190226.

[Godefroid et al., 2005] Godefroid, P., Klarlund, N., and Sen, K. (2005). DART: Directed au-
tomated random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2005, pages 213–223, New York, NY,
USA. ACM, ISBN: 1-59593-056-6, DOI: 10.1145/1065010.1065036, http://doi.acm.org/
10.1145/1065010.1065036.

[Godefroid et al., 2012] Godefroid, P., Levin, M. Y., and Molnar, D. (2012). Sage: White-
box fuzzing for security testing. Queue, 10(1):20:20–20:27, ISSN: 1542-7730, DOI:
10.1145/2090147.2094081, http://doi.acm.org/10.1145/2090147.2094081.

[Godefroid et al., 2008] Godefroid, P., Levin, M. Y., and Molnar, D. A. (2008). Auto-
mated whitebox fuzz testing. In Proceedings of the Network and Distributed System Se-
curity Symposium, NDSS 2008. http://www.isoc.org/isoc/conferences/ndss/08/papers/
10_automated_whitebox_fuzz.pdf.

[Godefroid and Luchaup, 2011] Godefroid, P. and Luchaup, D. (2011). Automatic partial loop
summarization in dynamic test generation. In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ISSTA 2011, pages 23–33, New York, NY, USA.
ACM, ISBN: 978-1-4503-0562-4, DOI: 10.1145/2001420.2001424, http://doi.acm.org/
10.1145/2001420.2001424.

[Groce and Visser, 2002] Groce, A. and Visser, W. (2002). Model checking java programs us-
ing structural heuristics. In Proceedings of the 2002 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2002, pages 12–21, New York, NY, USA.
ACM, ISBN: 1-58113-562-9, DOI: 10.1145/566172.566175, http://doi.acm.org/10.1145/
566172.566175.

[Guo et al., 2015] Guo, S., Kusano, M., Wang, C., Yang, Z., and Gupta, A. (2015). Assertion
guided symbolic execution of multithreaded programs. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 854–865, New York,
NY, USA. ACM, ISBN: 978-1-4503-3675-8, DOI: 10.1145/2786805.2786841, http://doi.
acm.org/10.1145/2786805.2786841.

[Hai et al., 2016] Hai, N. M., Ogawa, M., and Tho, Q. T. (2016). Obfuscation Code Localization
Based on CFG Generation of Malware, pages 229–247. Springer International Publishing, Cham,
ISBN: 978-3-319-30303-1, DOI: 10.1007/978-3-319-30303-1 14, http://dx.doi.org/10.
1007/978-3-319-30303-1_14.

33

https://ece.uwaterloo.ca/~vganesh/Publications_files/vg2007-PhD-STANFORD.pdf
https://ece.uwaterloo.ca/~vganesh/Publications_files/vg2007-PhD-STANFORD.pdf
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-73368-3_52
http://dl.acm.org/citation.cfm?id=1770351.1770421
http://dl.acm.org/citation.cfm?id=1770351.1770421
http://dx.doi.org/10.1007/978-3-642-38088-4_16
http://dx.doi.org/10.1007/978-3-642-38088-4_16
http://dx.doi.org/10.1007/978-3-642-38088-4_16
http://dx.doi.org/10.1145/1190216.1190226
http://doi.acm.org/10.1145/1190216.1190226
http://dx.doi.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1065010.1065036
http://dx.doi.org/10.1145/2090147.2094081
http://doi.acm.org/10.1145/2090147.2094081
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://dx.doi.org/10.1145/2001420.2001424
http://doi.acm.org/10.1145/2001420.2001424
http://doi.acm.org/10.1145/2001420.2001424
http://dx.doi.org/10.1145/566172.566175
http://doi.acm.org/10.1145/566172.566175
http://doi.acm.org/10.1145/566172.566175
http://dx.doi.org/10.1145/2786805.2786841
http://doi.acm.org/10.1145/2786805.2786841
http://doi.acm.org/10.1145/2786805.2786841
http://dx.doi.org/10.1007/978-3-319-30303-1_14
http://dx.doi.org/10.1007/978-3-319-30303-1_14
http://dx.doi.org/10.1007/978-3-319-30303-1_14
https://www.researchgate.net/publication/299869126_Assertion_guided_symbolic_execution_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/299869126_Assertion_guided_symbolic_execution_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/299869126_Assertion_guided_symbolic_execution_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/299869126_Assertion_guided_symbolic_execution_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/299869126_Assertion_guided_symbolic_execution_of_multithreaded_programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/275770180_Decision_Procedures_for_Bit-vectors_Arrays_and_Integers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/275770180_Decision_Procedures_for_Bit-vectors_Arrays_and_Integers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/275770180_Decision_Procedures_for_Bit-vectors_Arrays_and_Integers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655409_Automated_Whitebox_Fuzz_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655409_Automated_Whitebox_Fuzz_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655409_Automated_Whitebox_Fuzz_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655409_Automated_Whitebox_Fuzz_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655409_Automated_Whitebox_Fuzz_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402853_A_Decision_Procedure_for_Bit-Vectors_and_Arrays?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402853_A_Decision_Procedure_for_Bit-Vectors_and_Arrays?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402853_A_Decision_Procedure_for_Bit-Vectors_and_Arrays?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402853_A_Decision_Procedure_for_Bit-Vectors_and_Arrays?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402853_A_Decision_Procedure_for_Bit-Vectors_and_Arrays?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220997530_Compositional_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220997530_Compositional_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220997530_Compositional_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220997530_Compositional_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220854526_Automatic_partial_loop_summarization_in_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220854526_Automatic_partial_loop_summarization_in_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220854526_Automatic_partial_loop_summarization_in_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220854526_Automatic_partial_loop_summarization_in_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220854526_Automatic_partial_loop_summarization_in_dynamic_test_generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220752310_DART_Directed_automated_random_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220309880_SAGE_Whitebox_Fuzzing_for_Security_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220309880_SAGE_Whitebox_Fuzzing_for_Security_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220309880_SAGE_Whitebox_Fuzzing_for_Security_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220309880_SAGE_Whitebox_Fuzzing_for_Security_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Hansen et al., 2009] Hansen, T., Schachte, P., and Søndergaard, H. (2009). Runtime ver-
ification. chapter State Joining and Splitting for the Symbolic Execution of Bina-
ries, pages 76–92. Springer-Verlag, Berlin, Heidelberg, ISBN: 978-3-642-04693-3, DOI:
10.1007/978-3-642-04694-0 6, http://dx.doi.org/10.1007/978-3-642-04694-0_6.

[Hentschel et al., 2014] Hentschel, M., Bubel, R., and Hähnle, R. (2014). Symbolic execution
debugger (sed). In Bonakdarpour, B. and Smolka, S. A., editors, Proceedings of Runtime
Verification 2014, RV 2014, pages 255–262. Springer, DOI: 10.1007/978-3-319-11164-3 21,
http://dx.doi.org/10.1007/978-3-319-11164-3_21.

[Howden, 1977] Howden, W. E. (1977). Symbolic testing and the dissect symbolic evaluation
system. IEEE Transactions on Software Engineering, 3(4):266–278, ISSN: 0098-5589, DOI:
10.1109/TSE.1977.231144, http://dx.doi.org/10.1109/TSE.1977.231144.

[Jeon et al., 2012] Jeon, J., Micinski, K. K., and Foster, J. S. (2012). SymDroid: Symbolic Execu-
tion for Dalvik Bytecode. Technical Report CS-TR-5022, Department of Computer Science, Uni-
versity of Maryland, College Park, http://www.cs.umd.edu/~jfoster/papers/cs-tr-5022.
pdf.

[Jia et al., 2015] Jia, X., Ghezzi, C., and Ying, S. (2015). Enhancing reuse of constraint so-
lutions to improve symbolic execution. In Proceedings of the 2015 International Sympo-
sium on Software Testing and Analysis, ISSTA 2015, pages 177–187, New York, NY, USA.
ACM, ISBN: 978-1-4503-3620-8, DOI: 10.1145/2771783.2771806, http://doi.acm.org/
10.1145/2771783.2771806.

[Karger and Schell, 1974] Karger, P. A. and Schell, R. R. (1974). Multics security evaluation:
Vulnerability analysis. Technical report, HQ Electronic Systems Division: Hanscom AFB, MA,
http://csrc.nist.gov/publications/history/karg74.pdf.

[Khoo et al., 2010] Khoo, Y. P., Chang, B.-Y. E., and Foster, J. S. (2010). Mixing type checking
and symbolic execution. In Proceedings of the 31st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2010, pages 436–447, New York, NY, USA.
ACM, ISBN: 978-1-4503-0019-3, DOI: 10.1145/1806596.1806645, http://doi.acm.org/
10.1145/1806596.1806645.

[Khurshid et al., 2003] Khurshid, S., Păsăreanu, C. S., and Visser, W. (2003). Generalized
Symbolic Execution for Model Checking and Testing. In Proceedings of the 9th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2003, pages 553–568, Berlin, Heidelberg. Springer-Verlag, ISBN: 3-540-00898-5, DOI:
10.1007/3-540-36577-x 40, http://dl.acm.org/citation.cfm?id=1765871.1765924.

[King, 1975] King, J. C. (1975). A new approach to program testing. In Proceedings of the
International Conference on Reliable Software, pages 228–233, New York, NY, USA. ACM,
DOI: 10.1145/800027.808444, http://doi.acm.org/10.1145/800027.808444.

[King, 1976] King, J. C. (1976). Symbolic execution and program testing. Communication of
ACM, 19(7):385–394, ISSN: 0001-0782, DOI: 10.1145/360248.360252, http://doi.acm.org/
10.1145/360248.360252.

[Kuznetsov et al., 2012] Kuznetsov, V., Kinder, J., Bucur, S., and Candea, G. (2012). E�cient
state merging in symbolic execution. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2012, pages 193–204, New York,
NY, USA. ACM, ISBN: 978-1-4503-1205-9, DOI: 10.1145/2254064.2254088.

[Lakhotia et al., 2010] Lakhotia, K., Tillmann, N., Harman, M., and De Halleux, J. (2010).
Flopsy: Search-based floating point constraint solving for symbolic execution. In Proceed-
ings of the 22nd IFIP WG 6.1 International Conference on Testing Software and Systems,
ICTSS 2010, pages 142–157, Berlin, Heidelberg. Springer-Verlag, ISBN: 3-642-16572-9,

34

http://dx.doi.org/10.1007/978-3-642-04694-0_6
http://dx.doi.org/10.1007/978-3-642-04694-0_6
http://dx.doi.org/10.1007/978-3-319-11164-3_21
http://dx.doi.org/10.1007/978-3-319-11164-3_21
http://dx.doi.org/10.1109/TSE.1977.231144
http://dx.doi.org/10.1109/TSE.1977.231144
http://www.cs.umd.edu/~jfoster/papers/cs-tr-5022.pdf
http://www.cs.umd.edu/~jfoster/papers/cs-tr-5022.pdf
http://dx.doi.org/10.1145/2771783.2771806
http://doi.acm.org/10.1145/2771783.2771806
http://doi.acm.org/10.1145/2771783.2771806
http://csrc.nist.gov/publications/history/karg74.pdf
http://dx.doi.org/10.1145/1806596.1806645
http://doi.acm.org/10.1145/1806596.1806645
http://doi.acm.org/10.1145/1806596.1806645
http://dx.doi.org/10.1007/3-540-36577-x_40
http://dl.acm.org/citation.cfm?id=1765871.1765924
http://dx.doi.org/10.1145/800027.808444
http://doi.acm.org/10.1145/800027.808444
http://dx.doi.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://dx.doi.org/10.1145/2254064.2254088
https://www.researchgate.net/publication/305260115_A_new_approach_to_program_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/305260115_A_new_approach_to_program_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/305260115_A_new_approach_to_program_testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/291176932_Symbolic_Execution_Debugger_SED?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/291176932_Symbolic_Execution_Debugger_SED?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/291176932_Symbolic_Execution_Debugger_SED?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/291176932_Symbolic_Execution_Debugger_SED?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271531907_Enhancing_Reuse_of_Constraint_Solutions_to_Improve_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271531907_Enhancing_Reuse_of_Constraint_Solutions_to_Improve_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271531907_Enhancing_Reuse_of_Constraint_Solutions_to_Improve_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271531907_Enhancing_Reuse_of_Constraint_Solutions_to_Improve_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271531907_Enhancing_Reuse_of_Constraint_Solutions_to_Improve_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271515524_SymDroid_Symbolic_Execution_for_Dalvik_Bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271515524_SymDroid_Symbolic_Execution_for_Dalvik_Bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271515524_SymDroid_Symbolic_Execution_for_Dalvik_Bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/271515524_SymDroid_Symbolic_Execution_for_Dalvik_Bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/254461759_Efficient_State_Merging_in_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/254461759_Efficient_State_Merging_in_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/254461759_Efficient_State_Merging_in_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/254461759_Efficient_State_Merging_in_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220423278_Symbolic_Execution_and_Program_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220423278_Symbolic_Execution_and_Program_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220423278_Symbolic_Execution_and_Program_Testing?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220071078_Symbolic_Testing_and_the_DISSECT_Symbolic_Evaluation_System?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220071078_Symbolic_Testing_and_the_DISSECT_Symbolic_Evaluation_System?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220071078_Symbolic_Testing_and_the_DISSECT_Symbolic_Evaluation_System?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4001408_Multics_security_evaluation_Vulnerability_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4001408_Multics_security_evaluation_Vulnerability_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4001408_Multics_security_evaluation_Vulnerability_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


978-3-642-16572-6, DOI: 10.1007/978-3-642-16573-3 11, http://dl.acm.org/citation.
cfm?id=1928028.1928039.

[Lattner and Adve, 2004] Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimization, CGO 2004,
pages 75–86, Washington, DC, USA. IEEE Computer Society, ISBN: 0-7695-2102-9, DOI:
10.1109/cgo.2004.1281665, http://dl.acm.org/citation.cfm?id=977395.977673.

[Li et al., 2014] Li, G., Andreasen, E., and Ghosh, I. (2014). Symjs: Automatic symbolic
testing of javascript web applications. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2014, pages 449–459,
New York, NY, USA. ACM, ISBN: 978-1-4503-3056-5, DOI: 10.1145/2635868.2635913,
http://doi.acm.org/10.1145/2635868.2635913.

[Li et al., 2013] Li, Y., Su, Z., Wang, L., and Li, X. (2013). Steering symbolic execution to
less traveled paths. In Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, pages 19–
32. ISBN: 978-1-4503-2374-1, DOI: 10.1145/2509136.2509553, http://doi.acm.org/10.
1145/2509136.2509553.

[Luckow et al., 2016] Luckow, K., Dimjašević, M., Giannakopoulou, D., Howar, F., Isberner, M.,
Kahsai, T., Rakamarić, Z., and Raman, V. (2016). JDart: A dynamic symbolic analysis frame-
work. In Proceedings of the 22nd International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS 2016, pages 442–459, New York, NY, USA. Springer-
Verlag New York, Inc., ISBN: 978-3-662-49673-2, DOI: 10.1007/978-3-662-49674-9 26,
http://dx.doi.org/10.1007/978-3-662-49674-9_26.

[Majumdar and Sen, 2007] Majumdar, R. and Sen, K. (2007). Hybrid concolic testing. In Pro-
ceedings of the 29th International Conference on Software Engineering, ICSE 2007, pages
416–426, Washington, DC, USA. IEEE Computer Society, ISBN: 0-7695-2828-7, DOI:
10.1109/ICSE.2007.41.

[Martignoni et al., 2012] Martignoni, L., McCamant, S., Poosankam, P., Song, D., and Ma-
niatis, P. (2012). Path-exploration lifting: Hi-fi tests for lo-fi emulators. In Proceed-
ings of the Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII, pages 337–348, New York, NY, USA.
ACM, ISBN: 978-1-4503-0759-8, DOI: 10.1145/2150976.2151012, http://doi.acm.org/
10.1145/2150976.2151012.

[McMinn, 2004] McMinn, P. (2004). Search-based software test data generation: A sur-
vey. Software Testing, Verification & Reliability, 14(2):105–156, ISSN: 0960-0833, DOI:
10.1002/stvr.v14:2, http://dx.doi.org/10.1002/stvr.v14:2.

[Meudec, 2001] Meudec, C. (2001). Atgen: automatic test data generation using constraint logic
programming and symbolic execution. Software Testing Verification and Reliability, 11(2):81–
96, DOI: 10.1002/stvr.225.

[Nethercote and Seward, 2007] Nethercote, N. and Seward, J. (2007). Valgrind: A framework
for heavyweight dynamic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2007, pages 89–100,
New York, NY, USA. ACM, ISBN: 978-1-59593-633-2, DOI: 10.1145/1250734.1250746,
http://doi.acm.org/10.1145/1250734.1250746.

[Pincus and Baker, 2004] Pincus, J. and Baker, B. (2004). Beyond stack smashing: recent ad-
vances in exploiting bu↵er overruns. IEEE Security Privacy, 2(4):20–27, ISSN: 1540-7993,
DOI: 10.1109/MSP.2004.36.

35

http://dx.doi.org/10.1007/978-3-642-16573-3_11
http://dl.acm.org/citation.cfm?id=1928028.1928039
http://dl.acm.org/citation.cfm?id=1928028.1928039
http://dx.doi.org/10.1109/cgo.2004.1281665
http://dl.acm.org/citation.cfm?id=977395.977673
http://dx.doi.org/10.1145/2635868.2635913
http://doi.acm.org/10.1145/2635868.2635913
http://dx.doi.org/10.1145/2509136.2509553
http://doi.acm.org/10.1145/2509136.2509553
http://doi.acm.org/10.1145/2509136.2509553
http://dx.doi.org/10.1007/978-3-662-49674-9_26
http://dx.doi.org/10.1007/978-3-662-49674-9_26
http://dx.doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1145/2150976.2151012
http://doi.acm.org/10.1145/2150976.2151012
http://doi.acm.org/10.1145/2150976.2151012
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1002/stvr.225
http://dx.doi.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746
http://dx.doi.org/10.1109/MSP.2004.36
https://www.researchgate.net/publication/311471839_Steering_symbolic_execution_to_less_traveled_paths?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/311471839_Steering_symbolic_execution_to_less_traveled_paths?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/311471839_Steering_symbolic_execution_to_less_traveled_paths?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/311471839_Steering_symbolic_execution_to_less_traveled_paths?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/311471839_Steering_symbolic_execution_to_less_traveled_paths?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301428545_SymJS_automatic_symbolic_testing_of_JavaScript_web_applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301428545_SymJS_automatic_symbolic_testing_of_JavaScript_web_applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301428545_SymJS_automatic_symbolic_testing_of_JavaScript_web_applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301428545_SymJS_automatic_symbolic_testing_of_JavaScript_web_applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301428545_SymJS_automatic_symbolic_testing_of_JavaScript_web_applications?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300077708_JDart_A_Dynamic_Symbolic_Analysis_Framework?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300077708_JDart_A_Dynamic_Symbolic_Analysis_Framework?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300077708_JDart_A_Dynamic_Symbolic_Analysis_Framework?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300077708_JDart_A_Dynamic_Symbolic_Analysis_Framework?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300077708_JDart_A_Dynamic_Symbolic_Analysis_Framework?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300077708_JDart_A_Dynamic_Symbolic_Analysis_Framework?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/228517853_Path-Exploration_Lifting_Hi-Fi_Tests_for_Lo-Fi_Emulators?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/228517853_Path-Exploration_Lifting_Hi-Fi_Tests_for_Lo-Fi_Emulators?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/228517853_Path-Exploration_Lifting_Hi-Fi_Tests_for_Lo-Fi_Emulators?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/228517853_Path-Exploration_Lifting_Hi-Fi_Tests_for_Lo-Fi_Emulators?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/228517853_Path-Exploration_Lifting_Hi-Fi_Tests_for_Lo-Fi_Emulators?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/228517853_Path-Exploration_Lifting_Hi-Fi_Tests_for_Lo-Fi_Emulators?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220497053_Beyond_Stack_Smashing_Recent_Advances_in_Exploiting_Buffer_Overruns?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220497053_Beyond_Stack_Smashing_Recent_Advances_in_Exploiting_Buffer_Overruns?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220497053_Beyond_Stack_Smashing_Recent_Advances_in_Exploiting_Buffer_Overruns?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4065384_LLVM_A_Compilation_Framework_for_Lifelong_Program_Analysis_Transformation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4065384_LLVM_A_Compilation_Framework_for_Lifelong_Program_Analysis_Transformation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4065384_LLVM_A_Compilation_Framework_for_Lifelong_Program_Analysis_Transformation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4065384_LLVM_A_Compilation_Framework_for_Lifelong_Program_Analysis_Transformation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4065384_LLVM_A_Compilation_Framework_for_Lifelong_Program_Analysis_Transformation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Prud’homme et al., 2015] Prud’homme, C., Fages, J.-G., and Lorca, X. (2015). Choco Doc-
umentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., http:

//www.choco-solver.org.

[Păsăreanu and Rungta, 2010] Păsăreanu, C. S. and Rungta, N. (2010). Symbolic pathfinder:
Symbolic execution of java bytecode. In Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2010, pages 179–180, New York, NY, USA.
ACM, ISBN: 978-1-4503-0116-9, DOI: 10.1145/1858996.1859035, http://doi.acm.org/
10.1145/1858996.1859035.

[Păsăreanu et al., 2011] Păsăreanu, C. S., Rungta, N., and Visser, W. (2011). Symbolic exe-
cution with mixed concrete-symbolic solving. In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ISSTA 2011, pages 34–44, New York, NY, USA.
ACM, ISBN: 978-1-4503-0562-4, DOI: 10.1145/2001420.2001425, http://doi.acm.org/
10.1145/2001420.2001425.

[Păsăreanu and Visser, 2004] Păsăreanu, C. S. and Visser, W. (2004). Verification of java pro-
grams using symbolic execution and invariant generation. In Model Checking Software: 11th
International SPIN Workshop, SPIN 2004, pages 164–181. Springer Berlin Heidelberg, DOI:
10.1007/978-3-540-24732-6 13, http://dx.doi.org/10.1007/978-3-540-24732-6_13.

[Ramachandran et al., 2015] Ramachandran, J., Păsăreanu, C., and Wahl, T. (2015). Sym-
bolic execution for checking the accuracy of floating-point programs. ACM SIGSOFT Soft-
ware Engineering Notes, 40(1):1–5, ISSN: 0163-5948, DOI: 10.1145/2693208.2693242, http:
//doi.acm.org/10.1145/2693208.2693242.

[Ramos and Engler, 2015] Ramos, D. A. and Engler, D. (2015). Under-constrained symbolic exe-
cution: Correctness checking for real code. In Proceedings of the 24th USENIX Conference on
Security Symposium, SEC 2015, pages 49–64, Berkeley, CA, USA. USENIX Association, ISBN:
978-1-931971-232, http://dl.acm.org/citation.cfm?id=2831143.2831147.

[Reisner et al., 2010] Reisner, E., Song, C., Ma, K.-K., Foster, J. S., and Porter, A. (2010). Using
symbolic evaluation to understand behavior in configurable software systems. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010, pages 445–
454, New York, NY, USA. ACM, ISBN: 978-1-60558-719-6, DOI: 10.1145/1806799.1806864,
http://doi.acm.org/10.1145/1806799.1806864.

[Rosner et al., 2015] Rosner, N., Geldenhuys, J., Aguirre, N. M., Visser, W., and Frias, M. F.
(2015). Bliss: Improved symbolic execution by bounded lazy initialization with sat sup-
port. IEEE Transactions on Software Engineering, 41(7):639–660, ISSN: 0098-5589, DOI:
10.1109/TSE.2015.2389225.

[Saudel and Salwan, 2015] Saudel, F. and Salwan, J. (2015). Triton: A dynamic symbolic exe-
cution framework. In Symposium sur la sécurité des technologies de l’information et des com-
munications, SSTIC, France, Rennes, June 3-5 2015, pages 31–54. SSTIC, http://triton.
quarkslab.com/files/sstic2015_wp_fr_saudel_salwan.pdf.

[Saxena et al., 2009] Saxena, P., Poosankam, P., McCamant, S., and Song, D. (2009). Loop-
extended symbolic execution on binary programs. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA 2009, pages 225–236, New York, NY, USA.
ACM, ISBN: 978-1-60558-338-9, DOI: 10.1145/1572272.1572299.

[Schwartz et al., 2010] Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010). All you ever
wanted to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP 2010, pages 317–331, Washington, DC, USA. IEEE Computer Society, ISBN:
978-0-7695-4035-1, DOI: 10.1109/SP.2010.26, http://dx.doi.org/10.1109/SP.2010.26.

36

http://www.choco-solver.org
http://www.choco-solver.org
http://dx.doi.org/10.1145/1858996.1859035
http://doi.acm.org/10.1145/1858996.1859035
http://doi.acm.org/10.1145/1858996.1859035
http://dx.doi.org/10.1145/2001420.2001425
http://doi.acm.org/10.1145/2001420.2001425
http://doi.acm.org/10.1145/2001420.2001425
http://dx.doi.org/10.1007/978-3-540-24732-6_13
http://dx.doi.org/10.1007/978-3-540-24732-6_13
http://dx.doi.org/10.1145/2693208.2693242
http://doi.acm.org/10.1145/2693208.2693242
http://doi.acm.org/10.1145/2693208.2693242
http://dl.acm.org/citation.cfm?id=2831143.2831147
http://dx.doi.org/10.1145/1806799.1806864
http://doi.acm.org/10.1145/1806799.1806864
http://dx.doi.org/10.1109/TSE.2015.2389225
http://triton.quarkslab.com/files/sstic2015_wp_fr_saudel_salwan.pdf
http://triton.quarkslab.com/files/sstic2015_wp_fr_saudel_salwan.pdf
http://dx.doi.org/10.1145/1572272.1572299
http://dx.doi.org/10.1109/SP.2010.26
http://dx.doi.org/10.1109/SP.2010.26
https://www.researchgate.net/publication/273351489_Symbolic_Execution_for_Checking_the_Accuracy_of_Floating-Point_Programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/273351489_Symbolic_Execution_for_Checking_the_Accuracy_of_Floating-Point_Programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/273351489_Symbolic_Execution_for_Checking_the_Accuracy_of_Floating-Point_Programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/273351489_Symbolic_Execution_for_Checking_the_Accuracy_of_Floating-Point_Programs?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221105739_Verification_of_Java_Programs_Using_Symbolic_Execution_and_Invariant_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221105739_Verification_of_Java_Programs_Using_Symbolic_Execution_and_Invariant_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221105739_Verification_of_Java_Programs_Using_Symbolic_Execution_and_Invariant_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221105739_Verification_of_Java_Programs_Using_Symbolic_Execution_and_Invariant_Generation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220883167_Symbolic_PathFinder_symbolic_execution_of_Java_bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220883167_Symbolic_PathFinder_symbolic_execution_of_Java_bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220883167_Symbolic_PathFinder_symbolic_execution_of_Java_bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220883167_Symbolic_PathFinder_symbolic_execution_of_Java_bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220883167_Symbolic_PathFinder_symbolic_execution_of_Java_bytecode?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Schwartz et al., 2011] Schwartz, E. J., Avgerinos, T., and Brumley, D. (2011). Q: Exploit hard-
ening made easy. In Proceedings of the 20th USENIX Conference on Security, SEC 2011,
pages 25–25, Berkeley, CA, USA. USENIX Association, http://dl.acm.org/citation.cfm?
id=2028067.2028092.

[Sen, 2007] Sen, Koushikand Agha, G. (2007). A race-detection and flipping algorithm
for automated testing of multi-threaded programs. In Hardware and Software, Verifica-
tion and Testing: Second International Haifa Verification Conference, HVC 2006, pages
166–182, Berlin, Heidelberg. Springer Berlin Heidelberg, ISBN: 978-3-540-70889-6, DOI:
10.1007/978-3-540-70889-6 13, http://dx.doi.org/10.1007/978-3-540-70889-6_13.

[Sen and Agha, 2006] Sen, K. and Agha, G. (2006). CUTE and jCUTE: Concolic unit testing
and explicit path model-checking tools. In Proceedings of the 18th International Conference on
Computer Aided Verification, CAV 2006, pages 419–423, Berlin, Heidelberg. Springer-Verlag,
ISBN: 3-540-37406-X, 978-3-540-37406-0, DOI: 10.1007/11817963 38, http://dx.doi.

org/10.1007/11817963_38.

[Sen et al., 2013] Sen, K., Kalasapur, S., Brutch, T., and Gibbs, S. (2013). Jalangi: A selective
record-replay and dynamic analysis framework for javascript. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 488–498, New
York, NY, USA. ACM, ISBN: 978-1-4503-2237-9, DOI: 10.1145/2491411.2491447, http:
//doi.acm.org/10.1145/2491411.2491447.

[Sen et al., 2005] Sen, K., Marinov, D., and Agha, G. (2005). CUTE: A concolic unit testing
engine for c. In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, ESEC/FSE-13, pages 263–272, New York, NY, USA. ACM, ISBN: 1-59593-014-0, DOI:
10.1145/1081706.1081750, http://doi.acm.org/10.1145/1081706.1081750.

[Shannon et al., 2007] Shannon, D., Hajra, S., Lee, A., Zhan, D., and Khurshid, S. (2007).
Abstracting symbolic execution with string analysis. In Proceedings of the Testing: Aca-
demic and Industrial Conference Practice and Research Techniques - MUTATION, TAICPART-
MUTATION 2007, pages 13–22, Washington, DC, USA. IEEE Computer Society, ISBN:
0-7695-2984-4, DOI: 10.1109/taicpart.2007.4344094, http://dl.acm.org/citation.

cfm?id=1308173.1308254.

[Sharif et al., 2008] Sharif, M. I., Lanzi, A., Gi�n, J. T., and Lee, W. (2008). Impeding malware
analysis using conditional code obfuscation. In Proceedings of the Network and Distributed Sys-
tem Security Symposium, NDSS 2008. http://www.isoc.org/isoc/conferences/ndss/08/
papers/19_impeding_malware_analysis.pdf.

[Sharma, 2014] Sharma, A. (2014). Exploiting undefined behaviors for e�cient symbolic execu-
tion. In Companion Proceedings of the 36th International Conference on Software Engineering,
ICSE Companion 2014, pages 727–729, New York, NY, USA. ACM, ISBN: 978-1-4503-2768-8,
DOI: 10.1145/2591062.2594450, http://doi.acm.org/10.1145/2591062.2594450.

[Shoshitaishvili et al., 2015] Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., and Vi-
gna, G. (2015). Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware. In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015. DOI: 10.14722/ndss.2015.23294, http://www.internetsociety.org/doc/

firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware.

[Shoshitaishvili et al., 2016] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M.,
Dutcher, A., Grosen, J., Feng, S., Hauser, C., Krügel, C., and Vigna, G. (2016). SOK: (state
of) the art of war: O↵ensive techniques in binary analysis. In IEEE Symposium on Security and
Privacy, SP 2016, pages 138–157. DOI: 10.1109/SP.2016.17, http://dx.doi.org/10.1109/
SP.2016.17.

37

http://dl.acm.org/citation.cfm?id=2028067.2028092
http://dl.acm.org/citation.cfm?id=2028067.2028092
http://dx.doi.org/10.1007/978-3-540-70889-6_13
http://dx.doi.org/10.1007/978-3-540-70889-6_13
http://dx.doi.org/10.1007/11817963_38
http://dx.doi.org/10.1007/11817963_38
http://dx.doi.org/10.1007/11817963_38
http://dx.doi.org/10.1145/2491411.2491447
http://doi.acm.org/10.1145/2491411.2491447
http://doi.acm.org/10.1145/2491411.2491447
http://dx.doi.org/10.1145/1081706.1081750
http://doi.acm.org/10.1145/1081706.1081750
http://dx.doi.org/10.1109/taicpart.2007.4344094
http://dl.acm.org/citation.cfm?id=1308173.1308254
http://dl.acm.org/citation.cfm?id=1308173.1308254
http://www.isoc.org/isoc/conferences/ndss/08/papers/19_impeding_malware_analysis.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/19_impeding_malware_analysis.pdf
http://dx.doi.org/10.1145/2591062.2594450
http://doi.acm.org/10.1145/2591062.2594450
http://dx.doi.org/10.14722/ndss.2015.23294
http://www.internetsociety.org/doc/firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware
http://www.internetsociety.org/doc/firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware
http://dx.doi.org/10.1109/SP.2016.17
http://dx.doi.org/10.1109/SP.2016.17
http://dx.doi.org/10.1109/SP.2016.17
https://www.researchgate.net/publication/300924994_Firmalice_-_Automatic_Detection_of_Authentication_Bypass_Vulnerabilities_in_Binary_Firmware?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300924994_Firmalice_-_Automatic_Detection_of_Authentication_Bypass_Vulnerabilities_in_Binary_Firmware?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300924994_Firmalice_-_Automatic_Detection_of_Authentication_Bypass_Vulnerabilities_in_Binary_Firmware?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300924994_Firmalice_-_Automatic_Detection_of_Authentication_Bypass_Vulnerabilities_in_Binary_Firmware?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/300924994_Firmalice_-_Automatic_Detection_of_Authentication_Bypass_Vulnerabilities_in_Binary_Firmware?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/266656883_Exploiting_undefined_behaviors_for_efficient_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/266656883_Exploiting_undefined_behaviors_for_efficient_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/266656883_Exploiting_undefined_behaviors_for_efficient_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/266656883_Exploiting_undefined_behaviors_for_efficient_symbolic_execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655405_Impeding_Malware_Analysis_Using_Conditional_Code_Obfuscation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655405_Impeding_Malware_Analysis_Using_Conditional_Code_Obfuscation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655405_Impeding_Malware_Analysis_Using_Conditional_Code_Obfuscation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221655405_Impeding_Malware_Analysis_Using_Conditional_Code_Obfuscation?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221560458_CUTE_A_concolic_unit_testing_engine_for_C?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221560458_CUTE_A_concolic_unit_testing_engine_for_C?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221560458_CUTE_A_concolic_unit_testing_engine_for_C?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221560458_CUTE_A_concolic_unit_testing_engine_for_C?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221560458_CUTE_A_concolic_unit_testing_engine_for_C?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402928_CUTE_and_jCUTE_Concolic_unit_testing_and_explicit_path_model-checking_tools?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402928_CUTE_and_jCUTE_Concolic_unit_testing_and_explicit_path_model-checking_tools?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402928_CUTE_and_jCUTE_Concolic_unit_testing_and_explicit_path_model-checking_tools?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402928_CUTE_and_jCUTE_Concolic_unit_testing_and_explicit_path_model-checking_tools?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221402928_CUTE_and_jCUTE_Concolic_unit_testing_and_explicit_path_model-checking_tools?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4279333_Abstracting_Symbolic_Execution_with_String_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4279333_Abstracting_Symbolic_Execution_with_String_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4279333_Abstracting_Symbolic_Execution_with_String_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4279333_Abstracting_Symbolic_Execution_with_String_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4279333_Abstracting_Symbolic_Execution_with_String_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/4279333_Abstracting_Symbolic_Execution_with_String_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Siegel et al., 2015] Siegel, S. F., Zheng, M., Luo, Z., Zirkel, T. K., Marianiello, A. V., Eden-
hofner, J. G., Dwyer, M. B., and Rogers, M. S. (2015). Civl: The concurrency interme-
diate verification language. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2015, pages 61:1–61:12, New
York, NY, USA. ACM, ISBN: 978-1-4503-3723-6, DOI: 10.1145/2807591.2807635, http:
//doi.acm.org/10.1145/2807591.2807635.

[Slaby et al., 2013] Slaby, J., Strejcek, J., and Trt́ık, M. (2013). Compact symbolic execution. In
11th International Symposium on Automated Technology for Verification and Analysis, ATVA
2013, pages 193–207. DOI: 10.1007/978-3-319-02444-8 15, http://dx.doi.org/10.1007/
978-3-319-02444-8_15.

[Song et al., 2008] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M. G., Liang,
Z., Newsome, J., Poosankam, P., and Saxena, P. (2008). Bitblaze: A new approach to com-
puter security via binary analysis. In Proceedings of the 4th International Conference on
Information Systems Security, ICISS 2008, pages 1–25, Berlin, Heidelberg. Springer-Verlag,
ISBN: 978-3-540-89861-0, DOI: 10.1007/978-3-540-89862-7 1, http://dx.doi.org/10.

1007/978-3-540-89862-7_1.

[Souza et al., 2011] Souza, M., Borges, M., d’Amorim, M., and Păsăreanu, C. S. (2011). Coral:
Solving complex constraints for symbolic pathfinder. In Proceedings of the Third International
NASA Formal Methods Symposium, NFM 2011, pages 359–374, Berlin, Heidelberg. Springer-
Verlag, ISBN: 978-3-642-20397-8, DOI: 10.1007/978-3-642-20398-5 26, http://dl.acm.
org/citation.cfm?id=1986308.1986337.

[Stephens et al., 2016] Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., and Vigna, G. (2016). Driller: Augmenting fuzzing through
selective symbolic execution. In 23nd Annual Network and Distributed System Security Sympo-
sium, NDSS 2016. http://www.internetsociety.org/sites/default/files/blogs-media/
driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf.

[Thakur et al., 2010] Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Ander-
sen, T., and Reps, T. (2010). Directed proof generation for machine code. In Proceedings
of the 22nd International Conference on Computer Aided Verification, CAV 2010, pages 288–
305, Berlin, Heidelberg. Springer-Verlag, ISBN: 3-642-14294-X, 978-3-642-14294-9, DOI:
10.1007/978-3-642-14295-6 27, http://dx.doi.org/10.1007/978-3-642-14295-6_27.

[Tillmann and De Halleux, 2008] Tillmann, N. and De Halleux, J. (2008). Pex: White box
test generation for .net. In Proceedings of the 2nd International Conference on Tests and
Proofs, TAP 2008, pages 134–153, Berlin, Heidelberg. Springer-Verlag, ISBN: 3-540-79123-X,
978-3-540-79123-2, DOI: 10.1007/978-3-540-79124-9 10, http://dl.acm.org/citation.
cfm?id=1792786.1792798.

[Trt́ık and Strejček, 2014] Trt́ık, M. and Strejček, J. (2014). Symbolic Memory with Point-
ers, pages 380–395. ATVA 2014. Springer International Publishing, Cham, DOI:
10.1007/978-3-319-11936-6 27, http://dx.doi.org/10.1007/978-3-319-11936-6_27.

[Udupa et al., 2005] Udupa, S. K., Debray, S. K., and Madou, M. (2005). Deobfuscation: Reverse
engineering obfuscated code. In Proceedings of the 12th Working Conference on Reverse En-
gineering, WCRE 2005, pages 45–54, Washington, DC, USA. IEEE Computer Society, ISBN:
0-7695-2474-5, DOI: 10.1109/WCRE.2005.13, http://dx.doi.org/10.1109/WCRE.2005.13.

[Visser et al., 2012] Visser, W., Geldenhuys, J., and Dwyer, M. B. (2012). Green: Reduc-
ing, reusing and recycling constraints in program analysis. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering, FSE
2012, pages 58:1–58:11, New York, NY, USA. ACM, ISBN: 978-1-4503-1614-9, DOI:
10.1145/2393596.2393665, http://doi.acm.org/10.1145/2393596.2393665.

38

http://dx.doi.org/10.1145/2807591.2807635
http://doi.acm.org/10.1145/2807591.2807635
http://doi.acm.org/10.1145/2807591.2807635
http://dx.doi.org/10.1007/978-3-319-02444-8_15
http://dx.doi.org/10.1007/978-3-319-02444-8_15
http://dx.doi.org/10.1007/978-3-319-02444-8_15
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1007/978-3-642-20398-5_26
http://dl.acm.org/citation.cfm?id=1986308.1986337
http://dl.acm.org/citation.cfm?id=1986308.1986337
http://www.internetsociety.org/sites/default/files/blogs-media/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://dx.doi.org/10.1007/978-3-642-14295-6_27
http://dx.doi.org/10.1007/978-3-642-14295-6_27
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://dl.acm.org/citation.cfm?id=1792786.1792798
http://dl.acm.org/citation.cfm?id=1792786.1792798
http://dx.doi.org/10.1007/978-3-319-11936-6_27
http://dx.doi.org/10.1007/978-3-319-11936-6_27
http://dx.doi.org/10.1109/WCRE.2005.13
http://dx.doi.org/10.1109/WCRE.2005.13
http://dx.doi.org/10.1145/2393596.2393665
http://doi.acm.org/10.1145/2393596.2393665
https://www.researchgate.net/publication/301929260_Symbolic_Memory_with_Pointers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301929260_Symbolic_Memory_with_Pointers?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/284177628_CIVL_The_Concurrency_Intermediate_Verification_Language?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/284177628_CIVL_The_Concurrency_Intermediate_Verification_Language?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/284177628_CIVL_The_Concurrency_Intermediate_Verification_Language?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/284177628_CIVL_The_Concurrency_Intermediate_Verification_Language?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/284177628_CIVL_The_Concurrency_Intermediate_Verification_Language?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/284177628_CIVL_The_Concurrency_Intermediate_Verification_Language?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262352357_Green_Reducing_reusing_and_recycling_constraints_in_program_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262352357_Green_Reducing_reusing_and_recycling_constraints_in_program_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262352357_Green_Reducing_reusing_and_recycling_constraints_in_program_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262352357_Green_Reducing_reusing_and_recycling_constraints_in_program_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/262352357_Green_Reducing_reusing_and_recycling_constraints_in_program_analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/258725161_Compact_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/258725161_Compact_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/258725161_Compact_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/258725161_Compact_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/249843662_Reverse_Engineering_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/249843662_Reverse_Engineering_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/249843662_Reverse_Engineering_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/249843662_Reverse_Engineering_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221413035_CORAL_Solving_Complex_Constraints_for_Symbolic_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221413035_CORAL_Solving_Complex_Constraints_for_Symbolic_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221413035_CORAL_Solving_Complex_Constraints_for_Symbolic_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221413035_CORAL_Solving_Complex_Constraints_for_Symbolic_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221413035_CORAL_Solving_Complex_Constraints_for_Symbolic_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221403525_Directed_Proof_Generation_for_Machine_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221403525_Directed_Proof_Generation_for_Machine_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221403525_Directed_Proof_Generation_for_Machine_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221403525_Directed_Proof_Generation_for_Machine_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221403525_Directed_Proof_Generation_for_Machine_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/221160696_BitBlaze_A_New_Approach_to_Computer_Security_via_Binary_Analysis?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==


[Visser et al., 2004] Visser, W., Pǎsǎreanu, C. S., and Khurshid, S. (2004). Test Input Generation
with Java PathFinder. In Proceedings of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2004, pages 97–107, New York, NY, USA. ACM, ISBN:
1-58113-820-2, DOI: 10.1145/1007512.1007526, http://doi.acm.org/10.1145/1007512.
1007526.

[Visser et al., 2006] Visser, W., Pǎsǎreanu, C. S., and Pelánek, R. (2006). Test input generation
for java containers using state matching. In Proceedings of the 2006 International Symposium on
Software Testing and Analysis, ISSTA 2006, pages 37–48, New York, NY, USA. ACM, ISBN:
1-59593-263-1, DOI: 10.1145/1146238.1146243, http://doi.acm.org/10.1145/1146238.
1146243.

[Wang et al., 2011] Wang, Z., Ming, J., Jia, C., and Gao, D. (2011). Linear Obfuscation to Combat
Symbolic Execution, pages 210–226. Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN:
978-3-642-23822-2, DOI: 10.1007/978-3-642-23822-2 12, http://dx.doi.org/10.1007/

978-3-642-23822-2_12.

[Weiser, 1984] Weiser, M. (1984). Program Slicing. IEEE Transactions on Software Engineering,
SE-10(4):352–357, ISSN: 0098-5589, DOI: 10.1109/TSE.1984.5010248, http://dx.doi.org/
10.1109/TSE.1984.5010248.

[Xie et al., 2009] Xie, T., Tillmann, N., de Halleux, J., and Schulte, W. (2009). Fitness-guided
path exploration in dynamic symbolic execution. In Proceedings of the 2009 IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, DSN 2009, pages 359–368. DOI:
10.1109/DSN.2009.5270315, http://dx.doi.org/10.1109/DSN.2009.5270315.

[Xie and Aiken, 2005] Xie, Y. and Aiken, A. (2005). Scalable error detection using boolean satis-
fiability. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, pages 351–363, New York, NY, USA. ACM, ISBN:
1-58113-830-X, DOI: 10.1145/1040305.1040334, http://doi.acm.org/10.1145/1040305.
1040334.

[Yadegari and Debray, 2015] Yadegari, B. and Debray, S. (2015). Symbolic execution of obfuscated
code. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS 2015, pages 732–744, New York, NY, USA. ACM, ISBN: 978-1-4503-3832-5,
DOI: 10.1145/2810103.2813663, http://doi.acm.org/10.1145/2810103.2813663.

[Yadegari et al., 2015] Yadegari, B., Johannesmeyer, B., Whitely, B., and Debray, S. (2015). A
generic approach to automatic deobfuscation of executable code. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, SP 2015, pages 674–691, Washington, DC, USA.
IEEE Computer Society, ISBN: 978-1-4673-6949-7, DOI: 10.1109/SP.2015.47, http://dx.
doi.org/10.1109/SP.2015.47.

[Yang et al., 2012] Yang, G., Păsăreanu, C. S., and Khurshid, S. (2012). Memoized symbolic exe-
cution. In Proceedings of the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, pages 144–154, New York, NY, USA. ACM, ISBN: 978-1-4503-1454-1, DOI:
10.1145/2338965.2336771, http://doi.acm.org/10.1145/2338965.2336771.

[Zaddach et al., 2014] Zaddach, J., Bruno, L., Francillon, A., and Balzarotti, D.
(2014). AVATAR: A framework to support dynamic security analysis of em-
bedded systems’ firmwares. In 21st Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2014. http://www.internetsociety.org/doc/

avatar-framework-support-dynamic-security-analysis-embedded-systems’

-firmwares.

[Zitter, 2013] Zitter, K. (2013). How a crypto backdoor pitted the tech world against the nsa.
https://www.wired.com/2013/09/nsa-backdoor/all/.

39

View publication statsView publication stats

http://dx.doi.org/10.1145/1007512.1007526
http://doi.acm.org/10.1145/1007512.1007526
http://doi.acm.org/10.1145/1007512.1007526
http://dx.doi.org/10.1145/1146238.1146243
http://doi.acm.org/10.1145/1146238.1146243
http://doi.acm.org/10.1145/1146238.1146243
http://dx.doi.org/10.1007/978-3-642-23822-2_12
http://dx.doi.org/10.1007/978-3-642-23822-2_12
http://dx.doi.org/10.1007/978-3-642-23822-2_12
http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1109/DSN.2009.5270315
http://dx.doi.org/10.1109/DSN.2009.5270315
http://dx.doi.org/10.1145/1040305.1040334
http://doi.acm.org/10.1145/1040305.1040334
http://doi.acm.org/10.1145/1040305.1040334
http://dx.doi.org/10.1145/2810103.2813663
http://doi.acm.org/10.1145/2810103.2813663
http://dx.doi.org/10.1109/SP.2015.47
http://dx.doi.org/10.1109/SP.2015.47
http://dx.doi.org/10.1109/SP.2015.47
http://dx.doi.org/10.1145/2338965.2336771
http://doi.acm.org/10.1145/2338965.2336771
http://www.internetsociety.org/doc/avatar-framework-support-dynamic-security-analysis-embedded-systems'-firmwares
http://www.internetsociety.org/doc/avatar-framework-support-dynamic-security-analysis-embedded-systems'-firmwares
http://www.internetsociety.org/doc/avatar-framework-support-dynamic-security-analysis-embedded-systems'-firmwares
https://www.wired.com/2013/09/nsa-backdoor/all/
https://www.researchgate.net/publication/301421628_Symbolic_Execution_of_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301421628_Symbolic_Execution_of_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301421628_Symbolic_Execution_of_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/301421628_Symbolic_Execution_of_Obfuscated_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/283594209_A_Generic_Approach_to_Automatic_Deobfuscation_of_Executable_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/283594209_A_Generic_Approach_to_Automatic_Deobfuscation_of_Executable_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/283594209_A_Generic_Approach_to_Automatic_Deobfuscation_of_Executable_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/283594209_A_Generic_Approach_to_Automatic_Deobfuscation_of_Executable_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/283594209_A_Generic_Approach_to_Automatic_Deobfuscation_of_Executable_Code?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/234762383_Test_input_generation_with_Java_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/234762383_Test_input_generation_with_Java_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/234762383_Test_input_generation_with_Java_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/234762383_Test_input_generation_with_Java_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/234762383_Test_input_generation_with_Java_PathFinder?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/220957779_Fitness-Guided_Path_Exploration_in_Dynamic_Symbolic_Execution?el=1_x_8&enrichId=rgreq-02c8b24848329262c41002c90fbf4ae7-XXX&enrichSource=Y292ZXJQYWdlOzMwODgwOTUzMztBUzo0Mzg0NjQxNjk2ODA5MDNAMTQ4MTU0OTQxMjQ2MQ==
https://www.researchgate.net/publication/308809533

	1 Introduction
	1.1 A Warm-up Example
	1.2 Challenges in Symbolic Execution
	1.3 Organization of the Article

	2 Symbolic Execution Engines
	2.1 Concrete, Symbolic, and Concolic Execution
	2.2 Design Principles of Symbolic Executors
	2.3 Caching
	2.4 Tools

	3 Memory model
	3.1 Fully Symbolic Memory
	3.2 Address Concretization
	3.3 Partial Memory Modeling
	3.4 Complex Objects

	4 Interaction with the environment
	5 Loops
	6 Path explosion
	6.1 Pruning Unrealizable Paths
	6.2 Bounding Computational Resources
	6.3 Under-Constrained Symbolic Execution
	6.4 Preconditioned Symbolic Execution
	6.5 State Merging
	6.6 Leveraging Program Analysis and Optimization Techniques

	7 Constraint solving
	8 Symbolic execution of binary code
	8.1 Lifting to an Intermediate Representation
	8.2 Reconstructing the Control Flow Graph
	8.3 Code Obfuscation

	9 Sample Applications
	9.1 Bug Detection
	9.2 Bug Exploitation
	9.3 Authentication Bypass

	10 Conclusions

