
Journal of Automated Reasoning26: 107–137, 2001.
© 2001Kluwer Academic Publishers. Printed in the Netherlands.

107

A Machine-Checked Implementation of
Buchberger’s Algorithm?

LAURENT THÉRY
INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France. e-mail: thery@sophia.inria.fr

Abstract. We present an implementation of Buchberger’s algorithm that has been proved correct
within the proof assistant Coq. The implementation contains the basic algorithm plus two standard
optimizations.

Key words: theorem proving, computer algebra, Gröbner bases, program verification.

1. Introduction

If we look at systems for doing mathematics on computers, there is a clear sep-
aration between computing and reasoning. Computer algebra systems are used to
perform computations and implement new algorithms. Theorem-proving systems
are used to formalize and reason about mathematical objects. A system that could
unify these two aspects would have interesting capabilities. From the point of view
of computing, this would give the possibility of stating and proving properties of
algorithms. As a consequence, this would increase the confidence in the correctness
of computations. From the point of view of proving, a unifying system would make
it possible to tackle problems such as the formalization of mechanical devices
where reasoning requires mixing proving and computing.

The aim of this paper is to show that we are not so far from having such
a system. This is done by considering a nontrivial example, Buchberger’s algo-
rithm [3]. We cover all the steps from the definition of multivariate polynomials
to the implementation of the algorithm and some optimizations. To do this, we
use the proof assistant Coq [15]. Coq is based on type theory and has an expressive
specification language that is suitable for formalizing mathematics. It also provides
an extraction mechanism [20] that allows one to automatically produce from an
algorithm defined in Coq an Ocaml version that can be efficiently compiled.

In the following we first give an overview of the Coq system. Then, we present
our construction of polynomials and introduce the notion of Gröbner basis and its
formalization in Coq. We then describe a first version of Buchberger’s algorithm

? A preliminary version of this work is presented in [27]. The source code of the development is
available athttp://www.inria.fr/lemme/buch/.

108 LAURENT THÉRY

that we refine afterward. Finally we comment on the proof development and relate
our work to others.

2. Coq

This section provides a short introduction to Coq so that the formalization pre-
sented in the next sections can be understood. For a more complete introduction,
we refer the reader to [15].

Coq is a prover based on type theory. It uses the isomorphism of Curry–Howard
and identifies propositions with types and proofs with terms. This means that in
order to prove a proposition, we exhibit a term that has a given type. The lambda-
calculus from which terms are built is theCalculus of Inductive Constructions.
Two basic types,Prop andSet, represent respectively propositions and objects on
which we can compute. As an example, let us consider the termλx: A. x. If A is of
typeProp (A is a proposition), this term corresponds to the proof of the proposition
A ⇒ A, while if A is of typeSet, the term represents the identity function whose
type isA → A.? Since Coq proposes a rich notion of type, we can go one step
further in our example and construct the closed termλA: Prop. λx: A. x. Its type
is then∀A: Prop. A⇒ A.

An important feature of the logic is that it is intuitionistic. This means that the
excluded middle∀P : Prop. P ∨ ¬P is not a valid theorem in Coq. An interesting
consequence is that proving the proposition∀x.∃y.P (x, y) in Coq is equivalent to
giving an algorithm that takes anx and returns ay such thatP(x, y). To rephrase
it in our context, proving in Coq the existence of Gröbner bases is equivalent to
exhibiting an algorithm that computes them.

2.1. DEFINITIONS

New constants are introduced into Coq with the commandDefinition. For example,
the previous term can be associated to the constanttaut0 by the command line

Definition taut0 : ∀A: Prop.A⇒ A := λA: Prop. λx: A. x.

Note that it is possible not to give the value of the constant immediately. In that
case we write

Definition taut0 : ∀A: Prop.A⇒ A.

The system will then have to be directed to build the appropriate witness. The
same definition mechanism is used with the commandsTheorem andLemma to
introduce theorems and lemmas, respectively.

A development can be parameterized by using local definitions. In that case, we
use the commandsVariable andHypothesis. An equivalent definition oftaut0 is

? We make the syntactic distinction between function type→ and propositional implication⇒
only for readability. In Coq there is no difference.

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 109

Variable A:Prop.
Definition taut0:A⇒ A := λx: A. x.

2.2. INDUCTIVE DEFINITIONS

Coq supports inductive definitions that can be used to define new objects. For
example, polymorphic lists are defined as follows:

Inductive list[A : Set]:Set:=
nil : (list A)

| cons:A→ (list A)→ (list A).

This definition introduces a new typelist and two new constantsnil andcons. The
argument between square brackets is a parameter. With this parameter taken into
account, the effective types of the two constants are∀A : Set. (listA) and∀A :
Set. A→ (listA)→ (listA). In the following, we use the Prolog notation to de-
note list:[] should be understood as(nil A) and[x, y|L] as(consAx (consAy L)).

For each inductive type definition, the system derives two induction principles,
one forPropand one forSet. For our typelist we get

Definition listInd : ∀A: Set.∀P : (listA)→ Prop.
(P [])⇒ (∀a: A.∀L: (listA). (P L)⇒ (P [a|L]))⇒ ∀L: (listA). (P L).

Definition listRec: ∀A: Set.∀P : (listA)→ Set.
(P [])→ (∀a: A.∀L: (listA). (P L)→ (P [a|L]))→ ∀L: (listA). (P L).

The first definition may be used to prove properties over lists, while the second one
may be used to define functions over lists.

It is also possible to define predicates inductively. In that case only the induction
principle onProp is derived. For example, the predicate that expresses that an
element belongs to a list can be written as

Inductive in[A : Set]:A→ (list A)→ Prop :=
inHead: ∀a: A.∀L: (list A). (in A a[a|L])

| inTail : ∀a,b: A.∀L: (list A). (in A a L)⇒ (in A a[b|L]).
We use this definition mechanism intensively even when the predicate is not induc-
tive. This is mostly a question of personal style. The main benefit is to provide a
uniform treatment for predicates.

In the following, we take some liberties with the syntax of Coq.? We hide the
names of the constructors of inductive predicates. We also try to follow the usual
notation for functions. Given a binary operatorop, most of the time we use the no-
tationop(x, y) instead of(op x y), or x opy if the operator is infix. We also allow
overloading of names. With these conventions, the previous definition becomes

? Note that all our syntactic conventions can be obtained with the pretty-printing facilities of the
interface CtCoq [2] that we have been using for our development.

110 LAURENT THÉRY

Inductive in[A : Set]:A→ (list A)→ Prop :=
∀a: A.∀L: (listA). a in [a|L]

| ∀a, b: A.∀L: (listA). a inL⇒ a in [b|L].

2.3. RECURSIVE FUNCTIONS

In Coq the definition of functions is similar to what is proposed in functional
languages à la ML. Nevertheless, Coq requires a proof of the termination of all
the functions that are defined. The calculus of inductive constructions has a fix-
point operator that requires one argument in the recursive calls to be structurally
decreasing. For example, if we define the function that appends two lists, we get

Fixpoint +[A : Set; L : (list A)] : (list A)→ (list A) :=λM: (list A).
CasesL of

[] H⇒ M

| [x|L1] H⇒ [x|L1 +M]
end.

An arbitrary syntactic convention in Coq is that it is the last parameter of the
fixpoint that decreases in recursive calls. In our example, it is the first argument
L that is decreasing. This explains why the second argumentM is introduced via a
lambda-abstraction. An important property of functions defined by fixpoint is that
they can be evaluated inside Coq by reduction.

For functions whose termination cannot be derived by a structural argument, we
use the property of well-foundedness that is defined in Coq as

Variable A:Set.
Variable R:A→ A→ Prop.
Inductive Acc:A→ Prop :=
∀x: A. (∀y: A. y R x ⇒ Acc(y))⇒ Acc(x).

Definition wellFounded: Prop:= ∀a: A.Acc(a).

From this, a general principle of function definition is derived:

Definition wellFoundedInduction: ∀A: Set.∀P: A→ Set.
∀R: A→ A→ Set.wellFounded(R)→
(∀x: A. (∀y: A. y R x → (P y))→ (P x))→
∀a: A. (P a).

This definition states that, in order to define a function overA, we simply need to
give a function that computes the value for an arbitraryx of A just by knowing
the values for all they smaller thanx with respect toR. For the moment, proving
properties of functions directly from their definition when using this principle is
difficult in Coq. We use a standard technique to overcome this problem. Instead
of reasoning on the definition, we prove properties on the graph of the function.
For each functionf , we define the predicatePf such thatPf (x, y) if and only if

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 111

y = f (x). This predicate can be seen as the Prolog version of the function. We
prove properties on the predicatePf and then lift them to the functionf .

To simplify the presentation, we make no distinction between the two ways
of defining functions in the next sections. We always introduce functions with
the commandFixpoint . When needed, we provide the well-founded relation that
ensures termination explicitly.

2.4. SPECIFICCONSTRUCTIONS

In the following we make use of three predefined notions: equality, sum, and
subset. The equality of Coq is the one of Leibniz. Two terms are equal if they
are structurally equal. Equality is defined in Coq as the smallest relation that is
reflexive:
Inductive == [A : Set]:A→ A→ Prop :=

eqRefl: ∀a: A.a== a

The sum is defined in Coq as

Inductive { } + { } [A,B : Prop]:Set:=
left :A→ {A} + {B}

| right :B→ {A} + {B}.
It is the exact counterpart inSetof the definition of disjunction for propositions.
{A} + {B} can be read asA or B, knowing that an object of type{A} + {B} is
either a proof ofA (left) or a proof ofB (right). We mainly use the sum to define
test functions on predicates. For example, the equality test for natural numbers is
defined as

Definition NatDec: ∀a,b: Nat. {a== b} + {¬(a== b)}.
To introduce more than two elements in a test, we also need another sum type:

Inductive +{ } [A : Set; B : Prop]:Set:=
inleft :A→ A+{B}

| inright :B→ A+{B}.
Now we can define the comparison function for natural numbers as

Definition LtDec: ∀a,b: Nat. {a< b} + {b< a} + {a== b}.
As sums are of typeSet, we can use them in function definitions. For example, the
function that computes the maximum of two natural numbers is defined as

Definition max:Nat→ Nat→ Nat:= λa, b: Nat.
CasesLtDec(a, b) of

inleft(left) H⇒ b
| inleft(right) H⇒ a
| inright H⇒ b
end.

112 LAURENT THÉRY

Note that in the pattern matching we can omit proof terms.
To make the definition of case expressions more readable, we use the following

notation:
Definition max:Nat→ Nat→ Nat:= λa, b: Nat.

CasesLtDec(a, b) of
{a< b} H⇒ b
| {b< a} H⇒ a
| {a== b} H⇒ b
end.

Finally we represent subsets using the following type:

Inductive { : | } [A : Set; P : A→ Prop]:Set:=
exist: ∀x: A. (P x)→ {x : A | (P x)}

Given a unary predicateP onA, we often need to consider the subset ofA that is
composed of those elements ofA that verifyP . Using the previous definition, we
represent an element of the subset by a pair containing the element plus a proof
that it verifiesP . For example, we define the subset of the nonempty polymorphic
lists as

Definition nZlist:Set→ Set:= λA: Set. {L : (list A) | ¬(L == [])}.

3. Polynomials and Their Operations

Before constructing our polynomials, we first need to introduce some terminology.?

A polynomial is composed of a set ofterms. Each term is composed of acoefficient
and amonomial. For example, the polynomial overQ,

3x2y + 5y + 3,

is composed of three terms, where the coefficient of the first term is 3 and its
monomial isx2y.

3.1. POLYNOMIALS AS ORDERED LISTS

The first decision we have taken in our construction of polynomials has been to
abstract terms. It is a simple shortcut to get a construction that is generic not
only with respect to the field of coefficients but also with respect to the monomial
representation. Here are the main definitions of our terms:

? We depart from [11] and use Bourbaki’s terminology.

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 113

Variable term:Set.
Variable 1: term.
Variable zeroP: term→ Prop.
Variable =,=m,<m : term→ term→ Prop.
Variable −: term→ term.
Variable +,−, ∗,ˆ : term→ term→ term.
Variable /: ∀a, b: term.¬zeroP(b)→ term.

These lines deserve some comments. We have an explicit unit term, but no null
term. This is replaced by the predicatezeroP. We also have the predicate= to
represent equality between terms. We have chosen to have these two predicates
to mimic what is done in computer algebra systems, where the zero test and the
equality can be implemented by two different algorithms. This is reflected by the
two test functions:
Variable zeroPDec: ∀a: term. {zeroP(a)} + {¬zeroP(a)}.
Variable =Dec: ∀a,b: term. {a= b} + {¬(a= b)}.
The predicate=m represents the equality of the monomial parts of two terms and
<m an arbitrary monomial ordering. The comparison function is given by

Variable <mDec: ∀a,b: term. {a<m b} + {b<m a} + {a=m b}.
We define addition and subtraction of terms as total functions while these functions
make sense only if they are applied to terms with the same monomial. Each hypoth-
esis on these operations needs then to be guarded with the adequate condition on
monomials. For example, the commutativity of addition is stated as

Hypothesis+Com: ∀x, y: term. x=m y⇒ x+ y= y+ x.

A similar problem occurs for the division but this time we also have to avoid divid-
ing by a null coefficient. This is why the division takes not only its two arguments
but also a proof that the second argument is not zero. Since the division carries a
proof, we also need to have the hypothesis stating that the values of the function
are independent of the proof argument:

Hypothesis/Irr : ∀x, y: term.∀Z1,Z2: ¬zeroP(y). x/Z1y== x/Z2y.

In the following we hide the proof argument of the division. Finally,xˆy rep-
resents a least common multiplier of the termsx andy. The results of all these
definitions and properties is a relatively heavy axiomatization consisting of 75
axioms. In practice, proving that a given term structure verifies these axioms simply
consists in lifting properties of coefficients and monomials to terms.

Our polynomials are represented by ordered lists of terms containing no null
terms and with the head term being the biggest. We first define the property of
being ordered with the predicateO:?

? In fact we are using an existing library of Coq where an equivalent predicate is defined that, for
technical reasons, checks the ordering starting from the tail of a list.

114 LAURENT THÉRY

Inductive O: (list term)→ Prop :=
O([])

| ∀x: term.O([x])
| ∀x, y: term.∀L: (list term). y <m x ⇒ O([y|L])⇒ O([x, y|L]).
and the property of not carrying null terms by the predicatenZ:

Inductive nZ: (list term)→ Prop :=
nZ([])

| ∀x: term.∀L: (list term).¬zeroP(x)⇒ nZ(L)⇒ nZ([x|L]).
The predicateC defines the canonicity of a list of terms by combining the two
properties above:

Inductive C: (list term)→ Prop :=
∀L: (list term).O(L)⇒ nZ(L)⇒ C(L).

We can now define our polynomials as canonical lists of terms:

Definition poly:Set:= {p : (list term) |C(p)}.
In the following we make use of the constructor and the projections of this new
type (we do not give the definitions explicitly):

Definition mkP: ∀p: (list term).C(p)→ poly.
Definition gL : poly→ (list term).
Definition gC : ∀p: poly.C(gL(p)).

3.2. EQUALITY

We define two polynomials as being equal if their lists of terms are equal:

Inductive = : (list term)→ (list term)→ Prop :=
[] = []

| ∀x, y: term.∀L,M: (list term). x = y ⇒ L = M ⇒ [x|L] = [y|M].
Definition = :poly→ poly→ Prop:= λx, y: poly.gL(x) = gL(y).

It is easy to prove that if= is a relation of equivalence (reflexive, symmetric, and
transitive) over terms, so is= over polynomials.

3.3. ADDITION

The definition is by a simple case analysis on the two lists where we take care not
to create null terms:
Fixpoint +[L,M: (list term)] : (list term) :=

CasesL M of
[] M H⇒ M

| L [] H⇒ L

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 115

| [x|L1] [y|M1] H⇒ Cases<mDec(x, y) of
{x<m y} H⇒ [y|L +M1]
| {y<m x} H⇒ [x|L1 +M]
| {x=m y} H⇒ let z = x + y in

CaseszeroPDec(z) of
{zeroP(z)} H⇒ L1+M1

| {¬zeroP(z)} H⇒ [z|L1+M1]
end

end
end.

To prove the termination of the function, we use the fact that the sum of the lengths
of the two lists in the recursive calls always decreases.

From this definition, it is relatively easy to prove that addition preserves canon-
icity, so we can lift addition from lists to polynomials:

Theorem+C: ∀L,M: (list term).C(L)⇒ C(M)⇒ C(L+M).

Definition +:poly→ poly→ poly:=
λp, q: poly.mkP(gL(p)+ gL(q),+C(gL(p), gL(q), gC(p), gC(q))).

Proving properties of addition is rather tedious as the function is defined by nested
cases. For example, the proof of associativity

Theorem+Assoc: ∀p,q, r: poly. (p+ q)+ r = p+ (q+ r).

gives rise to 25 different cases.
Moreover, we have an explicit equality between polynomials, so to get the re-

placement of equals by equals for polynomials, we need to prove compatibility
theorems for each new function. For addition we prove that

Theorem+Comp: ∀p,q, r, s: poly.p= r ⇒ q= s⇒ p+ q= r + s.

3.4. MULTIPLICATION BY A TERM

The multiplication of a polynomial by a term is defined as follows:

Fixpoint . [x : term; L : (list term)] : (list term) :=
CasesL of

[] H⇒ []
| [y|L1] H⇒ [x ∗ y | x.L1]

end.

To get the theorem of canonicity, we suppose that the set of coefficients is an
integral domain, that is, a product is null if and only if one of its components is
null. So we have

Theorem .C: ∀x: term.∀L: (list term).¬zeroP(x)⇒ C(L)⇒ C(x.L).

116 LAURENT THÉRY

We have two ways of lifting this function to polynomial: either we keep the nonzero
condition as argument of the function, or we do a case analysis inside the function
to check whether the term is zero or not. Since our polynomials are canonical, we
are mostly interested in the first way of lifting:

Definition . : ∀x: term.¬zeroP(x)→ poly→ poly.

As we do already for the division, from now on we omit the proof argument in the
application of the multiplication by a term.

3.5. SUBTRACTION

Defining subtraction in terms of addition and multiplication by a term would be fine
from the proving point of view, but algorithmically it would mean that a subtraction
would cost an addition plus a multiplication. So we properly define subtraction in a
way similar to addition in Section 3.3 and prove the relation between addition and
subtraction:

Theorem−Rel + : ∀p, q: poly. p − q = p + (−1).q.

3.6. MULTIPLICATION

For the proof of correctness of the algorithm we do not need to introduce the
multiplication of two polynomials. Nevertheless, multiplication is needed in order
to prove one of the optimizations. Its definition is as follows:

Fixpoint ∗ [L,M : (list term)] : (list term) :=
CasesL of

[] H⇒ []
| [x|L1] H⇒ x.M + L1 ∗M

end.

Note that the ordering is preserved because the order is a monomial ordering so it
is compatible with multiplication. Also the fact thatL andM are canonical ensures
thatx.M does not generate null terms.

3.7. LEXICOGRAPHIC ORDERING

The lexicographic ordering plays a special role in Buchberger’s algorithm. As we
did for equality, we first introduce it at the level of lists of terms and then lift it to
polynomials:

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 117

Inductive < : (list term)→ (list term)→ Prop :=
∀x: term.∀L: (list term). [] < [x|L]

| ∀x, y: term.∀L,M: (list term). x <m y ⇒ [x|L] < [y|M]
| ∀x, y: term.∀L,M: (list term). x =m y ⇒ L < M ⇒ [x|L] < [y|M].
Definition < :poly→ poly→ Prop:= λx, y: poly. gL(x) < gL(y).

Polynomials are ordered lists, so what we have defined is a lexicographic exponen-
tial order [21]. The order on terms is a monomial ordering, so it is well-founded. It
follows that the order on polynomials we have just defined is also well-founded.

The definitions of functions and predicates over polynomials follow the same
pattern. We first define them at the level of lists and prove a theorem of canonicity
for the functions. Then we lift the definitions to polynomials. In the following, in
order to shorten the presentation, we directly provide the definitions at the level

of polynomials. We use the notation 0 to denote the null polynomial anda
>+p

to denote the polynomials with head terma and tailp. With this convention we
can state the two inductive theorems that are derived from the construction of
polynomials and the order:

Theorem StructInd: ∀P: poly→ Prop.

P (0)⇒ (∀a: term.∀p: poly. P (p)⇒ P(a
>+p))⇒ ∀p: poly. P (p).

Theorem<Ind: ∀P: poly→ Prop.
(∀p: poly. (∀q: poly. q < p⇒ P(q))⇒ P(p))⇒ ∀p: poly. P (p).

4. Gröbner Bases

In this section we introduce the notions of polynomial ideals, reduction, and Gröb-
ner basis. We then show how the property of a basis to be a Gröbner basis relates
to the confluence of the reduction. Most of the notation that we are using is taken
from [11].

4.1. POLYNOMIAL IDEALS

An ideal I in a commutative ringR is a subset ofR that is closed under addition
by elements ofI and multiplication by elements ofR. Given a set of polynomials
S, it is possible to generate an ideal〈S〉 that is composed of all the polynomials
p =∑i<k ti .pi , wherek is an integer,t1, . . . , tk−1 are terms, andp1, . . . , pk−1 are
elements ofS. A set of polynomialsS is said to be abasisof an idealI if and only
if 〈S〉 = I .

In our formalization we translate sets of polynomials into lists of polynomials.
We avoid defining the notion of ideal and generated ideal by introducing a predicate
that characterizes the polynomials that are combinations of a list of polynomials:

118 LAURENT THÉRY

Inductive Cb[S : (list poly)]:poly→ Prop :=
CbS(0)

| ∀a: term.∀p, q, r: poly.
¬zeroP(a)⇒ q in S ⇒ CbS(p)⇒ r = a.q + p⇒ CbS(r).

Theorems that would be stated as∀p ∈ 〈S〉. P (p) are translated into∀p: poly.CbS(p)
⇒ P(p). Using this definition, we derive the following two theorems easily:

Theorem Cb+: ∀S: (list poly).∀p, q: poly.
CbS(p)⇒ CbS(q)⇒ CbS(p + q).

Theorem Cb∗: ∀S: (list poly).∀p, q: poly.CbS(q)⇒ CbS(p ∗ q).

4.2. REDUCTION

A polynomialp is reduced with respect to a set of polynomialsS. If p reduces to
q, we writep→S q. Reducing consists in deleting a term ofp using a polynomial
in S. As an example, we consider the polynomialp = 3x2y2 + 2z3 and the set
of polynomialsS = {xy + 1, z + 2}. We can delete either the term 3x2y2 in p
by subtracting the first polynomial ofS multiplied by 3xy, or the term 2z3 by
subtracting the second polynomial ofS multiplied by 2z2. We get respectively
p→S 2z3− 3xy andp→S 3x2y2 − 4z2.

To formalize reduction, we first define the predicate of divisibility for nonzero
terms:
Inductive divP: term→ term→ Prop :=
∀a, b: term.¬zeroP(a)⇒ ¬zeroP(b)⇒ a = (a/b) ∗ b⇒ divP(a, b).

With this definition,divP(a, b) should be read asb divides a. We are ready to
define a step of reduction.

Inductive → [S : (list poly)]:poly→ poly→ Prop :=
∀a, b: term.¬zeroP(b)⇒ ∀p, q, r: poly.

b
>+q in S ⇒ divP(a, b)⇒ r = p − (a/b).q ⇒ a

>+p→S r

| ∀a, b: term.∀p, q: poly. a = b⇒ p→S q ⇒ a
>+p→S b

>+q.

Note that we make use of the equality explicitly to ensure that our definition is
compatible with equality. We also define the notion of irreducibility:

Inductive irreducible[S : (list poly)]: poly→ Prop :=
∀p: poly. (∀q: poly.¬(p→S q))⇒ irreducibleS(p).

Finally, we define the reflexive transitive closure of the reduction and the reduction
till irreducibility:

Inductive →+ [S : (list poly)]: poly→ poly→ Prop :=
∀p, q: poly. p = q ⇒ p→+S q| ∀p, q, r: poly. p→S q ⇒ q →+S r ⇒ p→+S r.

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 119

Inductive →∗ [S : (list poly)]:poly→ poly→ Prop :=
∀p, q: poly. p→+S q ⇒ irreducibleS(q)⇒ p→∗S q.

An important property of the reduction is that it does not change the membership:

Lemma RedCb:
∀S: (list poly).∀p, q: poly. p→S q ⇒ (CbS(p) ⇐⇒ CbS(q)).

A second property is that the reduced polynomial is always strictly smaller than
the one it comes from:

Lemma RedLess: ∀S: (list poly).∀p,q: poly.p→S q⇒ q< p.

These two lemmas are direct consequences of the definition of the reduction.
Having defined the reduction as a predicate makes it possible to prove properties

that are independent of a particular reduction strategy. A reduction strategyreducef
is just a function of type? (list poly)→ poly→ poly such that∀S: (list poly).∀p:
poly.p→∗ reducefS(p).

4.3. GRÖBNER BASES AND CONFLUENCE

To be able to decide whether or not a given polynomial belongs to an ideal is an
important property that can be used to solve a large number of interesting problems.
A set of polynomialsS is aGröbner basisif and only if ∀p: poly. p ∈ 〈S〉 ⇐⇒
p →∗S 0. In other words, the only irreducible polynomial of the ideal generated
by a Gröbner basis is zero. In our formalization we characterize the fact of being a
Gröbner basis as follows:
Inductive Gröbner[S : (list poly)]:Prop :=
(∀p: poly.CbS(p)⇒ p→∗S 0)⇒ Gröbner(S).

Our definition is equivalent to the previous one, because the following lemma is
derived from the theoremRedCb:

Lemma Red∗ImpCb: ∀S: (list poly).∀p: poly.p→∗S 0⇒ CbS(p).

The example at the beginning of Section 4.2 shows that there is not a unique way
of reducing a polynomial till irreducibility. But as all strategies terminate, to check
whether a given polynomial belongs to an ideal generated by a Gröbner basis, one
simply needs to reduce it to an irreducible polynomial and then test whether the
result is zero.

The property of being a Gröbner basis can be related to the property of being
confluent:
Inductive Confluent[S : (list poly)]:Prop :=
(∀p, q, r: poly. p→∗S q ⇒ p→∗S r ⇒ q = r)⇒ Confluent(S).

? This type characterizes only terminating strategies, but the theoremRedLessand the fact that<
is well-founded ensure that all strategies terminate.

120 LAURENT THÉRY

Theorem ConfImpGröb: ∀S: (list poly).Confluent(S)⇒ Gröbner(S).

To prove the previous theorem, we use two key lemmas:

Lemma RedCompMinus: ∀S: (list poly).∀p,q, r: poly.
p − q →S r ⇒ ∃p1, q1: poly. p→+S p1 ∧ q →+S q1 ∧ r = p1− q1.

Lemma Red+Minus0:
∀S: (list poly).∀p, q: poly. p − q →+S 0⇒ ∃r: poly. p→+S r ∧ q →+S r .

To prove the first lemma we just look at the term inp−q that has been reduced and
use associative and distributive properties of addition and multiplication by a term.
The second lemma is proved by induction on the length of the reduction using
the first lemma in the induction case. The proof of the theoremConfImpGröbis
given in Appendix A. It uses the existence of a reduction strategy till irreducibility
reducef. In our development, this existence is proved by introducing the usual head
reduction strategy.

5. Buchberger’s Algorithm

In the preceding section we have shown that the property of being a Gröbner basis
is related to the confluence of the reduction. Buchberger’s contribution was to give
an explicit algorithm for computing a Gröbner basis corresponding to an initial
set of polynomials. The algorithm can be seen as a special case of Knuth–Bendix
completion [17]. We first introduce the notion of spolynomials that plays the role
of critical pairs and then present the algorithm and give its proof of correctness.

5.1. SPOLYNOMIALS

To define what spolynomials are, we use the function ˆ that computes a least
common multiplier of two terms. Then we define the functionSpolyas follows:

Definition Spoly: poly→ poly→ poly:= λp,q: poly.
Casesp q of

0 q H⇒ 0
| p 0 H⇒ 0

| x >+p1 y
>+q1 H⇒ let z = xˆy in (z/x).p1− (z/y).q1

end.

To gain some intuition of what spolynomials represent, just consider two polyno-

mials p = t1
>+p1 andq = t2

>+p2. The polynomialt1̂ t2 represents an “atomic”
source of divergence, as it can be reduced by both polynomialsp andq:

t1̂ t2→[p] q1 = −((t1̂ t2)/t1).p1

t1̂ t2→[q] q2 = −((t1̂ t2)/t2).p2

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 121

It is easy to check thatSpoly(p, q) = q2 − q1. Now if we look at the theorem
Red+Minus0, we can see that the reducibility of the spolynomial to zero removes
the divergence. This is formalized by the following theorem:

Inductive SpolyP[S : (list poly)]:Prop :=
(∀p, q: poly. p in S ⇒ q in S ⇒ Spoly(p, q)→∗S 0)⇒ SpolyP(S).

Theorem SpolyImpConf: ∀S: (list poly).SpolyP(S)⇒ Confluent(S).

To prove it, we need an extra key lemma:

Lemma RedDistMinus: ∀S: (list poly).∀p,q, r: poly.
p→S q ⇒ ∃s: poly. p − r →+S s ∧ q − r →+S s.

The witness is given by repeating if possible inp− r andq− r the same term can-
cellation as inp. The proof of the theoremSpolyImpConfis given in Appendix B.

The theoremSpolyImpConfcombined with the theoremConfImpGröbgives our
central theorem:

Theorem SpolyImpGröb: ∀S: (list poly).SpolyP(S)⇒ Gröbner(S).

Note that we have, in fact, an equivalence, because the converse is a consequence
of the two lemmas:
Lemma InCb: ∀S: (list poly).∀p: poly.p in S⇒ CbS(p).

Lemma SpolyCb: ∀S: (list poly).∀p,q: poly.
CbS(p)⇒ CbS(q)⇒ CbS(Spoly(p, q)).

5.2. THE NAÏVE ALGORITHM

We can now present our first version of Buchberger’s algorithm. It is composed
of four function definitions. The first functionSpolyLadds all the spolynomials
composed of a polynomial and the elements of a list to another list:

Fixpoint SpolyL[p : poly; S,T : (list poly)] : (list poly) :=
CasesT of

[] H⇒ S

| [q|T1] H⇒ [Spoly(p, q)|SpolyL(p, S, T1)]
end.

The second functionSpolyProdcomputes a reduced set of all possible spolynomi-
als formed from a list of polynomials:

Fixpoint SpolyProd[S : (list poly)] : (list poly) :=
CasesS of

[] H⇒ []
| [p|T] H⇒ SpolyL(p,SpolyProd(T), T)

end.

122 LAURENT THÉRY

The functionBuchfdoes the completion. It takes two arguments. The first one is
the basis to be completed and the second one the candidates to complete the basis:

Fixpoint Buchf[S,T : (list poly)] : (list poly) :=
CasesT of

[] H⇒ S
| [p|T1] H⇒ let z = reducefS(p) in

CaseszeroPDec(z) of
{zeroP(z)} H⇒ Buchf(S,T1)| {¬zeroP(z)} H⇒ Buchf([z|S],SpolyL(z,T1,S))

end
end.

We finally define the functionBuch that takes a list of polynomials as argument
and returns a corresponding Gröbner basis:

Definition Buch: (list poly)→ (list poly) :=
λS: (list poly).Buchf(S,SpolyProd(S)).

Only the termination of the functionBuchfis problematic. To prove that this func-
tion terminates, we first define a relation< on lists of terms and suppose that< is
well founded:
Inductive <: (list term)→ (list term)→ Prop :=
∀x: term.∀S: (list term).¬zeroP(x)⇒
(∀y: term. y in S ⇒ ¬divP(x, y))⇒ [x|S] < S.

Hypothesis<wf:wellFounded(<).
If we look at the second recursive call inBuchf, we see thatz is irreducible byS. In
particular this means that its head term is not divisible by any of the head terms of
polynomials inS. So the first argument ofBuchfcannot grow indefinitely because
< is well founded. As in the first recursion the size of the second list decreases, a
lexicographic product gives us the termination of the functionBuchf.

The hypothesis<wf is a consequence of a weak version of Dickson’s lemma.
This lemma states that in every infinite sequence of monomials, there exists at least
one monomialMi that divides another monomialMj such thati < j . If < were
not well founded, there would be an infinite sequence(Li)i∈N such thatLi+1<Li.
As Li ⊂ Li+1, we could build an infinite sequence of terms that would contradict
Dickson’s lemma.

5.3. PROOF OF CORRECTNESS

Once the functionBuchhas been defined in Coq, all we know is that this function
always terminates. Its correctness can now be expressed by two theorems. The first
one ensures that the result of the functionBuchdoes not change the ideal:

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 123

Inductive Stable[S,T : (list poly)]:Prop :=
(∀p: poly.CbS(p) ⇐⇒ CbT (p))⇒ Stable(S, T).

Theorem BuchStable: ∀S: (list poly).Stable(S,Buch(S)).

One direction of the equivalence is proved using the following lemma:

Lemma InclCb: ∀p: poly.∀S,T: (list poly).
(∀q: poly. q in S ⇒ q inT)⇒ CbS(p)⇒ CbT (p).

The other direction is a consequence of the lemmasInCb, SpolyCb, RedCb, and
the lemma:
Lemma TransCb:
∀p, q: poly.∀S: (list poly).Cb[q|S](p)⇒ CbS(q)⇒ CbS(p).

The second theorem states that the result ofBuchis a Gröbner basis:

Theorem BuchGröbner: ∀S: (list poly).Gröbner(Buch(S)).

Because of the theoremSpolyImpGröb, we have to prove

Theorem BuchSpoly: ∀S: (list poly).SpolyP(Buch(S)).

This is proved by induction on the execution paths ofBuch, using the monotonicity
of the reduction to zero:
Lemma InclRed∗: ∀p: poly.∀S,T: (list poly).
(∀q: poly. q in S ⇒ q inT)⇒ p→∗S 0⇒ p→∗T 0.

Note also that the functionSpolyProddoes not generate all possible spolynomials
but only a reduced set. The two lemmas

Lemma SpolyId: ∀p: poly.Spoly(p,p) = 0.
Lemma SpolySym: ∀p,q: poly.Spoly(p,q) = (−1).Spoly(q,p).

ensure that the reduction to zero of the reduced set implies the reduction of the
complete set.

6. Refining the Algorithm

Once the naïve algorithm has been proved to be correct, we can develop more
elaborated versions of the algorithm. We first introduce two standard criteria that
justify the optimizations we are going to apply. We then present the new algorithm
to compute reduced Gröbner bases. Finally we show how the extracted program
can be applied on examples.

6.1. FIRST CRITERION

Two terms areforeign if their product is a least common multiplier. By lifting to
polynomials, two nonzero polynomials are foreign if their head terms are foreign.
We represent this property by the following predicate:

124 LAURENT THÉRY

Inductive foreign: poly→ poly→ Prop :=
∀p: poly. foreign(p,0)

| ∀q: poly. foreign(0, q)

| ∀x, y: term.∀p, q: poly. xˆy =m x ∗ y ⇒ foreign(x
>+p, y

>+q).

An important property is that the spolynomial of foreign polynomials reduces to
zero:

Theorem ForeignRed∗: ∀p,q: poly.
foreign(p, q)⇒ Spoly(p, q)→∗[p,q] 0.

In the optimized algorithm we will avoid checking the reducibility to zero of
foreign polynomials using the test function:

Definition foreignDec: ∀p,q: poly. {foreign(p,q)} + {¬foreign(p,q)}.
The proof of the theoremForeignRed∗ is rather technical. We use three key lem-
mas:
Lemma MultRed∗: ∀p,q: poly.p ∗ q→∗[q] 0.

Lemma ForeignTerm: ∀a,b, c,d: term.
foreign(a, b)⇒ d <m a ⇒ ¬(a ∗ c = b ∗ d).

Lemma ForeignRed+: ∀a,b: term.∀p,q: poly.

foreign(a
>+p, b >+q)⇒ Spoly(a

>+p, b >+q)→+
[b >+ q]

((−1).q) ∗ (a >+p).

The first lemma follows from the facts that a productp ∗ q always reduces by[q]
into a smaller (with respect to the order) productp′ ∗ q and that the only product
p ∗ q that is irreducible by[q] is 0. The second lemma is proved by contradiction
showing that ifa ∗ c = b ∗ d, thenb ∗ d <m aˆb andb ∗ d is divisible bya andb.

The third lemma needs more work. We first have to show thatSpoly(a
>+p, b >+q) =

b.p − a.q. Then from the second lemma we get that the terms ofb.p and ofa.q
are not collapsing together in the subtraction, that is, all the terms ofb.p are in

b.p − a.q. Each term ofb.p is divisible byb, so it can be reduced byb
>+q. The

third lemma is proved by reducing all the terms ofb.p in b.p − a.q starting from
the smallest ones to avoid interference. By combining the third lemma and the first
one, we get the theoremForeignRed∗.

6.2. SECOND CRITERION

The second criterion can be expressed by a weakening of the predicateSpolyP:

Inductive SP[S : (list poly)]: (list poly)→ (list poly)→ Prop :=
∀p, q: poly.Spoly(p, q)→∗S 0⇒ SPS(p, q)

| ∀a, b, c: term.∀p, q, r: poly. b
>+q in S ⇒ divP(aˆc, b)⇒

SPS(a
>+p, b

>+q)⇒ SPS(b
>+q, c

>+r)⇒ SPS(a
>+p, c

>+r).

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 125

Inductive SpolyP1[S : (list poly)]:Prop :=
(∀p, q: poly. p in S ⇒ q in S ⇒ SPS(p, q))⇒ SpolyP1(S).

If SpolyP1 holds, it means that if a spolynomial may not reduce to zero, there exist
some intermediate spolynomials that reduce all to zero. In the proof in Appendix
B, we are using the fact that spolynomials reduce to zero under the condition that
the relation is confluent for polynomials smaller than a givenp. An induction proof
shows that this condition and the fact thatSpolyP1 holds are sufficient to get the
confluence forp. We thus derive the following theorem:

Theorem Spoly1ImpConf: ∀S: (list poly).SpolyP1(S)⇒ Confluent(S).

6.3. THE OPTIMIZED ALGORITHM

The two criteria we have just proved can be used to optimize our algorithm. As
we are going to reduce the number of generated spolynomials, only the function
SpolyLhas to be refined:

Inductive cpRes:Set:=
Keep: (list poly)→ cpRes

| DontKeep: (list poly)→ cpRes.

Fixpoint SpolyL[p : poly;S,T : (list poly)] : (list poly) :=
CasesT of

[] H⇒ S

| [q|T1] H⇒ CasesSlice(p, q, T1) of
Keep(T2) H⇒ [Spoly(p, q)|SpolyL(p, S, T2)]

|DontKeep(T2) H⇒ SpolyL(p, S, T2)

end
end.

Instead of automatically adding the spolynomial ofp andq, we make use of an
auxiliary functionSlice to decide whether we should keep it. Furthermore, this
function can remove some elements fromT1 by returning a reduced listT2. It is in
the definition of the functionSlicethat we make use of the two criteria:

Fixpoint Slice[p,q : poly;S : (list poly)] : cpRes:=
CasesS of

[] H⇒ CasesforeignDec(p, q) of
{foreign(p, q)} H⇒ DontKeep([])
| {¬foreign(p,q)} H⇒ Keep([])
end
| [r|S1] H⇒ CasesdivPDec(pˆq, r) of
{divP(pˆq, r)} H⇒ DontKeep(S)
| {¬divP(pˆq, r)} H⇒ CasesdivPDec(pˆr, q) of
{divP(pˆr, q)} H⇒ Slice(p, q, S1)

126 LAURENT THÉRY

| {¬divP(pˆr, q)} H⇒ addRes(r,Slice(p, q, S1))

end
end

end.

where the definitionaddResis
Fixpoint addRes[p : poly; res : cpRes] : cpRes:=

Casesres of
Keep(L) H⇒ Keep([p|L])

|DontKeep(L) H⇒ DontKeep([p|L])
end.

and the functions ˆ,divPanddivPDecon polynomials are defined as the application
of the corresponding functions on terms to the leading terms of the polynomials
with the appropriate extension for the null polynomial.

We have proved this new version of the algorithm to be correct. Note that, from
the point of view of program certification, the correctness of the optimized version
is the really interesting part. The two criteria give us a way to avoid computation,
telling us in advance that a given spolynomial will reduce to zero. If the application
of the first criterion is direct, the application of the second one is more tricky and
error-prone. A program that is too aggressive and discards wrongly some spolyno-
mials could be very difficult to spot. The generation of spolynomials being heavily
redundant, this program could still return correct results. One main benefit of our
approach is to bridge the gap between the mathematical properties that justify opti-
mizations and their use in the implementation. All the steps are formally justified.
We are capable of safely deriving new properties that may be more suitable for
establishing the correctness. While actually proving the correctness, we also rely
on the prover to do all the necessary bookkeeping to ensure that we cover all the
possible executions.

6.4. REDUCED BASIS

A program that computes Gröbner bases usually returns reduced bases, that is,
bases where each polynomial is irreducible by the others. We define a nonoptimal
algorithm to compute the reduced basis:

Fixpoint Redf[S,T : (list poly)] : (list poly) :=
CasesS of

[] H⇒ []
| [p|S1] H⇒ let z = reducefS1+T(p) in

CaseszeroPDec(z) of
{zeroP(z)} H⇒ Redf(S1, T)

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 127

| {¬zeroP(z)} H⇒ [z|Redf(S1, [z|T])]
end

end.

Definition Red: (list poly)→ (list poly) := λS: (list poly).Redf(S, []).
We prove that the application ofReddoes not change the ideal:

Theorem RedStable: ∀S: (list poly).Stable(S,Red(S)).

Moreover, it preserves the property of being a Gröbner basis:

Theorem RedGröbner: ∀S:(list poly).Gröbner(S)⇒ Gröbner(Red(S)).

By combining the functionsBuchandRedwe get our final functionBuchRedthat
computes reduced Gröbner bases:

Definition BuchRed: (list poly)→ (list poly) :=
λS: (list poly).Red(Buch(S)).

We have limited ourselves to proving thatBuchRedreturns a Gröbner basis. Prov-
ing that what we obtain is a reduced basis is feasible but would require more
work.

6.5. EXTRACTING THE ALGORITHM

So far our development is abstracted from the level of terms. Before extracting
the algorithm, the last exercise is to instantiate terms as pairs of a coefficient and
a monomial. For this we use a contribution by Loïc Pottier [23] that constructs
monomials as lists of integers of fixed size. In doing so, our development becomes
parameterized by a set of coefficients, which is supposed to be a field, and by a
relation on monomials, which is supposed to be a monomial ordering. Appendix C
gives the fully generalized version of the theoremBuchGröbner.

What the extraction mechanism [20] does when we ask to extract the function
BuchRedis to take all the definitions that the function depends on and extract
only the computational part. The result is a generic code that can be applied to
an arbitrary field and an arbitrary monomial ordering. The self-contained extracted
Ocaml program is 660 lines long. The examples below use an instantiation of the
algorithm with polynomials of dimension 6 overQ with the usual graded inverse
lexicographic ordering (a > b > c > d > e > f).? The interface to the code
is composed of five functions:
1. gen: int -> poly creates the generators, i.e.,(gen 0) = a, . . . ,(gen 5) =

f, (gen 6) = 1;
2. scal: int -> poly -> poly multiplies a polynomial by an integer;
3. plus: poly -> poly -> poly adds two polynomials;
4. mult: poly -> poly -> poly multiplies two polynomials;

? We are using the implementation of exact rational arithmetic described in [18].

128 LAURENT THÉRY

5. buchred: poly list -> poly list computes the reduced Gröbner basis of
a list of polynomials.

We also write a pretty-printer in Ocaml to make the output of computation more
readable. We present below an interactive session with the Ocaml top-level. Com-
mand lines are prefixed with# and terminate with two semicolons. We first define
local variables to represent generators:

let a = gen 0;;
val a : poly = a
let b = gen 1;;
val b : poly = b
let c = gen 2;;
val c : poly = c
let d = gen 3;;
val d : poly = d
let p1 = gen 6;;
val p1 : poly = 1

We then construct the four n-cyclic polynomials forn = 4:

let r0 = (plus a (plus b (plus c d)));;
val r0 : poly = a +b +c +d
let r1 = (plus (mult a b) (plus (mult b c)

(plus (mult c d) (mult d a))));;
val r1 : poly = ab +bc +ad +cd
let r2 = (plus (mult a (mult b c))

(plus (mult b (mult c d))
(plus (mult c (mult d a)) (mult d (mult a b)))));;

val r2 : poly = abc +abd +acd +bcd
let r3 = (plus (mult a (mult b (mult c d)))

(scal (-1) p1));;
val r3 : poly = abcd -1

The computation of the reduced Gröbner basis returns the result:

buchred [r3;r2;r1;r0];;
- : poly list = [a +b +c +d ;

b^2 +2bd +d^2 ;
bc^2 +c^2d -bd^2 -d^3 ;
bcd^2 +c^2d^2 -bd^3 +cd^3 -d^4 -1 ;
c^3d^2 +c^2d^3 -c -d ;
bd^4 +d^5 -b -d ;
c^2d^4 +bc -bd +cd -2d^2]

The answer is immediate on a DecAlpha 533 Mhz while the computation forn = 5
takes two seconds and the one forn = 6 thirty minutes. In comparison, MapleVr5
returns the result after five seconds forn = 5 and after fifteen minutes forn = 6.

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 129

7. Some Comments on the Proof Development

We hope that the outline of the development presented in the previous sections
shows how naturally definitions and properties can be expressed in Coq. This is
not specific to Coq but to any proof assistant based on higher-order logic. We
believe that the same definitions and proof steps could be used to get the proofs
of correctness in any theorem prover like Nuprl [7], HOL [12], Isabelle [22], and
PVS [25].

7.1. COMPARISON WITH THE ORIGINAL TEXTBOOK

It is interesting to contrast what we have presented with our initial reference [11].
First of all, the chapter on Gröbner bases takes for granted all the basic properties
of polynomials. In a prover, these properties need to be formalized. Second, if the
general structure of the development follows the steps of what is presented in [11]
closely, proof arguments often differ. The two central proofs given in Appendixes A
and B are good examples of the differences that can occur. Often in textbooks
inductive proofs include sentences such as “without loss of generality we can
suppose that. . ..” In a prover, the induction principle has to be stated explicitly.
In Appendix A, we replace the argument given in [11] by a simple induction on
CbS(p).

Proofs in Coq are done by using tactics. A tactic takes a goal and reduces it into
a (possibly empty) list of simpler subgoals. The initial goal is the proposition to be
proved, and the proof is finished when no subgoals are left. Appendix D gives the
Coq script that we had to write to follow the steps of Appendix A. In this script
we mainly use the tacticElim to unfold inductive definitions and the tacticApply
thm with v := value to explicitly apply theorems that require witnesses. Since
proof scripts using tactics are procedural, they are difficult to understand without
replaying them. Using a prover with a declarative proof language à la Mizar [24]
would make proof scripts more readable.

The second criterion that we have defined in Section 6.2 is a characteristic ex-
ample where we have made use of the expressiveness of the language. In [11], the
property of discarding the spolynomials is proved for a single intermediate poly-
nomial. Using an inductive definition captures the constraint that this discarding
process should be done in a well-founded way.

Finally, the programs we have described are rather different from what is pre-
sented in [11]. They are given in a functional style rather than an imperative one.
Only two programs really depart from what is presented in [11]:

– The optimized version of the final algorithm immediately computes the spoly-
nomials and applies the criteria rather than doing it when it is needed.

– The computation of reduced bases makes use of the fact that the argument is
already a Gröbner basis to reduce it.

These modifications have been done in order to ease the proving process.

130 LAURENT THÉRY

7.2. FORMALIZATION IN COQ

The entire development took us one year and a half to complete. It consists of
14,000 lines. Of these, 3000 lines are used to build monomials and terms and
another 3000 lines to build polynomials. The construction of monomials includes
the 900 lines developed by Loïc Pottier [23] that define the monomials as finite
lists of numbers and gives a nonconstructive proof of Dickson’s lemma. The central
part of the development that defines the reduction and proves its main properties
takes 5000 lines. An extra 1000 lines are dedicated to the proofs of the criteria.
Finally, the part that corresponds to the definition of the algorithm and its proof of
correctness is only 1000 lines.

Three main problems have slowed our development. First of all, because terms
are abstracted from, each of our theorems needs to be fully quantified over the term
structure in order to allow later instantiation. Coq provides a partial solution with its
mechanism of local variables to avoid having to explicitly quantify. Unfortunately,
this mechanism works inside a section that cannot exceed a single file, so it is not
directly applicable for large developments. Then, in order to get all the theorems
for a given instantiation, we need to operate on each of them individually, while
instead we would like to globally perform the instantiation. These are well-known
problems of modularity for which solutions have been proposed and implemented
in other provers (see, for example, [10]). Clearly, modularity is a must if we aim at
large proof developments.

Second, using an explicit equality as we do for terms and polynomials makes
proofs harder in Coq because we do not get for free the possibility of replacing
equals by equals. The proofs often get polluted with tedious steps of manipulation
of the equality. In mathematics, the usual trick for avoiding this problem is to
implicitly work with quotients. A real benefit could be gained if we could work
in a prover that supports such a capability.

Finally, Coq is equipped with little automation with respect to other provers
such as Isabelle and PVS. We mostly use the tacticAuto that takes a list of theo-
rems and checks if the goal is a consequence of the assumptions and the given list,
using the modus ponens only and no logic variables. To overcome this lack of au-
tomation, we have taken special care to define an appropriate set of theorems such
that most of the trivial subgoals are solved directly byAuto. As a consequence,
if we take the number of theorems and the number of lines of our development,
we get a ratio of 17 lines per theorem, which is reasonable. Still, we believe that
our development could largely benefit from more automation, especially in the
construction of terms and polynomials.

8. Related Work

Analytica [1] and more recently Theorema [4] propose an extension of the com-
puter algebra system Mathematica [29] with a proving component. The examples
they present are promising, but their proof engines seem to need further develop-

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 131

ment in order to handle proofs of the same complexity as the one we have presented
here. Also, there have been attempts to develop large fragments of mathematics
within theorem provers. One of the first attempts was the Automath project [19].
The current largest attempt is the Mizar project [24]. Some recent efforts include
Jackson’s work on computational algebra [16] and Harrison’s work on real analy-
sis [13]. The focus of these works is mostly on formalizing mathematics inside
a prover, so they give very little account of algorithmic aspects. An exception is
Schwarzweller’s work [26], where a simple algebraic algorithm is proved correct
using a verification condition generator and the prover Mizar.

Recently there have been other works on formalizing Gröbner bases and Buch-
berger’s algorithm. Coquand and Persson mechanize a constructive proof of Dick-
son’s lemma using open induction [8]. They plan to use this proof to get a fully
constructive proof of the existence of Gröbner bases from which they can extract
an algorithm. Also, Perez Vega and Werner have been working on a formalization
of Buchberger’s algorithm in Coq using a representation of polynomials as bags of
terms [28].

Finally there have been several proposals to exploit a physical link between
a prover and a computer algebra system to perform computation (see, for exam-
ple, [5]). In [14], there is a discussion on some of the limitations of this approach.
In fact it is this work that has motivated our initial interest in proving Buchberger’s
algorithm.

9. Conclusion and Future Work

If we do not succeed in effectively mixing proving and computing since our com-
putations are done in Ocaml, our contribution is to propose a common base where
it is possible to reason about polynomialsand develop a machine-checked and
relatively efficient implementation that computes Gröbner bases. The 14,000 lines
we had to write in order to prove 660 lines of code represent an important effort.
Obviously, since algorithms may rely on very deep mathematical properties, there
is not a canonical ratio between the proving part and the computing one. Still,
we are aware that, in order to give evidence that this approach is practical for
developing certified algorithms for computer algebra systems, we need to reduce
the ratio to a more reasonable figure. A first step is clearly to increase the basic
knowledge of provers. We have built our proof nearly from scratch. In particular,
the construction of polynomials takes more than a third of the development. More
automation and a better support to structure the development are also mandatory.

This initial experiment can be extended in several ways. First of all, it would be
very interesting to see how the same proof looks in other theorem-proving systems.
It would give a more accurate view of what current theorem-proving technology
can achieve on this particular problem. We also want to investigate the possibility
of obtaining automatically or semi-automatically a textbook version of the proof
of correctness of the algorithm directly from our development. In [9], a method is

132 LAURENT THÉRY

proposed to automatically produce a document in a pseudo-natural language out
of proofs in Coq. Applying this method to our complete development seems very
promising. Finally, the correctness is not the only property we would like to me-
chanically derive from the algorithm. Time and space complexities are quantities
we would like to reason about. There have been some proposals for doing this
inside a theorem prover (see, for example, [6]) but, as far as we know, there has
been no concrete attempt to show how practical these solutions are.

Acknowledgments

We thank Bruno Buchberger who suggested his algorithm as a possible challenge
at a Calculemus meeting in Rome in 1996, Loïc Pottier for his support and advice,
and Monica Nesi and the referees for their remarks on the manuscript.

Appendix

A. Confluence Implies Gröbner

– We take an arbitrary polynomialp such thatCbS(p). We want to prove that
p→∗S 0 under the hypothesis that the reduction is confluent.

– We proceed by induction onCbS(p).
– In the base case, we havep = 0, so the property holds.
– In the induction case, we havep = (a.r) + q with r in S and the induction

hypothesis thatq →∗S 0.
– We havep − q = (a.r), with r in S. It implies thatp − q →+S 0.
– By applying the lemmaRed+Minus0, we deduce that there exists anr such

thatp→+S r andq →+S r.
– We know that the reduction is confluent and thatq reduces to zero. It implies

thatr reduces to 0. So we getp→∗S 0.2
B. Spoly Implies Confluence

– The main hypothesis isSpolyP(S).
– We want to prove that∀p, q, r: poly. p→∗S q ⇒ p→∗S r ⇒ q = r.
– We prove it by induction onp using the theorem<Ind.
– The induction hypothesis is

∀q: poly. q < p⇒ ∀r, s: poly. q →∗S r ⇒ q →∗S s ⇒ r = s.
– We take two arbitrary reductions ofp: p →∗S r andp →∗S s and prove that
r = s.

– If p is irreducible, the property clearly holdsr = p = s.
– Otherwise, we considerp1 andp2 such thatp →S p1 →∗S r andp →S p2

→∗S s.

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 133

– Becausep1 < p andp2 < p, it is sufficient to prove that there exists ap3 such
thatp1→∗S p3 andp2→∗S p3 to getr = p3 = s by induction hypothesis.

– Asp is reducible and in particular is not null, we havep = t >+q for some term
t and some polynomialq.

– We do a case analysis on the nature of the reductionsp→S p1 andp→S p2.
There are four possible cases:

1. Supposep→S t
>+q1 andp→S t

>+q2.

– Sinceq < p, q →S q1, andq →S q2, we getreducefS(q1) =
reducefS(q) = reducefS(q2) by induction hypothesis.

– It follows thatt
>+q1→+S t >+ reducefS(q) andt

>+q2→+S t >+ reducefS(q).

– It is then sufficient to takep3 = reducefS(t
>+ reducefS(q)).

2. Supposep→S q − (t/t1).q1 andp→S t
>+q2.

– Sinceq →S q2, by applying the lemmaRedDistMinus, there exists a
polynomialq3 such thatq−(t/t1).q1→+S q3 andq2−(t/t1).q1→+S q3.

– We have by definitiont
>+q2→S q2− (t/t1).q1, sot

>+q2→+S q3.
– It is then sufficient to takep3 = reducefS(q3).

3. Supposep→S t
>+q1 andp→S q − (t/t2).q2.

– This case is just the symmetric of case 2, so the property holds.

4. Supposep→S q − (t/t1).q1 = p1 andp→S q − (t/t2).q2 = p2.

– We havep1− p2 = (t/t2).q2 − (t/t1).q1.
– t1 andt2 divide t . We deduce that there existst3 such thatt = t3.(t2̂ t1).
– So we getp1− p2 = t3.Spoly(t2

>+q2, t1
>+q1).

– Using the main hypothesis, we haveSpoly(t2
>+q2, t1

>+q1)→∗S 0, so we
getp1− p2→∗S 0.

– By applying the lemmaRed+Minus0, there exists a polynomialp4 such
thatp1→+S p4 andp2→+S p4.

– It is then sufficient to takep3 = reducefS(p4).

– In all four cases, we are able to find such a polynomialp3, so the property
holds.

134 LAURENT THÉRY

C. Fully Generalized Version of the TheoremBuchGröbner

Theorem BuchGröbner:
∀A: Set.
∀ =: A⇒ A⇒ Prop.

∀eqRef: (reflexive A=).
∀eqSym: (symmetric A=).
∀eqTrans: (transitive A=).
∀eqDec: ∀a,b: A. {a= b} + {¬(a= b)}.
∀0: A.
∀1: A.
∀1Diff 0: ¬(1= 0).
∀+: A⇒ A⇒ A.

∀plusAssoc: ∀a,b, c: A. (a+ (b+ c)) = ((a+ b)+ c).
∀plusCom: ∀a,b: A. (a+ b) = (b+ a).
∀plusEqComp: ∀a,b, c,d: A.a= c⇒ b= d⇒ (a+ b) = (c+ d).
∀plus0: ∀a: A.a= (a+ 0).
∀−: A⇒ A.

∀invPlus: ∀a: A.0= (a+ (−a)).
∀invEqComp: ∀a,b: A.a= b⇒ (−a) = (−b).
∀−: A⇒ A⇒ A.

∀minusDef: ∀a,b: A. (a− b) = (a+ (−b)).
∀∗: A⇒ A⇒ A.

∀mult0L: ∀a: A. (0 ∗ a) = 0.
∀mult1L: ∀a: A. (1 ∗ a) = a.
∀multEqComp: ∀a,b, c,d: A.a= c⇒ b= d⇒ (a ∗ b) = (c ∗ d).
∀multAssoc: ∀a,b, c: A. (a ∗ (b ∗ c)) = ((a ∗ b) ∗ c).
∀multCom: ∀a,b: A. (a ∗ b) = (b ∗ a).
∀multDistL: ∀a,b, c: A. ((c ∗ a)+ (c ∗ b)) = (c ∗ (a+ b)).
∀/: A⇒ ∀b: A.¬(b = 0)⇒ A.

∀divIsMult: ∀a,b: A.∀nZb: ¬(b= 0).a= ((a/b) ∗ b).
∀divEqComp: ∀a,b, c,d: A.∀nZb: ¬(b= 0).∀nZd: ¬(d = 0).

a = c⇒ b = d ⇒ (a/b) = (c/d)
∀divMultCompR: ∀a,b, c: A.∀nZc: ¬(c= 0). ((a ∗ b)/c) = ((a/c) ∗ b).
∀divIrr: ∀a,b: A.∀nZ1,nZ2: ¬(b= 0).a/nZ1b== a/nZ2b.∀n: nat.
∀ < : (monn)⇒ (monn)⇒ Prop.

∀1Min: ∀a: (mon n).¬(a< (M1 n)).
∀ltNonRefl: ∀x: (mon n).¬(x< x).
∀ltTrans: (transitive(mon n) <).
∀ltDec: ∀x, y: (mon n). {x< y} + {y< x} + {x= y}.
∀ltWf: (wellFounded(mon n) <).
∀ltPlusR: ∀a,b, c: (mon n).a < b⇒ (a ∗ c) < (b ∗ c).
∀ltPlusL: ∀a,b, c: (mon n).a< b⇒ (c ∗ a) < (c ∗ b).

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 135

∀P : (list poly). (Gröbner(BuchP)).

D. The Proof Script of Confluence Implies Gröbner

Theorem ConfluentReduce_imp_Grobner:
(Q:(list poly)) (ConfluentReduce Q) -> (Grobner Q).

Intros Q H’; Elim H’.
Intros H’0.
Apply Grobner0; Auto.
Intros p q H’1; Generalize q; Clear q; Elim H’1.
Intros q H’2.
Rewrite (pO_reducestar Q q); Auto.
Intros a p0 q s H’2 H’3 H’4 H’5 H’6 q0 H’7.
Cut (canonical q);

[Intros Op0 | Apply inPolySet_imp_canonical with L := Q];
Auto.

Cut (canonical p0);
[Intros Op2 | Apply CombLinear_canonical with Q := Q];
Auto.

Cut (canonical s); [Intros Op1 | Idtac].
Cut (canonical q0); [Intros Op2b | Idtac]; Auto.
LApply (reducestar_in_pO Q a q);
[Intros H’11; LApply H’11; [Intros H’12 | Idtac]
| Idtac]; Auto.
Elim (red_minus_zero_reduce Q s p0);
[Intros r1 E; Elim E; Intros H’15 H’16; Clear E
| Idtac
| Idtac
| Idtac]; Auto.
Elim (reduce0_reducestar Q r1); [Intros t E | Idtac]; Auto.
LApply (H’0 s); [Intros H’11;Inversion H’11 | Idtac]; Auto.
Apply H; Auto.
Apply reducestar_eqp_com with p := s q := t; Auto.
Apply reducestar_trans with y := r1; Auto.
Apply H’5; Auto.
Apply (reducestar_trans Q) with y := r1; Auto.
Apply canonical_reduceplus with Q := Q p := s; Auto.
Apply reduceplus_eqp_com with p := (multm_lm a q)

q := pO; Auto.
Apply eqp_sym; Apply eqp_trans with y :=

(minuspf (pluspf (multm_lm a q) p0) p0); Auto.
Apply eqp_trans with y :=

(pluspf (pluspf (multm_lm a q) p0)

136 LAURENT THÉRY

(multm_lm (invTerm T1) p0)); Auto.
Apply eqp_trans with y :=

(pluspf (multm_lm a q)
(pluspf p0 (multm_lm (invTerm T1) p0)));

Auto.
Apply eqp_trans with y := (pluspf (multm_lm a q) pO); Auto.
Apply canonical_reduceplus with Q := Q p := s; Auto.
Apply eqp_imp_canonical with p :=

(pluspf (multm_lm a q) p0); Auto.
Apply eqp_sym; Auto.
Qed.

References

1. Bauer, A., Clarke, E. and Zhao, X.: Analytica – an experiment in combining theorem proving
and symbolic computation,J. Automated Reasoning21(3) (1998), 295–325.

2. Bertot, Y. and Bertot, J.: CtCoq: A system presentation, inAutomated Deduction – CADE-13,
Lecture Notes in Artif. Intell. 1104, Springer-Verlag, 1996.

3. Buchberger, B.: Introduction to Gröbner bases, in B. Buchberger and F. Winkler (eds.),Gröbner
Bases and Applications, Cambridge University Press, 1998, pp. 3–31.

4. Buchberger, B., Jebelean, T., Kriftner, F., Marin, M., Tomuta, E. and Vasaru, D.: A survey
on the theorema project, inInternational Symposium on Symbolic and Algebraic Computation
(ISSAC’97), ACM, 1997.

5. Calmet, J. and Homann, K.: Classification of communication and cooperation mechanisms
for logical and symbolic computation systems, inFirst International Workshop ‘Frontiers
of Combining Systems’ (FroCoS’96), Kluwer Series on Appl. Logic, Springer-Verlag, 1996,
pp. 133–146.

6. Constable, R. L.: Expressing computational complexity in constructive type theory, inInterna-
tional Workshop on Logic and Computational Complexity, Lecture Notes in Artif. Intell. 960,
Springer-Verlag, July 1994.

7. Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper, R. W.,
Howe, D. J., Knoblock, T. B., Mendler, N. P., Panangaden, P., Sasaki, J. T. and Smith, S. F.:
Implementing Mathematics with Nuprl Proof Development System, Prentice-Hall, 1986.

8. Coquand, T. and Persson, H.: Gröbner bases and type theory, in T. Altenkirch,
W. Naraschewski, and B. Reus (eds.),Types for Proofs and Programs, Lecture Notes in
Comput. Sci. 1657, Springer-Verlag, 1999.

9. Coscoy, Y., Kahn, G. and Théry, L.: Extracting text from proofs, inTyped Lambda Calculus
and Its Applications, Lecture Notes in Comput. Sci. 902, Springer-Verlag, 1995, pp. 109–123.

10. Farmer, W. M., Guttman, J. D. and Thayer, F. J.: Little theories, in D. Kapur (ed.),Automated
Deduction – CADE-11, Lecture Notes in Comput. Sci. 607, Springer-Verlag, 1992, pp. 567–
581.

11. Geddes, K. O., Czapor, S. R. and Labahn, G.:Algorithms for Computer Algebra, Kluwer Acad.
Publ., 1992.

12. Gordon, M. and Melham, T.:Introduction to HOL: A Theorem Proving Environment for Higher
Order Logic, Cambridge Univ. Press, 1993.

13. Harrison, J. R.:Theorem Proving with the Real Numbers, Springer-Verlag, 1998.
14. Harrison, J. R. and Théry, L.: A skeptic’s approach to combining HOL and Maple,J. Automated

Reasoning21(3) (1998), 295–325.

A MACHINE-CHECKED IMPLEMENTATION OF BUCHBERGER’S ALGORITHM 137

15. Huet, G., Kahn, G. and Paulin-Mohring, C.: The Coq proof assistant: A tutorial: Version 6.1,
Technical Report 204, INRIA, 1997.

16. Jackson, P. B.: Enhancing the Nuprl proof development system and applying it to computational
abstract algebra, Technical Report TR95-1509, Cornell University, 1995.

17. Knuth, D. E. and Bendix, P. B: Simple word problems in universal algebras, in J. Leech (ed.),
Computational Problems in Abstract Algebras, Pergamon Press, 1970.

18. Ménissier-Morain, V.: The CAML numbers reference manual, Technical Report 141, INRIA,
1992.

19. Nederpelt, R. P., Geuvers, J. H. and De Vrijer, R. C. (eds.):Selected Papers on Automath,
North-Holland, 1994.

20. Paulin-Mohring, C. and Werner, B.: Synthesis of ML programs in the system Coq,J. Symbolic
Comput.15(5–6) (1993), 607–640.

21. Paulson, L. C.: Constructing recursion operators in intuitionistic type theory,J. Symbolic
Comput.2(4) (1986), 325–355.

22. Paulson, L. C.:Isabelle: A Generic Theorem Prover, Lecture Notes in Comput. Sci. 828,
Springer-Verlag, 1994.

23. Pottier, L.: Dickson’s lemma, Available atftp://ftp-sop.inria.fr/lemme/Loic.Pottier/
MON/, 1996.

24. Rudnicki, P.: An overview of the MIZAR projet, inWorkshop on Types and
Proofs for Programs, Available by ftp at pub/cs-reports/baastad.92/proc.ps.Z on
ftp.cs.chalmers.se, 1992.

25. Rushby, J. M., Shankar, N. and Srivas, M.: PVS: Combining specification, proof checking, and
model checking, inCAV ’96, Lecture Notes in Comput. Sci. 1102, Springer-Verlag, July 1996.

26. Schwarzweller, C.: Mizar verification of generic algebraic algorithms, Ph.D. Thesis, Wilhelm-
Schickard Institute for Computer Science, University of Tübingen, 1997.

27. Théry, L.: A certified version of Buchberger’s algorithm, inAutomated Deduction – CADE-15,
Lecture Notes in Artif. Intell. 1421, Springer-Verlag, 1998, pp. 349–364.

28. Vega, G. P. and Werner, B.: Personal communication, 1998.
29. Wolfram, S.:Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley,

1988.

