
1Top-down Synthesis of Sorting AlgorithmsK.K. Lau,Department of Computer Science,University of Manchester,Oxford Road,Manchester M13 9PLTel: (o) (061) 275 5716 (h) (061) 434 4904AbstractTraditionally sorting algorithms are classi�ed according to their main operational char-acteristic, rather than their underlying logic. More recent work in program synthesis hasexposed the logic of and hence the logical relationships between some sorting algorithms.Following the program synthesis approach, and by using a logic programming system forderiving recursive logic procedures from their speci�cations, we have synthesised a largefamily of sorting algorithms in a strictly top-down manner. Such an approach not onlyproduces algorithms which are guaranteed to be partially correct, it also provides a familytree showing clearly the relationships between its members.This paper contains c.4500 words, 15 pages, and 1 diagram.1 IntroductionTraditionally, algorithms are \discovered" �rst, and then proved correct. Sorting algorithms areno exception. More recently, work in program synthesis has been applied to the derivation ofalgorithms from their speci�cations. The main advantage of this approach is that correctness isusually automatically built-in. Several people have chosen sorting algorithms for such exercisesusing di�erent notations and methodologies.[12]Darlington[5] has derived a family of six sorting algorithms, namely quick sort , selectionsort , merge sort , insertion sort , bubble sort , and sinking sort . (Note that he actually callsbubble sort and sinking sort respectively exchange sort and bubble sort . Our nomenclature shallconform to standard works such as Knuth[11] and Mehlhorn[16].) His synthesis is by programtransformation on recursion equations, the key transformation rule being the fold-unfold ruleof Burstall & Darlington[3] and Manna & Waldinger[15].Clark & Darlington[4] have also derived quick sort , selection sort , merge sort , and inser-tion sort , using similar program transformation rules, but they adopt an informal (�rst order)predicate logic notation for programs.Green & Barstow[8, 1] have used their system for automatic program synthesis to demon-strate the synthesis of programs for the same six sorting algorithms that Darlington derived,using the divide-and-conquer paradigm.Smith[18, 19] derivesmerge sort , insertion sort , quick sort , and selection sort using a methodfor synthesising divide-and-conquer algorithms by top-down decomposition of speci�cations intosubproblem speci�cations, followed by bottom-up composition of (concrete) programs synthe-sised for the subproblems. Decomposition and composition are done according to a chosenpre-determined (abstract) program scheme.Dromey[7] uses Dijkstra's constructive weakest pre-condition technique[6] to derive sort-ing algorithms from a speci�cation in the form of a pair of pre- and post-conditions. Thesealgorithms include quick sort , selection sort , bubble sort , insertion sort , and heap sort . Hisapproach is however not top-down.



K.K. Lau, Top-down Synthesis of Sorting Algorithms 2We have implemented a logic programming system for synthesising recursive logic proceduresfrom their speci�cations in �rst-order logic,[13] also based on the fold-unfold rule. Using thissystem, we have derived (logic programs for) a family of sorting algorithms in a strictly top-down manner. This family is larger than those in previous work mentioned above, and is shownin Figure 1. In this paper we show an outline of their synthesis details obtained on the system.Logic speci�cation of list sorting������ XXXXXXData partitioning((((((((( @@ hhhhhhhhh Data structuretransformation(to b-list)�� @@byvalue����� �� PPPPP byposition�� @@ bypartial value�� @@ blockbubblesort externalmergesortbypivot byinterval byleast member mergesort insertionsort radixexchangesort distribu-tion sort�� @@quick sort(by pivotpartitioning)�� @@ quick sort(by intervalpartitioning) selectionsort bubblesort(heap sort)Quicksort Bsort
Figure 1: Our derivation tree of sorting algorithms.(Full details are given in a technical report.[14])2 Logic Speci�cation of SortingThe logic speci�cation of (list) sorting is well-known. We shall adapt one given by Clark &Darlington.[4] (For the sake of simplicity, we assume that there are no repeated members in thelists.)In our speci�cation, we use the following de�nition of the predicate sort:sort(a; b) $ perm(a; b) ^ ord(b)perm(a; b) $ 8x:(mem(x; a) $ mem(x; b))ord(l) $ 8xy:(x < y  before(x; y; l))where mem is the predicate for list membership, and before(x; y; l) means x; y are membersof l and x occurs before y in l. The predicates mem and before have the following recursive



K.K. Lau, Top-down Synthesis of Sorting Algorithms 3de�nitions: mem(x; [ ]) $ ?mem(x; [a]) $ x = amem(x; b̂ c) $ mem(x; b) _ mem(x; c)before(x; y; [ ]) $ ?before(x; y; [a]) $ ?before(x; y; b̂ c) $ before(x; y; b) _ before(x; y; c) _mem(x; b) ^ mem(y; c) :where > and ? denote the truth values true and false respectively; and \̂ " is the list concate-nation operator. (Note that the arguments of \̂ " must be lists, e.g. in standard list notation,we have h:t = [h]̂ t, where h is a single element and t is a list.)This set of de�nitions forms the logic speci�cation of sorting from which we synthesise logicprocedures for various well-known sorting algorithms.3 Synthesis of Sorting AlgorithmsSynthesis on our logic programming system is user-guided. After the user has input the speci�-cation, he can ask the system to derive a recursive logic procedure with speci�ed recursive calls,or folds, by de�ning a folding problem. In response, the system will try and solve this problem(with further user-guidance) by top-down decomposition followed by bottom-up composition ofsubsolutions.3.1 Data Partitioning by ValueThe way the user chooses to specify the recursive calls represents a design decision on his part.For example, a high-level design decision might be to aim for an algorithm which concatenatesthree sorted sublists to form the output list, i.e. the algorithm will recursively split the inter-mediate input list into 3 sublists and then sort each sublist before concatenating them to givethe intermediate result. This decision de�nes the form of the fold to be sought, and is expressedby the folding problemfold sort(a; b̂ ĉ d) to fsort(e; b); sort(f; c); sort(g; d)g :This amounts to asking how the partitioning is to be done, i.e. how e; f; g are to be formed.The solution of the folding problem will be a (logic) procedure for doing so.To illustrate the way a folding problem is solved on the system, we outline the steps takenfor this example. The general approach is top-down decomposition: a folding problem is de-composed into subproblems which in turn are decomposed into further subproblems and so on,until the subproblems can be solved by matching their requirements with a clause directly orindirectly derivable from the given speci�cations. (Full details of our solution strategy are givenin a separate paper,[13] and we shall show only the tree of folding problems for each synthesisin this paper.)For this example, using the de�nitionsort(a; b) $ perm(a; b) ^ ord(b)from the speci�cation, we decompose the folding problem into two:(i) fold perm(a; b̂ ĉ d) to fperm(e; b); perm(f; c); perm(g; d)g ;



K.K. Lau, Top-down Synthesis of Sorting Algorithms 4(ii) fold ord(b̂ ĉ d) to ford(b); ord(c); ord(d)g :It should be obvious that the solutions to these problems are respectively the following clauses(which can be derived from the de�nitions of perm and ord):(i) perm(a; b̂ ĉ d)  perm(a; ê f ĝ) ^ perm(e; b) ^ perm(f; c) ^ perm(g; d)(ii) ord(b̂ ĉ d)  b� c ^ c� d ^ ord(b) ^ ord(c) ^ ord(d)where p� q $ 8xy:(x < y  mem(x; p) ^ mem(y; q)) :Therefore we obtain the following solution to the original problem:sort(a; b̂ ĉ d)  part(a; e; f; g) ^ sort(e; b) ^ sort(f; c) ^ sort(g; d) (1)where part(a; e; f; g) $ perm(a; ê f ĝ) ^ e� f ^ f � g : (2)Thus in order to achieve the stated objective of producing the output by concatenating 3 sortedsublists, the correct way to partition an intermediate input list a is to split it by value into 3sublists, i.e. e; f; g such that e � f � g. This may seem obvious, but it is interesting to see itsynthesised from a folding problem expressing our high-level objective.However, no speci�c algorithms have been derived so far, since part does not completelyspecify how the partitions are to be formed (or in logic programming terms, there is no procedurefor part). Further design decisions must be made as to how to form the partitions.3.1.1 Partitioning by PivotSuppose we choose the middle partition to be a single-element list [f ]. Then we have (from (1))sort(a; b̂ [f ]̂ d)  part(a; e; [f ]; g) ^ sort(e; b) ^ sort(g; d) (3)in which f acts as a pivot for partitioning a into e and g. This clause thus de�nes the family ofquick sort algorithms using pivot partitioning.Each algorithm of the family chooses a di�erent element of a to be the pivot f , thus de�ningpart in a di�erent way. To complete its synthesis, it remains to synthesise a procedure for thecorresponding de�nition of part. For example, Quicksort (the original quick sort algorithm dueto Hoare[10]) uses the �rst element of a as the pivot. In this case, we have (writing a as h:t)sort(h:t; b̂ [h]̂ d)  part(h:t; e; [h]; g) ^ sort(e; b) ^ sort(g; d) :To complete the synthesis of Quicksort, it remains to synthesise a procedure for part. Howeverwe note that in this case part can be simpli�ed and replaced by a new predicate part1 de�nedby part1(t; e; h; g) $ perm(t; ê g) ^ e� [h] ^ [h] � g : (4)So we proceed to synthesise a procedure for part1 instead. Now each element of t will be putin either e (the �rst partition) or g (the second one). So we decompose t into head and tail x:yand pose the following folding problems:(i) fold part1(x:y; x:u; v; w) to fpart1(y; u; v; w)g ;(ii) fold part1(x:y; u; v; x:w) to fpart1(y; u; v; w)g :



K.K. Lau, Top-down Synthesis of Sorting Algorithms 5(Note that these contain a further decision that x will be made the head of the new partitionit joins. This is obviously arbitrary since x can be put in any position of the new partition.)The solutions to these problems on our system are respectively:(i) part1(x:y; x:u; v; w)  x < v ^ part1(y; u; v; w) ;(ii) part1(x:y; u; v; x:w)  x > v ^ part1(y; u; v; w) ;which means that it is correct to put x at the head of the new partition u or w only if x is respec-tively less or greater than the pivot v. These two clauses now completely de�ne part1(t; e; h; g)(initially, x:y = t and v = h; and e = u and g = w at the end of part execution). The synthesisof Quicksort is thus complete (except for base cases, which can be derived directly from thespeci�cations).Other quick sort algorithms such as Quickersort,[17] which uses the middle element of a asthe pivot, can be synthesised in a similar manner.Returning to (3), the general de�nition of quick sort using pivot partitioning, we can derivefrom this another class of algorithms which do not sort a partition if it is already ordered,namely those based on Bsort.[21] To test for orderedness, we de�ne a new predicate, isord,related to ord, by isord(`;B`) $ ord(`) ^ B` = > _ B` = ?i.e. isord(`;B`) is true if ` is ordered and B` is set to >. Thus B` is a ag which if set indicatesthat ` is ordered. (Note that if B` is not set, then we know nothing about the orderedness of`. This means that the resulting algorithms will only check for a su�cient condition for thepartitions to be ordered, not a necessary one.)To obtain these algorithms, we make use of isord to transform the recursive calls to sortin the body of the quick sort de�nition, and enumerate the possible cases of sorted partitions.The result is the following procedure:sort(a; ê [f ]̂ g)  part(a; e; [f ]; g) ^isord(e; >) ^ isord(g; >)sort(a; ê [f ]̂ d)  part(a; e; [f ]; g) ^isord(e; >) ^ isord(g; ?) ^ sort(g; d)sort(a; b̂ [f ]̂ g)  part(a; e; [f ]; g) ^isord(e; ?) ^ isord(g; >) ^ sort(e; b)sort(a; b̂ [f ]̂ d)  part(a; e; [f ]; g) ^isord(e; ?) ^ isord(g; ?) ^ sort(e; b) ^ sort(g; d) :This then de�nes the class of Bsort algorithms.As before, to synthesise a particular algorithm of this family, it remains to synthesise aprocedure for the corresponding de�nition of part. For example, Bsort itself uses the middleelement of a as the pivot, and so the last clause of its procedure for instance will besort(a; b̂ [m]̂ d)  middle(a; m; r) ^ part1(r; e; m; g) ^isord(e; ?) ^ isord(g; ?) ^ sort(e; b) ^ sort(g; d)where middle(a; m; r) means that m is the middle member of a, and that removing m from aleaves r, and part1 is as de�ned by (4). Assuming a procedure for middle, we could use thisprocedure as a basis for Bsort.Finally, we remark that the idea of testing for orderedness of a partition can be equallyapplied to other algorithms based on partitioning by value. The synthesis of Bsort thereforeserves as an example of how to incorporate this in the synthesis of such algorithms.



K.K. Lau, Top-down Synthesis of Sorting Algorithms 63.1.2 Partitioning by IntervalIf we choose the middle partition to be empty, then instead of (3) we havesort(a; b̂ d)  part(a; e; [ ]; g) ^ sort(e; b) ^ sort(g; d) : (5)Replacing part by a simpler new predicate part2 de�ned bypart2(a; ê g) $ perm(a; e; g) ^ e� gand using the same reasoning for Quicksort, we pose the following folding problems to synthesisea procedure for part2:(i) fold part2(x:y; x:u; w) to fpart2(y; u; w)g ;(ii) fold part2(x:y; u; x:w) to fpart2(y; u; w)g .The solutions are respectively:(i) part2(x:y; x:u; w)  part2(y; u; w) ^ [x]� w ;(ii) part2(x:y; u; x:w)  part2(y; u; w) ^ [x]� u ;where p� q $ 8xy:(x > y  mem(x; p) ^ mem(y; q)) :Assuming procedures for predicates corresponding to � and �, this de�nes quick sort byinterval partitioning.[20, 7] Instead of using a single value for partitioning, it uses the interval[u0; w0], where u0 = maxi u(i) and w0 = mini w(i) respectively, which changes dynamically asthe partitions are built up.3.1.3 Partitioning by Least MemberReturning to (1), suppose we now choose the �rst partition e to be empty, and the secondpartition f to be a single-element list as in the preceding section, i.e. we choose to partition ainto a singleton list [f ] and one other sublist g. This is represented by the predicate lmpartde�ned by lmpart(a; f; g) $ part(a; [ ]; [f ]; g) ;i.e. lmpart(a; f; g) $ perm(a; f:g) ^ [f ]� g :This implies that f must be the minimum of a, and so lmpart de�nes partitioning by leastmember .Putting lmpart into (1), we getsort(a; f:d)  lmpart(a; f; g) ^ sort(g; d) :Both selection sort and bubble sort can be derived from this general de�nition by synthesisingdi�erent procedures for lmpart.Suppose we pose the following folding problems:(i) fold lmpart(x:y; m; x:r) to flmpart(y; m; r)g ;(ii) fold lmpart(x:y; x; y) to flmpart(y; m; r)g ;



K.K. Lau, Top-down Synthesis of Sorting Algorithms 7expressing the design decisions (i) to add x to the front-end of the current second partition rand (ii) to make y the new second partition if x is already the minimum in x:y. Clearly thereare alternative ways to form the new second partition in the second case. Note, in addition,that the �rst case contains a further (arbitrary) decision to make x the head of the currentsecond partition. This implies that in this case the second partition will preserve the orderingof the original input list. Now since the second case does not change this ordering either, itfollows that the �nal version of the second partition will preserve the original ordering of theelements. Therefore these two problems in e�ect specify the partitioning process of selectionsort .Solving these problems on the system, we get(i) lmpart(x:y; m; x:r)  lmpart(y; m; r) ^ m < x ;(ii) lmpart(x:y; x; y)  lmpart(y; m; r) ^ x < m ;which means that it is correct not to update the current minimum m, and to append x to (thefront-end of) r to form the new second partition if it is greater than m; and it is correct toupdate m by setting it to x, and to set the new second partition to y if x is less than m.We could have set the folding problemfold lmpart(x:y; x; m:r) to flmpart(y; m; r)gas the second folding problem for lmpart to form the new second partition by appending mto (the front-end) of r in case y < m before updating m to x. That is each new partition willnow have its minimum in its head. Consequently, the ordering of the original input list will notbe preserved in the second partition (unless its head is already its minimum). In fact this newfolding problem together with the �rst problem for selection sort correspond to the partitioningprocess of bubble sort .Solving it on the system giveslmpart(x:y; x; m:r)  lmpart(y; m; r) ^ x < m :Traditionally, bubble sort is made more e�cient in various ways, one of which being to testfor orderedness of the new partition. These versions can be synthesised in a similar manner toBsort.It is also worth noting that heap sort employs a partitioning process with the same under-lying logic as bubble sort . Therefore it would be possible to synthesise a procedure for heap sortby solving the same folding problems if the lists involved were actually representations of heapsand if there was a procedure for building a heap from an ordinary list. However, we believethat the proper approach is to specify tree sorting and then synthesise various procedures fortransforming lists to trees with di�erent properties (e.g. heaps), and procedures for sortingthese data structures. Such an approach based on data structure transformation is discussed inSection 3.4 for lists whose elements are themselves lists. Trees, however, are beyond the scopeof this paper, and we do not synthesise any tree sorting algorithm.To conclude this section on partitioning by value, we remark that there are many alternativesto explore. We could take the partition de�nition and force the outer 2 partitions to be single-element lists. There are minor variations like choosing di�erent pivots, constructing partitionsfrom di�erent ends, splitting into more than 3 partitions, �nding more elaborate base cases. Ofcourse, we could also synthesise improved versions of these algorithms which test for orderednessduring partitioning.



K.K. Lau, Top-down Synthesis of Sorting Algorithms 83.2 Data Partitioning by PositionInstead of partitioning the input list a by value, we can partition a by position, i.e. split itat some speci�ed position into two sublists which are not necessarily ordered. In this case, wehave sort(a; b)  ppart(a; a1; a2) ^ sort(a1 â2; b)where ppart(a; a1; a2) means that partitioning a by position produces a1 â2. We shall assumethat a procedure for ppart has already been speci�ed somewhere else. Suppose we aim todesign an algorithm to sort a by recursively partitioning it using the given ppart procedureand sorting the sublists, and then somehow merging their sorted versions into an ordered list.This design decision can be represented by the folding problemfold sort(a1 â2; b) to fsort(a1; c); sort(a2; d)g)whose solution is sort(a1 â2; b) sort(a1; c) ^ sort(a2; d) ^ merge(c; d; b)together with the following de�nition for merge :merge(c; d; b) $ (perm(ĉ d; b) ^ ord(b))  (ord(c) ^ ord(d)) :Depending on the given de�nition of ppart, we can derive procedures for merge sort andinsertion sort . For merge sort , ppart would split a into two equal halves, and to complete itssynthesis, it remains to synthesise a procedure set for merge.Since the current sublists c; d are ordered, the ordering of their elements will be preservedin the new merged list. Therefore, for each current sublist, it su�ces to add the elements oneat a time to the current merged list. So we set the following folding problems:(i) fold merge(x:c; d; x:t) to fmerge(c; d; t)g ;(ii) fold merge(c; y:d; y:t) to fmerge(c; d; t)g ;to express the decision to set the head of the new merged list to the head of one of the newsublists.Solving the �rst problem givesmerge(x:c; y:d; x:t)  x < y ^ merge(c; y:d; t) :which means that it is correct to make the head of the new �rst partition the head of the newmerged list if it is less than the head of the current second partition. Similarly, the secondfolding problem will have the solutionmerge(x:c; y:d; y:t)  y < x ^ merge(x:c; d; t) :Thus we have derived a procedure for merge sort .If ppart splits a into a1:a2, i.e. a1 now is a single element, then we have (since c = [a1]):sort(a; b)  ppart(a; [a1]; a2) ^ sort(a2; d) ^ merge([a1]; d; b) :Now if we de�ne a new predicate insert byinsert(x; d; b) $ merge([x]; d; b)(where x is a single element), then to synthesise a procedure set for insert we need to solve thefollowing folding problems derived directly from those for merge:



K.K. Lau, Top-down Synthesis of Sorting Algorithms 9(i) fold insert(x; d; x:t) to insert(x; d; t) ;(ii) fold insert(x; y:d; y:t) to insert(x; d; t) :Naturally the solutions to these problems can be derived from those for merge. Problem(i) is in fact a base case because x is a single element, and its solution isinsert(x; y:d; x:y:d)  x < y :Problem (ii) has the solution,insert(x; y:d; y:t) y < x ^ insert(x; d; t) :Thus we have derived a procedure for insertion sort .3.3 Data Partitioning by Partial ValueSo far, we have been dealing with sorting by comparisons. The elements of the lists involvedare members of a linearly ordered set with no known structure, and comparison is the onlyoperation available to determine the relative sizes of any pair of elements. Moreover, thecomparison operation (or the ordering relation <) is indivisible.However, sometimes the list elements are known to have a linear ordering which is a lexi-cographical combination of suborderings. For example, if they are integers within a reasonablerange, then they can be each represented as a �xed number of bits, with an ordering relationlt de�ned by: lt(0; x; y)  bit(0; x; 0) ^ bit(0; y; 1)lt(n; x; y)  bit(n; x; 0) ^ bit(n; y; 1)lt(s(n); x; y)  eqbit(s(n); x; y) ^ lt(n; x; y)where eqbit(n; x; y)$ 9b(bit(n; x; b) ^ bit(n; y; b)) ;the integers 0; 1; 2; : : : are represented by 0; s(0); s(s(0)); : : : ; s being the successor function;and bit(n; x; b) means that bit n of the integer x is b (0 or 1). Bit 0 is the least signi�cant bitin this scheme.We can synthesise sorting algorithms which sort by decomposing the ordering relation inthis way. For the sake of concreteness, we will restrict the syntheses to the bit scheme describedabove, and assume that all the integers are of length n+1 bits. To synthesise these algorithms,the bit position n must be referred to by the sort predicate, and to this end we generalise sortpredicate to sortn such that:sortn(n; a; b) $ perm(a; b) ^ ordn(n; b)ordn(n; b) $ 8x8y(lt(n; x; y)  before(x; y; b)) :Thus sortn(n; a; b) means that b is the result of sorting a on bits 0 to n.Now suppose we aim to synthesise an algorithm which forms the list sorted on bits 0 to(n+1) (the most signi�cant bit) by concatenating two sublists sorted on bits 0 to n recursively.This means that the algorithm will recursively split the intermediate input list into 2 sublistsand then sort each sublist before concatenating them to give the intermediate result. Thisdesign decision is expressed by the folding problem:fold sortn(s(n); a; b̂ c) to fsortn(n; d; b); sortn(n; e; c)g:



K.K. Lau, Top-down Synthesis of Sorting Algorithms 10Solving this, we getsortn(s(n); a; b̂ c) pvpart(s(n); a; d; e) ^ sortn(n; d; b) ^ sortn(n; e; c)where pvpart is de�ned bypvpart(n; a; d; e) $ perm(a; d̂ e) ^ allbits(n; d; 0) ^ allbits(n; e; 1) :The correct way to form d; e therefore is to partition a by partial value, i.e. into one list, d,with 0 in bit (n+ 1) and another, e, with 1 in bit (n+ 1).We note the similarity between the speci�cation for pvpart and that for part earlier, sinced�n e  allbits(n; d; 0) ^ allbits(n; e; 1)where �n is de�ned byd�n e $ 8x8y(lt(n; x; y)  mem(x; d) ^ mem(y; e))In fact, we can view pvpart as part de�ned on bits, with the current most signi�cant bit as\pivot", for partitioning the current input list.To complete the synthesis, we synthesise a recursive procedure for pvpart. By analogy withpart we can specify two folding problems quite precisely:(i) fold pvpart(n; x:y; x:u; w) to fpvpart(n; y; u; w)g ;(ii) fold pvpart(n; x:y; u; x:w) to fpvpart(n; y; u; w)g ;whose solutions are respectively:(i) pvpart(n; x:y; x:u; w)  bit(n; x; 0) ^ pvpart(n; y; u; w) ;(ii) pvpart(n; x:y; u; x:w)  bit(n; x; 1) ^ pvpart(n; y; u; w) :This de�nes in fact the radix exchange sort algorithm for binary numbers.Suppose now we aim for an algorithm which sorts the input list a on the least signi�cantbits �rst (in contrast to radix exchange sort), and therefore set the following folding problem:fold sort(s(n); a; b) to fsort(n; a; c)g:Clearly, at each stage the list c which is sorted on bits 0 to n has to be used somehow to produceb which will be sorted on bits 0 to (n+1). The solution of this folding problem should indicatehow. Indeed, solving the problem, we getsortn(s(n); a; d̂ e) sortn(n; a; c) ^ pvpart1(s(n); c; d; e)where pvpart1(n; c; d; e) $ perm(c; d̂ e)^ osublist(d; c) ^ allbits(n; d; 0) ^^ osublist(e; c) ^ allbits(n; e; 1) :To complete the synthesis, we synthesise a procedure for pvpart1, by setting the followingtwo folding problems:(i) fold pvpart1(n; x:y; x:u; w) to fpvpart1(n; y; u; w)g ;



K.K. Lau, Top-down Synthesis of Sorting Algorithms 11(ii) fold pvpart1(n; x:y; u; x:w) to fpvpart1(n; y; u; w)g ;whose solutions are respectively:(i) pvpart1(n; x:y; x:u; w)  bit(n; x; 0) ^ pvpart1(n; y; u; w) ;(ii) pvpart1(n; x:y; u; x:w) bit(n; x; 1) ^ pvpart1(n; y; u; w) :Note that pvpart1 is in fact identical to pvpart, even though their de�nitions look di�erent.This is really only to be expected, since they both partition a list on a given bit.This in fact de�nes the distribution sort algorithm for binary numbers.3.4 Data Structure TransformationIn this section, we consider data structure transformation in the style of Hansson & T�arnlund,[9]and synthesise sorting algorithms which work on a di�erent data structure from lists. Thesealgorithms are related to some of the algorithms we have already synthesised in the previoussections, and we will therefore make use of the relevant results in synthesising these algorithms.First we de�ne the new data structure, which we will call a blocklist , or a b-list . This issimply a list of lists, each member list being called a block . Naturally, b-lists model the situationin many applications where sorting is done in blocks, either externally on a serial processor orin parallel on a parallel system. Here the list to be sorted has to be split up into blocks whichthe main or local memory can accommodate. Each block is normally assumed to be alreadyordered (if it is not, then it can always be sorted on its own �rst), and the overall task is toreorganise the blocks so that their concatenation gives the �nal sorted list.Given a list to be sorted externally or in parallel, transforming it to a b-list is straightforward.As suggested above, it is only necessary to split the list into blocks and then sort each block onits own �rst. We shall therefore assume that the input list a is already a b-list with each blockalready ordered, and de�ne b-list sorting by the predicate bsort de�ned by:bsort(a; b) $ sort(bmap(a); bmap(b))  presorted(a)where bmap is a function mapping b-lists to lists de�ned bybmap([ ]) = [ ]bmap([a]) = abmap(â b) = bmap(a)̂ bmap(b)for lists a; b (note that this function is not 1-1); and presorted is de�ned bypresorted([ ])  >presorted([a])  ord(a)presorted(â b)  presorted(a) ^ presorted(b) :This speci�cation says that b-list b is a sorted version of b-list a if and only if the mappingof b is the sorted version of the mapping of a, where a is known to consist of ordered blocks.In the rest of this section, we synthesise two examples of algorithms for sorting b-lists. Firstwe �nd an analogue of merge sort . Here we have the input b-list split by position into two(concatenated) b-lists, andbsort(a; b)  bppart(a; a1; a2) ^ bsort(a1 â2)



K.K. Lau, Top-down Synthesis of Sorting Algorithms 12where bppart is the equivalent for b-lists of ppart in data partitioning by position (see Section3.2). Again, we assume bppart has been de�ned elsewhere.The folding problem is:fold bsort(a1̂ a2; b) to fbsort(a1; c); bsort(a2; d)gand its solution givesbsort(a1 â2; [b]) bsort(a2; [c]) ^ bsort(a1; [d]) ^ merge(d; c; b)where merge is as de�ned on page 8. This de�nes the external merge sort algorithm.Our second sorting algorithm for b-lists is an analogue of bubble sort . Here, the foldingproblem is: fold bsort(a; [b]̂ c) to fbsort(d; c)g;i.e. we want to partition the presorted b-list a into a list b and a b-list c which is ordered.This partitioning is the equivalent for b-lists of data partitioning by least member as de�nedby lmpart in Section 3.1.3.Its solution gives bsort(a; [b]̂ c) blmpart(a; b; a0) ^ bsort(a0; c)where blmpart(a; b; a0) $ (b� bmap(a0) ^ ord(b) ^ presorted(a0) ^perm(bmap(a); b̂ bmap(a0)))  presorted(a) :The blmpart predicate means that a presorted b-list a is split into an ordered list (or block) bwhich consists of the least members of a, and a new b-list a0 which is the remainder of a and isstill presorted. That is it is an analogue of partitioning by least member for presorted b-lists.To complete the synthesis, we synthesise a procedure for blmpart, by setting the followingfolding problem: fold blmpart([a]̂ b; c; [d]̂ e) to fblmpart(b; f; e)g:This says that if f is the least member partition of b with e as the remainder, then we want cto be the least member partition of [a]̂ b with [d]̂ e as the remainder. We expect c and d to begenerated from a and f somehow.The solution of this problem gives,blmpart([a]̂ b; c; [d]̂ e) blmpart(b; f; e) ^ msplit(a; c; d ; e ; f) :where msplit is de�ned bymsplit(a; c; d; e; f) $ merge(a; f; ĉ d) ^ jcj � jf j :It means that given an ordered list f and a presorted b-list e such that [f ]̂ e is the least memberpartitioning of some (presorted)b-list , say b, then the ordered lists c; d can be formed by merge-splitting the ordered lists a; f so that [c]̂ [d]̂ e is the least member partitioning of the presortedb-list [a]̂ b.This de�nes the block bubble sort algorithm. Similar parallel (block) sorting algorithms[2]can be synthesised from other comparison-based list sorting algorithms.



K.K. Lau, Top-down Synthesis of Sorting Algorithms 134 ConclusionWe have demonstrated a strictly top-down synthesis of a large family of sorting algorithms. Thebasis of the synthesis is logical deduction, and therefore all derived algorithms are automaticallypartially correct with respect to their speci�cations. Completeness, however, is not guaranteed.Compared to other work mentioned in Section 1, our derivation tree includes more algo-rithms and has more symmetry. The use of our logic programming system for aiding thesyntheses has made this possible. Indeed many more algorithms could be added to this treewith relatively little e�ort.The classi�cation of algorithms which our tree represents is interesting when compared toother people's schemes[12]. For example, our synthesis of quick sort using pivot partitioningdi�ers from Clark & Darlington's and Green & Barstow's, in that their quick sort puts thepivot itself in either partition, whereas ours does not. As a result, we have been able tosynthesise Hoare's Quicksort as a special case of our quick sort by pivot partitioning, whereasthey would not be able to derive it (or Bsort for that matter) from theirs. Consequently,our classi�cation of quick sort is di�erent from theirs. Clark & Darlington classify quick sortand selection sort , merge sort and insertion sort as related pairs in their tree, while Barstowlabels these pairs as \split-by-value" and \split-by-position". We also use the labels of \datapartitioning by value" and \data partitioning by position", but we have a �ner distinctionbetween \data partitioning (by value) by pivot" for Quicksort and Bsort under quick sortusing pivot partitioning, \data partitioning (by value) by interval" for quick sort using intervalpartitioning, and \data partitioning (by value) by least member for selection sort and bubblesort .Finally, as far as we know, our use of data partitioning by partial value and data structuretransformation is new. However, it is obvious that many variants of these algorithms, as wellas other algorithms can be added to these branches. In particular, many more block or parallelalgorithms[2] can be synthesised, to develop the data structure transformation branch itselfinto a tree of such algorithms. Furthermore, another subclass of algorithms can be producedby transformation to other data structures such as trees (e.g. heaps).AcknowledgementsI would like to thank S.D. Prestwich for his work in implementing the logic programming systemused for the syntheses described in this paper. I am also grateful to the referee for pointing outseveral minor errors in the previous version of this paper, and for his helpful suggestions whichhave improved it considerably.References[1] D.R. Barstow, Remarks on \A Synthesis of Several Sorting Algorithms" by John Darling-ton, Acta Informatica 13, 225-227 (1980).[2] D. Bitton, D.J. DeWitt, D.K. Hsiao, J.Menon, A Taxonomy of Parallel Sorting, ComputingSurveys 16(3), 289-318 (1984).[3] R.M. Burstall, J. Darlington, A Transformation System for Developing Recursive Pro-grams, Journal of the ACM 24, 44-67 (1977).[4] K.L. Clark, J. Darlington, Algorithm Classi�cation Through Synthesis, The ComputerJournal 23(1), 61-65 (1980).
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