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Abstract

Traditionally sorting algorithms are classified according to their main operational char-
acteristic, rather than their underlying logic. More recent work in program synthesis has
exposed the logic of and hence the logical relationships between some sorting algorithms.
Following the program synthesis approach, and by using a logic programming system for
deriving recursive logic procedures from their specifications, we have synthesised a large
family of sorting algorithms in a strictly top-down manner. Such an approach not only
produces algorithms which are guaranteed to be partially correct, it also provides a family
tree showing clearly the relationships between its members.

This paper contains ¢.4500 words, 15 pages, and 1 diagram.

1 Introduction

Traditionally, algorithms are “discovered” first, and then proved correct. Sorting algorithms are
no exception. More recently, work in program synthesis has been applied to the derivation of
algorithms from their specifications. The main advantage of this approach is that correctness is
usually automatically built-in. Several people have chosen sorting algorithms for such exercises
using different notations and methodologies.[12]

Darlington[5] has derived a family of six sorting algorithms, namely quick sort, selection
sort, merge sort, insertion sort, bubble sort, and sinking sort. (Note that he actually calls
bubble sort and sinking sort respectively exchange sort and bubble sort. Our nomenclature shall
conform to standard works such as Knuth[11] and Mehlhorn[16].) His synthesis is by program
transformation on recursion equations, the key transformation rule being the fold-unfold rule
of Burstall & Darlington[3] and Manna & Waldinger[15].

Clark & Darlington[4] have also derived quick sort, selection sort, merge sort, and inser-
tion sort, using similar program transformation rules, but they adopt an informal (first order)
predicate logic notation for programs.

Green & Barstow[8, 1] have used their system for automatic program synthesis to demon-
strate the synthesis of programs for the same six sorting algorithms that Darlington derived,
using the divide-and-conquer paradigm.

Smith[18, 19] derives merge sort, insertion sort, quick sort, and selection sort using a method
for synthesising divide-and-conquer algorithms by top-down decomposition of specifications into
subproblem specifications, followed by bottom-up composition of (concrete) programs synthe-
sised for the subproblems. Decomposition and composition are done according to a chosen
pre-determined (abstract) program scheme.

Dromey[7] uses Dijkstra’s constructive weakest pre-condition technique[6] to derive sort-
ing algorithms from a specification in the form of a pair of pre- and post-conditions. These
algorithms include quick sort, selection sort, bubble sort, insertion sort, and heap sort. His
approach is however not top-down.



We have implemented a logic programming system for synthesising recursive logic procedures
from their specifications in first-order logic,[13] also based on the fold-unfold rule. Using this
system, we have derived (logic programs for) a family of sorting algorithms in a strictly top-
down manner. This family is larger than those in previous work mentioned above, and is shown
in Figure 1. In this paper we show an outline of their synthesis details obtained on the system.

Logic specification of list sorting
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Figure 1: Our derivation tree of sorting algorithms.

(Full details are given in a technical report.[14])

2 Logic Specification of Sorting

The logic specification of (list) sorting is well-known. We shall adapt one given by Clark &
Darlington.[4] (For the sake of simplicity, we assume that there are no repeated members in the
lists.)

In our specification, we use the following definition of the predicate sort:
sort(a,b) <« perm(a,b) A ord(b)

perm(a,b) <+ Vz.(mem(zr,a) < mem(z,b))
ord(l) < Vzy.(r <y < before(z,y,l))

where mem is the predicate for list membership, and before(z,y,l) means z,y are members
of [ and z occurs before y in I. The predicates mem and before have the following recursive



definitions:

mem(z,[]) < L
mem(z,[a]) & z=a
mem(z,b’c) < mem(z,b) V mem(z,c)
before(z,y,[]) < L
before(z,y,[a]) < L
A4

before(z,y,bc) before(z,y,b) V before(z,y,c) V

mem(z,b) A mem(y,c) .

where T and | denote the truth values true and false respectively; and “*” is the list concate-
nation operator. (Note that the arguments of “”” must be lists, e.g. in standard list notation,
we have h.t = [h]'t, where h is a single element and ¢ is a list.)

This set of definitions forms the logic specification of sorting from which we synthesise logic
procedures for various well-known sorting algorithms.

3 Synthesis of Sorting Algorithms

Synthesis on our logic programming system is user-guided. After the user has input the specifi-
cation, he can ask the system to derive a recursive logic procedure with specified recursive calls,
or folds, by defining a folding problem. In response, the system will try and solve this problem
(with further user-guidance) by top-down decomposition followed by bottom-up composition of
subsolutions.

3.1 Data Partitioning by Value

The way the user chooses to specify the recursive calls represents a design decision on his part.
For example, a high-level design decision might be to aim for an algorithm which concatenates
three sorted sublists to form the output list, i.e. the algorithm will recursively split the inter-
mediate input list into 3 sublists and then sort each sublist before concatenating them to give
the intermediate result. This decision defines the form of the fold to be sought, and is expressed
by the folding problem

fold sort(a,bc’d) to {sort(e,b),sort(f,c),sort(g,.d)} .
This amounts to asking how the partitioning is to be done, i.e. how e, f,g are to be formed.

The solution of the folding problem will be a (logic) procedure for doing so.

To illustrate the way a folding problem is solved on the system, we outline the steps taken
for this example. The general approach is top-down decomposition: a folding problem is de-
composed into subproblems which in turn are decomposed into further subproblems and so on,
until the subproblems can be solved by matching their requirements with a clause directly or
indirectly derivable from the given specifications. (Full details of our solution strategy are given
in a separate paper,[13] and we shall show only the tree of folding problems for each synthesis
in this paper.)

For this example, using the definition
sort(a, b) <> perm(a, b) A ord(b)
from the specification, we decompose the folding problem into two:

(i) fold perm(a, b'c’d) to {permf(e, b), perm(f, ¢), perm(g, d)} ;



(ii) fold ord(b’c'd) to {ord(b), ord(c), ord(d)} .

It should be obvious that the solutions to these problems are respectively the following clauses
(which can be derived from the definitions of perm and ord):

(i) perm(a, b'c’d) < perm(a, ¢ f°g) N perm(e, b) A perm(f, ¢) A perm(g, d)

(ii) ord(b’c’'d) < b<c A ¢<d A ord(b) A ord(c) A ord(d)
where p < ¢ <> Vzy.(r <y < mem(z,p) A mem(y,q)) .

Therefore we obtain the following solution to the original problem:
sort(a,b’c’'d) + part(a,e, f,g) A sort(e,b) A sort(f,c) A sort(g,d) (1)

where
part(a,e, f,g) <> perm(a, e’ fg) N e<f AN f<g . (2)

Thus in order to achieve the stated objective of producing the output by concatenating 3 sorted
sublists, the correct way to partition an intermediate input list a is to split it by value into 3
sublists, i.e. e, f,g such that e < f << g. This may seem obvious, but it is interesting to see it
synthesised from a folding problem expressing our high-level objective.

However, no specific algorithms have been derived so far, since part does not completely
specify how the partitions are to be formed (or in logic programming terms, there is no procedure
for part). Further design decisions must be made as to how to form the partitions.

3.1.1 Partitioning by Pivot
Suppose we choose the middle partition to be a single-element list [f]. Then we have (from (1))
sort(a, b[f'd) « part(a,e,[f],g) A sort(e,b) A sort(g,d) 3)

in which f acts as a pivot for partitioning a into e and g. This clause thus defines the family of
quick sort algorithms using pivot partitioning.

Each algorithm of the family chooses a different element of a to be the pivot f, thus defining
part in a different way. To complete its synthesis, it remains to synthesise a procedure for the
corresponding definition of part. For example, Quicksort (the original quick sort algorithm due
to Hoare[10]) uses the first element of a as the pivot. In this case, we have (writing a as h.t)

sort(h.t,b'[h]'d) < part(h.t,e,[h],g) A sort(e,b) A sort(g,d) .

To complete the synthesis of Quicksort, it remains to synthesise a procedure for part. However
we note that in this case part can be simplified and replaced by a new predicate partl defined
by

partl(t,e h,g) < perm(t,e’g) AN e<[h] A [h]<g . (4)

So we proceed to synthesise a procedure for partl instead. Now each element of ¢ will be put
in either e (the first partition) or g (the second one). So we decompose ¢ into head and tail z.y
and pose the following folding problems:

(i) fold partl(zr.y,z.u,v,w) to {partl(y,u,v,w)} ;

(ii) fold partl(z.y,u,v,z.w) to {partl(y,u,v,w)} .



(Note that these contain a further decision that x will be made the head of the new partition
it joins. This is obviously arbitrary since x can be put in any position of the new partition.)

The solutions to these problems on our system are respectively:

(i) partl(z.y,z.u,v,w) < x <v A partl(y,u,v,w) ;

(ii) partl(z.y,u,v,z.w) < x >v A partl(y,u,v,w) ,

which means that it is correct to put x at the head of the new partition v or w only if x is respec-
tively less or greater than the pivot v. These two clauses now completely define partl(¢, e, h, g)
(initially, z.y = ¢t and v = h; and e = u and g = w at the end of part execution). The synthesis
of Quicksort is thus complete (except for base cases, which can be derived directly from the
specifications).

Other quick sort algorithms such as Quickersort,[17] which uses the middle element of a as
the pivot, can be synthesised in a similar manner.

Returning to (3), the general definition of quick sort using pivot partitioning, we can derive
from this another class of algorithms which do not sort a partition if it is already ordered,
namely those based on Bsort.[21] To test for orderedness, we define a new predicate, isord,
related to ord, by

isord(¢,By) <> ord({) AN Bp=T V By=1

i.e. isord(¥, By) is true if £ is ordered and By is set to T. Thus By is a flag which if set indicates
that ¢ is ordered. (Note that if By is not set, then we know nothing about the orderedness of
£. This means that the resulting algorithms will only check for a sufficient condition for the
partitions to be ordered, not a necessary one.)

To obtain these algorithms, we make use of isord to transform the recursive calls to sort
in the body of the quick sort definition, and enumerate the possible cases of sorted partitions.
The result is the following procedure:

sort(a, €'[f]g) <« part(a, e, [f], g) A
isord(e, T) A isord(g, T)
sort(a, €'[f]'d) <« part(a, e, [f], g) A
isord(e, T) A isord(g, L) A sort(g, d)
sort(a, b[f]'g) < part(a, e, [f], g) A
isord(e, L) A isord(g, T) A sort(e, b)
sort(a, b [f]'d) <« part(a, e, [f], g) A
isord(e, 1) A isord(g, L) A sort(e, b) A sort(g, d) .

This then defines the class of Bsort algorithms.

As before, to synthesise a particular algorithm of this family, it remains to synthesise a
procedure for the corresponding definition of part. For example, Bsort itself uses the middle
element of a as the pivot, and so the last clause of its procedure for instance will be

sort(a, b’ [m|'d) < middle(a, m, r) A partl(r, e, m, g) A
isord(e, L) A isord(g, L) A sort(e, b) A sort(g, d)

where middle(a, m, r) means that m is the middle member of a, and that removing m from a
leaves r, and partl is as defined by (4). Assuming a procedure for middle, we could use this
procedure as a basis for Bsort.

Finally, we remark that the idea of testing for orderedness of a partition can be equally
applied to other algorithms based on partitioning by value. The synthesis of Bsort therefore
serves as an example of how to incorporate this in the synthesis of such algorithms.



3.1.2 Partitioning by Interval
If we choose the middle partition to be empty, then instead of (3) we have
sort(a,b’d) < part(a,e,[],g9) A sort(e,b) A sort(g,d) . (5)
Replacing part by a simpler new predicate part2 defined by
part2(a,e’g) < perm(a,e,g) N e<g

and using the same reasoning for Quicksort, we pose the following folding problems to synthesise
a procedure for part2:

(i) fold part2(zr.y,z.u,w) to {part2(y,u,w)} ;

(ii) fold part2(zr.y,u,z.w) to {part2(y,u,w)} .
The solutions are respectively:

(i) part2(z.y,z.u,w) « part2(y,u,w) A [z]<w ;

(ii) part2(z.y,u,z.w) < part2(y,u,w) A [z]>u ,

where p > q < Vzy.(z >y < mem(z,p) A mem(y,q)) .

Assuming procedures for predicates corresponding to <1 and >, this defines quick sort by
interval partitioning.[20, 7] Instead of using a single value for partitioning, it uses the interval
[u',w'], where 4/ = max; u(i) and w' = min; w(i) respectively, which changes dynamically as
the partitions are built up.

3.1.3 Partitioning by Least Member

Returning to (1), suppose we now choose the first partition e to be empty, and the second
partition f to be a single-element list as in the preceding section, i.e. we choose to partition a
into a singleton list [f] and one other sublist g. This is represented by the predicate Impart
defined by

Impart(a, f,g) < part(a,[],[f].9) .

1.e.
lmpart(a, f,g) < perm(a, f.g) A [f]<g .

This implies that f must be the minimum of a, and so lmpart defines partitioning by least
member.

Putting lImpart into (1), we get
sort(a, f.d) < lmpart(a, f,g) A sort(g,d) .

Both selection sort and bubble sort can be derived from this general definition by synthesising
different procedures for Impart.

Suppose we pose the following folding problems:

(i) fold lmpart(z.y, m, x.r) to {lmpart(y, m, r)} ;

(ii) fold lmpart(z.y, =, y) to {lmpart(y, m, r)} ,



expressing the design decisions (i) to add x to the front-end of the current second partition r
and (ii) to make y the new second partition if z is already the minimum in z.y. Clearly there
are alternative ways to form the new second partition in the second case. Note, in addition,
that the first case contains a further (arbitrary) decision to make x the head of the current
second partition. This implies that in this case the second partition will preserve the ordering
of the original input list. Now since the second case does not change this ordering either, it
follows that the final version of the second partition will preserve the original ordering of the
elements. Therefore these two problems in effect specify the partitioning process of selection
sort.

Solving these problems on the system, we get

(i) lmpart(z.y, m, x.r) + lmpart(y, m, r) A m<z ;

(ii) lmpart(z.y, z, y) < lmpart(y, m, r) A z <m ,

which means that it is correct not to update the current minimum m, and to append z to (the
front-end of) r to form the new second partition if it is greater than m; and it is correct to
update m by setting it to x, and to set the new second partition to y if = is less than m.

We could have set the folding problem
fold lmpart(z.y, =, m.r) to {lmpart(y, m, r)}

as the second folding problem for lmpart to form the new second partition by appending m
to (the front-end) of r in case y < m before updating m to z. That is each new partition will
now have its minimum in its head. Consequently, the ordering of the original input list will not
be preserved in the second partition (unless its head is already its minimum). In fact this new
folding problem together with the first problem for selection sort correspond to the partitioning
process of bubble sort.

Solving it on the system gives

lmpart(z.y, z, m.r) < lmpart(y, m, r) A z<m .

Traditionally, bubble sort is made more efficient in various ways, one of which being to test
for orderedness of the new partition. These versions can be synthesised in a similar manner to
Bsort.

It is also worth noting that heap sort employs a partitioning process with the same under-
lying logic as bubble sort. Therefore it would be possible to synthesise a procedure for heap sort
by solving the same folding problems if the lists involved were actually representations of heaps
and if there was a procedure for building a heap from an ordinary list. However, we believe
that the proper approach is to specify tree sorting and then synthesise various procedures for
transforming lists to trees with different properties (e.g. heaps), and procedures for sorting
these data structures. Such an approach based on data structure transformation is discussed in
Section 3.4 for lists whose elements are themselves lists. Trees, however, are beyond the scope
of this paper, and we do not synthesise any tree sorting algorithm.

To conclude this section on partitioning by value, we remark that there are many alternatives
to explore. We could take the partition definition and force the outer 2 partitions to be single-
element lists. There are minor variations like choosing different pivots, constructing partitions
from different ends, splitting into more than 3 partitions, finding more elaborate base cases. Of
course, we could also synthesise improved versions of these algorithms which test for orderedness
during partitioning.



3.2 Data Partitioning by Position

Instead of partitioning the input list ¢ by value, we can partition a by position, i.e. split it
at some specified position into two sublists which are not necessarily ordered. In this case, we
have

sort(a,b) < ppart(a,a;,az) A sort(ai’ag,b)

where ppart(a,ay,as) means that partitioning a by position produces a;’as. We shall assume
that a procedure for ppart has already been specified somewhere else. Suppose we aim to
design an algorithm to sort a by recursively partitioning it using the given ppart procedure
and sorting the sublists, and then somehow merging their sorted versions into an ordered list.

This design decision can be represented by the folding problem
fold sort(a;"as,b) to {sort(ai,c),sort(as,d)})
whose solution is
sort(a; ag,b) < sort(ai,c) A sort(az,d) A merge(c,d,b)
together with the following definition for merge :
merge(c,d,b) <» (perm(c'd,b) A ord(b)) < (ord(c) A ord(d)) .
Depending on the given definition of ppart, we can derive procedures for merge sort and

insertion sort. For merge sort, ppart would split a into two equal halves, and to complete its
synthesis, it remains to synthesise a procedure set for merge.

Since the current sublists ¢, d are ordered, the ordering of their elements will be preserved
in the new merged list. Therefore, for each current sublist, it suffices to add the elements one
at a time to the current merged list. So we set the following folding problems:

(i) fold merge(z.c, d, z.t) to {merge(c, d, t)} ;
(ii) fold merge(c, y.d, y.t) to {merge(c, d, t)} ,

to express the decision to set the head of the new merged list to the head of one of the new
sublists.

Solving the first problem gives
merge(z.c, y.d, ©.t) < <y A merge(c, y.d, t) .

which means that it is correct to make the head of the new first partition the head of the new
merged list if it is less than the head of the current second partition. Similarly, the second
folding problem will have the solution

merge(z.c, y.d, y.t) < y <z A merge(z.c, d, t) .

Thus we have derived a procedure for merge sort.

If ppart splits a into aj.ag, i.e. a; now is a single element, then we have (since ¢ = [a1]):
sort(a,b) < ppart(a,[a1],a2) A sort(az,d) A merge([ai],d,b) .
Now if we define a new predicate insert by
insert(z,d,b) < merge([z],d,b)

(where z is a single element), then to synthesise a procedure set for insert we need to solve the
following folding problems derived directly from those for merge:



(i) fold insert(z,d,z.t) to insert(x,d,t) ;

(ii) fold insert(z,y.d,y.t) to insert(x,d,t) .

Naturally the solutions to these problems can be derived from those for merge. Problem
(i) is in fact a base case because 1z is a single element, and its solution is

insert(z,y.d,z.y.d) + xz<vy .
Problem (ii) has the solution,
insert(z,y.d,y.t) < y < x A insert(z,d,t) .

Thus we have derived a procedure for insertion sort.

3.3 Data Partitioning by Partial Value

So far, we have been dealing with sorting by comparisons. The elements of the lists involved
are members of a linearly ordered set with no known structure, and comparison is the only
operation available to determine the relative sizes of any pair of elements. Moreover, the
comparison operation (or the ordering relation <) is indivisible.

However, sometimes the list elements are known to have a linear ordering which is a lexi-
cographical combination of suborderings. For example, if they are integers within a reasonable
range, then they can be each represented as a fixed number of bits, with an ordering relation
It defined by:

1t(0, z, y) <« bit(0, =, 0) A bit(0, y, 1)
It(n, z, y) <+ bit(n, z, 0) A bit(n, y, 1)
It(s(n), =, y) <« eqbit(s(n), z, y) A lt(n, z, y)
where
eqbit(n, z, y) < 3b(bit(n, x, b) A bit(n, y, b)) ,
the integers 0, 1, 2, ... are represented by 0, s(0), s(s(0)), ..., s being the successor function;

and bit(n, x, b) means that bit n of the integer z is b (0 or 1). Bit 0 is the least significant bit
in this scheme.

We can synthesise sorting algorithms which sort by decomposing the ordering relation in
this way. For the sake of concreteness, we will restrict the syntheses to the bit scheme described
above, and assume that all the integers are of length n 41 bits. To synthesise these algorithms,
the bit position n must be referred to by the sort predicate, and to this end we generalise sort
predicate to sortn such that:

sortn(n, a, b) <+ perm(a, b) A ordn(n, b)
ordn(n, b) <+ VaVy(lt(n,z,y) + before(z, y, b)) .

Thus sortn(n, a,b) means that b is the result of sorting a on bits 0 to n.

Now suppose we aim to synthesise an algorithm which forms the list sorted on bits 0 to
(n+1) (the most significant bit) by concatenating two sublists sorted on bits 0 to n recursively.
This means that the algorithm will recursively split the intermediate input list into 2 sublists
and then sort each sublist before concatenating them to give the intermediate result. This
design decision is expressed by the folding problem:

fold sortn(s(n), a, b’c) to {sortn(n, d, b), sortn(n, e, c)}.



Solving this, we get
sortn(s(n),a,b’c) < pvpart(s(n),a,d,e) A sortn(n,d,b) A sortn(n,e,c)
where pvpart is defined by
pvpart(n,a,d,e) < perm(a,d’e) A allbits(n,d,0) A allbits(n,e, 1) .

The correct way to form d, e therefore is to partition a by partial value, i.e. into one list, d,
with 0 in bit (n + 1) and another, e, with 1 in bit (n + 1).

We note the similarity between the specification for pvpart and that for part earlier, since
d <, e «< allbits(n, d, 0) A allbits(n, e, 1)
where <, is defined by
d<npe < VaVy(lt(n,z,y) < mem(z, d) A mem(y, €))

In fact, we can view pvpart as part defined on bits, with the current most significant bit as
“pivot”, for partitioning the current input list.

To complete the synthesis, we synthesise a recursive procedure for pvpart. By analogy with
part we can specify two folding problems quite precisely:

(i) fold pvpart(n, z.y, z.u, w) to {pvpart(n, y, u, w)} ;

(ii) fold pvpart(n, z.y, u, z.w) to {pvpart(n, y, u, w)} ,

whose solutions are respectively:
(i) pvpart(n, z.y, z.u, w) < bit(n, z, 0) A pvpart(n, y, u, w) ;
(ii) pvpart(n, z.y, u, z.w) « bit(n, z, 1) A pvpart(n, y, u, w) .

This defines in fact the radiz exchange sort algorithm for binary numbers.

Suppose now we aim for an algorithm which sorts the input list ¢ on the least significant
bits first (in contrast to radiz ezchange sort), and therefore set the following folding problem:

fold sort(s(n),a,b) to {sort(n,a,c)}.

Clearly, at each stage the list ¢ which is sorted on bits 0 to n has to be used somehow to produce
b which will be sorted on bits 0 to (n+ 1). The solution of this folding problem should indicate
how. Indeed, solving the problem, we get

sortn(s(n),a,d’e) < sortn(n,a,c) A pvpartl(s(n),c,d,e)
where
pvpartl(n,c,d,e) <« perm(c,de)

A osublist(d,c) A allbits(n,d,0) A
A osublist(e,c) A allbits(n,e, 1) .

To complete the synthesis, we synthesise a procedure for pvpartl, by setting the following
two folding problems:

(i) fold pvpartl(n,z.y,z.u,w) to {pvpartl(n,y,u,w)} ;



(ii) fold pvpartl(n,z.y,u,z.w) to {pvpartl(n,y,u,w)} ,
whose solutions are respectively:

(i) pvpartl(n,z.y,z.u,w) <+ bit(n,z,0) A pvpartl(n,y,u,w) ;

(ii) pvpartl(n,z.y,u,z.w) < bit(n,z,1) A pvpartl(n,y,u,w) .

Note that pvpartl is in fact identical to pvpart, even though their definitions look different.
This is really only to be expected, since they both partition a list on a given bit.

This in fact defines the distribution sort algorithm for binary numbers.

3.4 Data Structure Transformation

In this section, we consider data structure transformation in the style of Hansson & Téarnlund,[9]
and synthesise sorting algorithms which work on a different data structure from lists. These
algorithms are related to some of the algorithms we have already synthesised in the previous
sections, and we will therefore make use of the relevant results in synthesising these algorithms.

First we define the new data structure, which we will call a blocklist, or a b-list. This is
simply a list of lists, each member list being called a block. Naturally, b-lists model the situation
in many applications where sorting is done in blocks, either externally on a serial processor or
in parallel on a parallel system. Here the list to be sorted has to be split up into blocks which
the main or local memory can accommodate. Each block is normally assumed to be already
ordered (if it is not, then it can always be sorted on its own first), and the overall task is to
reorganise the blocks so that their concatenation gives the final sorted list.

Given a list to be sorted externally or in parallel, transforming it to a b-list is straightforward.
As suggested above, it is only necessary to split the list into blocks and then sort each block on
its own first. We shall therefore assume that the input list a is already a b-list with each block
already ordered, and define b-list sorting by the predicate bsort defined by:

bsort(a, b) «+ sort(bmap(a), bmap(b)) + presorted(a)

where bmap is a function mapping b-lists to lists defined by

bmap([]) =[]
bmap([a]) = a
bmap(ab) = bmap(a)"bmap(b)

for lists a, b (note that this function is not 1-1); and presorted is defined by

presorted([]) « T
presorted([a]) < ord(a)
presorted(a’b) < presorted(a) A presorted(b) .

This specification says that b-list b is a sorted version of b-list a if and only if the mapping
of b is the sorted version of the mapping of a, where a is known to consist of ordered blocks.

In the rest of this section, we synthesise two examples of algorithms for sorting b-lists. First
we find an analogue of merge sort. Here we have the input b-list split by position into two
(concatenated) b-lists, and

bsort(a,b) + bppart(a,a;,as) A bsort(ai’as)



where bppart is the equivalent for b-lists of ppart in data partitioning by position (see Section
3.2). Again, we assume bppart has been defined elsewhere.

The folding problem is:
fold bsort(a;’as, b) to {bsort(ay, c), bsort(ay, d)}
and its solution gives
bsort(ai’ag, [b]) < bsort(ag, [¢]) A bsort(ai, [d]) A merge(d, ¢, b)

where merge is as defined on page 8. This defines the external merge sort algorithm.

Our second sorting algorithm for b-lists is an analogue of bubble sort. Here, the folding
problem is:

fold bsort(a, [b]'c) to {bsort(d, c)},

i.e. we want to partition the presorted b-list a into a list b and a b-list ¢ which is ordered.
This partitioning is the equivalent for b-lists of data partitioning by least member as defined
by lmpart in Section 3.1.3.

Its solution gives
bsort(a, [b]'c) + blmpart(a, b, a’) A bsort(a’, ¢
where

blmpart(a, b, a’) <+ (b<bmap(a’) A ord(b) A presorted(a’) A
perm(bmap(a), b’bmap(a’))) + presorted(a) .

The blmpart predicate means that a presorted b-list a is split into an ordered list (or block) b
which consists of the least members of a, and a new b-list a’ which is the remainder of a and is
still presorted. That is it is an analogue of partitioning by least member for presorted b-lists.

To complete the synthesis, we synthesise a procedure for blmpart, by setting the following
folding problem:

fold blmpart([a]’d, ¢, [d]’e) to {blmpart(b, f, e)}.

This says that if f is the least member partition of b with e as the remainder, then we want ¢
to be the least member partition of [a]'b with [d]’e as the remainder. We expect ¢ and d to be
generated from a and f somehow.

The solution of this problem gives,
blmpart([a]'d, ¢, [d]e) < blmpart(b, f, ¢) A msplit(a, ¢, d,e,f) .
where msplit is defined by
msplit(a,c,d, e, f) < merge(a, f,c’d) A || <|f] .

It means that given an ordered list f and a presorted b-list e such that [f]"e is the least member
partitioning of some (presorted)b-list, say b, then the ordered lists ¢, d can be formed by merge-
splitting the ordered lists a, f so that [c|'[d] e is the least member partitioning of the presorted
b-list [a]’d.

This defines the block bubble sort algorithm. Similar parallel (block) sorting algorithms[2]
can be synthesised from other comparison-based list sorting algorithms.



4 Conclusion

We have demonstrated a strictly top-down synthesis of a large family of sorting algorithms. The
basis of the synthesis is logical deduction, and therefore all derived algorithms are automatically
partially correct with respect to their specifications. Completeness, however, is not guaranteed.

Compared to other work mentioned in Section 1, our derivation tree includes more algo-
rithms and has more symmetry. The use of our logic programming system for aiding the
syntheses has made this possible. Indeed many more algorithms could be added to this tree
with relatively little effort.

The classification of algorithms which our tree represents is interesting when compared to
other people’s schemes[12]. For example, our synthesis of quick sort using pivot partitioning
differs from Clark & Darlington’s and Green & Barstow’s, in that their quick sort puts the
pivot itself in either partition, whereas ours does not. As a result, we have been able to
synthesise Hoare’s Quicksort as a special case of our quick sort by pivot partitioning, whereas
they would not be able to derive it (or Bsort for that matter) from theirs. Consequently,
our classification of quick sort is different from theirs. Clark & Darlington classify quick sort
and selection sort, merge sort and insertion sort as related pairs in their tree, while Barstow
labels these pairs as “split-by-value” and “split-by-position”. We also use the labels of “data
partitioning by value” and “data partitioning by position”, but we have a finer distinction
between “data partitioning (by value) by pivot” for Quicksort and Bsort under quick sort
using pivot partitioning, “data partitioning (by value) by interval” for quick sort using interval
partitioning, and “data partitioning (by value) by least member for selection sort and bubble
sort.

Finally, as far as we know, our use of data partitioning by partial value and data structure
transformation is new. However, it is obvious that many variants of these algorithms, as well
as other algorithms can be added to these branches. In particular, many more block or parallel
algorithms[2] can be synthesised, to develop the data structure transformation branch itself
into a tree of such algorithms. Furthermore, another subclass of algorithms can be produced
by transformation to other data structures such as trees (e.g. heaps).
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