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Sign AnalysisSign Analysis

Determine the sign (+,-,0) of all expressions
The Sign lattice:

The full lattice is the map lattice: Vars → Sign
• where Vars is the set of variables in the program

?

+ - 0



3

3Static Analysis

Sign ConstraintsSign Constraints

The variable [[v]] denotes a map that gives the 
sign value for all variables at the program point 
after v

For variable declarations:
[[v]] = [id1→?, ..., idn→?]

For assignments:
[[v]] = JOIN(v)[id→eval(JOIN(v),E)

For all other nodes:
[[v]] = JOIN(v) =        [[w]]

w∈pred(v)
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Evaluating SignsEvaluating Signs

The eval function is an abstract evaluation:
• eval(σ,id) = σ(id)
• eval(σ,intconst) = sign(intconst)
• eval(σ, E1 op E2) = op(eval(σ,E1),eval(σ,E2))

The sign function gives the sign of an integer 

The op function is an abstract evaluation of the 
given operator
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Abstract OperatorsAbstract Operators
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MonotonicityMonotonicity

The     operator and map updates are monotone
Compositions preserve monotonicity
Are the abstract operators monotone? 

This is verified by a tedious manual inspection
Or better, run an O(n3) algorithm for an n×n table:
• ∀x,y,x’∈L: x x’ ⇒ x op y x’ op y
• ∀x,y,y’∈L: y y’ ⇒ x op y x op y’
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Increasing PrecisionIncreasing Precision

Some loss of information:
• (2>0)==1 is analyzed as ?
• +/+ is analyzed as ?, since e.g. ½ is rounded down

Use a richer lattice for better precision:

Abstract operators are now 8×8 tables

?

+ 0 -

1

+0 -0
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Constant PropagationConstant Propagation

Determine variables with a constant value
Similar to sign analysis, with basic lattice:

Abstract operator for addition:
+(n,m) = if (n≠? ∧ m≠?) { n+m } else { ? }

?

-1 0 1 2 3-2-3
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Constant FoldingConstant Folding

Exploiting constant propagation:
var x,y,z;

x = 27;

y = input,

z = 2*x+y;

if (x<0) { y=z-3; } else { y=12 }

output y;

var x,y,z; var y;

x = 27; y = input;

y = input; output 12;

z = 54+y;

if (0) { y=z-3; } else { y=12 }

output y;
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Interval AnalysisInterval Analysis

Compute upper and lower bounds for integers
Lattice of intervals:

Interval = lift({ [l,h] | l,h ∈N ∧ l ≤ h })
where:

N = {-∞, ..., -2, -1, 0, 1, 2, ..., ∞}
and intervals are ordered by inclusion:

[l1,h1]  [l2,h2] iff l2 ≤ l1 ∧ h1 ≤ h2
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The Interval LatticeThe Interval Lattice

[-∞,∞]

[0,0] [1,1] [2,2][-1,-1][-2,-2]

[0,1] [1,2][-1,0][-2,-1]

[2,∞]

[1,∞]

[0,∞]

[-∞,-2]

[-∞,-1]

[-∞,0]

[-2,0] [-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

⊥
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Interval Analysis LatticeInterval Analysis Lattice

The total lattice for a program point is:
L = Vars → Interval

that provides bounds for each (integer) variable

This lattice has infinite height, since the chain:
[0,0]  [0,1]  [0,2]  [0,3]  [0,4] ...

occurs in Interval
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Interval ConstraintsInterval Constraints

For the entry node:
[[entry]] = λx.[-∞,∞]

For assignments:
[[v]] = JOIN(v)[id→eval(JOIN(v),E))

For all other nodes:
[[v]] = JOIN(v) =      [[w]]

w∈pred(v)
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Evaluating IntervalsEvaluating Intervals

The eval function is an abstract evaluation:
• eval(σ,id) = σ(id)
• eval(σ,intconst) = [intconst,intconst]
• eval(σ, E1 op E2) = op(eval(σ,E1),eval(σ,E2))

Abstract arithmetic operators:
• op([l1,h1],[l2,h2]) =

[ min x op y, max x op y]

Abstract comparison operators:
• op([l1,h1],[l2,h2]) = [0,1]

x∈[l1,h1], y∈[l2,h2] x∈[l1,h1], y∈[l2,h2]
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FixedFixed--Point ProblemsPoint Problems

The lattice has infinite height, so the fixed-point 
algorithm does not work

In Ln the sequence of approximants:
Fi(⊥, ⊥, ..., ⊥)

need never converge 
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WideningWidening

Introduce a widening function ω: Ln → Ln so that:

(ω F)i(⊥, ⊥, ..., ⊥)

converges on a fixed-point that is larger than all of 
the approximants Fi(⊥, ⊥, ..., ⊥)

The function ω coarsens the information
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Turbo ChargingTurbo Charging

F ω
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Widening for IntervalsWidening for Intervals

The function ω is defined pointwise
Parameterized with a fixed finite subset B⊂N
• must contain -∞ and ∞
• typically seeded with all integer constants occurring in 

the given program
On single intervals:

ω([l,h]) = [ max{i∈B|i≤l}, min{i∈B|h≤i} ]

Finds the nearest enclosing allowed interval
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Correctness of WideningCorrectness of Widening

Widening works when:
• ω is an increasing and monotone function
• ω(L) is a finite lattice

Fi(⊥, ⊥, ..., ⊥)     (ω F)i(⊥, ⊥, ..., ⊥)
since F is monotone and ω is increasing

ω F is a monotone function ω(L)→ω(L)
so the fixed-point exists
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NarrowingNarrowing

Widening shoots over the target
Narrowing may improve the result by applying F
Define:

fix =      Fi(⊥, ⊥, ..., ⊥)     fixω =       (ω F)i(⊥, ⊥, ..., ⊥)

then fix fixω
But we also have that:

fix F(fixω)     fixω

so applying F again may improve the result
This can be iterated arbitrarily many times
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Correctness of NarrowingCorrectness of Narrowing

F(fixω)     ω(F(fixω)) = (ω F)(fixω) = fixω
• by induction and monotonicity of F we also have:

Fi+1(fixω)     Fi(fixω)     fixω

fix =     Fi(⊥, ⊥, ..., ⊥) =     Fi+1(⊥, ⊥, ..., ⊥)    
F(    Fi(⊥, ⊥, ..., ⊥)) = F(fix)     F(fixω)

• by induction we also have:
fix Fi(fixω) 
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Backing UpBacking Up

F ω



23

23Static Analysis

Divergence in ActionDivergence in Action

y = 0;

x = 7;

x = x+1;

while (input) {  

x = 7;

x = x+1;

y = y+1;

}

[x → ⊥, y → ⊥]
[x → [8,8], y → [0,1]]
[x → [8,8], y → [0,2]]
[x → [8,8], y → [0,3]]
...
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Widening in ActionWidening in Action

y = 0;

x = 7;

x = x+1;

while (input) {  

x = 7;

x = x+1;

y = y+1;

}

[x → ⊥, y → ⊥]
[x → [7,∞], y → [0,1]]
[x → [7,∞], y → [0,7]]
[x → [7,∞], y → [0,∞]]

B = {-∞, 0, 1, 7, ∞}
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Narrowing in ActionNarrowing in Action

y = 0;

x = 7;

x = x+1;

while (input) {  

x = 7;

x = x+1;

y = y+1;

}

[x → ⊥, y → ⊥]
[x → [7,∞], y → [0,1]]
[x → [7,∞], y → [0,7]]
[x → [7,∞], y → [0,∞]]

[x → [8,8], y → [0,∞]]

B = {-∞, 0, 1, 7, ∞}
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Widening FunctionsWidening Functions

A simple generic widening function:

ω(x) = 

A difficult widening function (regular languages):

x if x is small enough

otherwise

∅

Σ*

{a} ⊆ {a,ab} ⊆ {a,ab,abb} ⊆ ...    → {ab*}

This is essentially machine learning...

ω
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Information in Conditions Information in Conditions 

x = input;

y = 0;

z = 0;

while (x>0) {

z = z+x;

if (17>y) { y = y+1; }

x = x-1;

}

The interval analysis (with widening) concludes:
x = [-∞,∞],  y = [0,∞],   z = [-∞,∞]
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Modeling ConditionsModeling Conditions

Add two artifical statements

The statement assert(E) models that E is true
in the current program state
It causes a runtime error otherwise

The statement refute(E) models that E is false
in the current program state
It causes a runtime error otherwise
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Encoding Conditions Encoding Conditions 

x = input;

y = 0;

z = 0;

while (x>0) {

assert(x>0);

z = z+x;

if (17>y) { assert(17>y); y = y+1; }

x = x-1;

}

refute (x>0);

Preserves semantics since
assert and refute are 
guarded by conditions
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Constraints for Assert and RefuteConstraints for Assert and Refute

A trivial but sound constraint is:
[[v]] = JOIN(v)

A non-trivial constraint for assert(id>E):
[[v]] = JOIN(v)[id→gt(JOIN(v)(id),eval(JOIN(v),E))]

where
gt([l1,h1],[l2,h2]) = [l1,h1]  [l2,∞]

Similar constraints are defined for the dual cases
More tricky to define for all conditions...
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Exploiting Conditions Exploiting Conditions 

x = input;

y = 0;

z = 0;

while (x>0) {

assert(x>0);

z = z+x;

if (17>y) { assert(17>y); y = y+1; }

x = x-1;

}

refute (x>0);

The interval analysis now concludes:
x = [-∞,0],  y = [0,17],   z = [0,∞]
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Branch CorrelationsBranch Correlations

With assert and refute we have a simple form of 
path sensitivity

But it is insufficient to handle correlation of 
branches in program:

if (17 > x) { ... }

...

if (17 > x) { ... }

...
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Open and Closed FilesOpen and Closed Files

Built-in functions open() and close() on a file

Requirements:
• never close a closed file
• never open an open file

We want a static analysis to check this...

openclosed

open()

close()
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A Tricky ExampleA Tricky Example

if (condition) {

open();

flag = 1;

} else {

flag = 0;

}

...

if (flag) {

close();

}
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The Naive Analysis (1/2)The Naive Analysis (1/2)

The lattice models the status of the file:

L = (2{open,closed},⊆)

For every CFG node, v, we have a constraint 
variable [[v]] denoting the status after v

JOIN(v) =        [[w]]

{open,closed}

{open} {closed}

∅

∪
w∈pred(v)
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The Naive Analysis (2/2)The Naive Analysis (2/2)

Constraints for interesting statements:
[[entry]] = {closed}
[[open()]] = {open}
[[close()]] = {closed}

For all other CFG nodes:
[[v]] = JOIN(v)

Before the close() statement the analysis 
concludes that the file is {open,closed}
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Context AwarenessContext Awareness

We need to keep track of the flag variable
Our second attempt is the lattice:

L = (2{open,closed}×2{flag=0,flag≠0},⊆×⊆)

Additionally, we add assert(...) and 
refute(...) to keep track of conditionals

Even so, we now only now that the file is 
{open,closed} and that flag is {flag=0,flag≠0}
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Relational AnalysisRelational Analysis

We need an analysis that keeps track of relations
between variables

This requires that we maintain multiple abstract 
states per program point, one for each context

For the file example we need the lattice:

L = C → 2{open,closed}

where C = {flag=0,flag≠0} is the set of contexts
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Enhanced ProgramEnhanced Program

if (condition) {

assert(condition);

open();

flag = 1;

} else {

refute(condition);

flag = 0;

}

...

if (flag) {

assert(flag);

close();

} else {

refute(flag);

}
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Relational Constraints (1/2)Relational Constraints (1/2)

For the file statements:
[[entry]] = λc.{closed}
[[open()]] = λc.{open}
[[closed()]] = λc.{closed}

For flag assignments:

[[flag = 0]] = [flag=0→∪ JOIN(v)(c), flag≠0→∅]

[[flag = n]] = [flag≠0→∪ JOIN(v)(c), flag=0→∅]

[[flag = E]] = λd.∪JOIN(v)(c)

c∈C

c∈C

infeasible

c∈C
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Relational Constraints (2/2)Relational Constraints (2/2)

For assert and refute statements:

[[assert(flag)]] = 
[flag≠0→JOIN(v)(flag≠0),flag=0→∅]

[[refute(flag)]] = 
[flag=0→JOIN(v)(flag=0),flag≠0→∅]

For all other CFG nodes:

[[v]] = JOIN(v) = λc.       [[w]](c)∪
w∈pred(v)
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Generated ConstraintsGenerated Constraints

[[entry]] = λc.{closed}
[[condition]] = [[entry]]
[[assert(condition)]] = [[condition]]
[[open()]] = λc.{open}
[[flag = 1]] = [flag≠0→∪ [[open()]](c),flag=0→∅]
[[refute(condition)]] = condition
[[flag = 0]] = [flag=0→∪ [[refute(condition)]](c),flag≠0→∅]
[[...]] = λc.([[flag = 1]](c) ∪ [[flag = 0]](c))
[[flag]] = [[...]]
[[assert(flag)]] = [[flag≠0→[[flag]](flag≠0), flag=0→∅]
[[close()]] = λc.{closed}
[[refute(flag)]] = [flag=0→[[flag]](flag=0), flag≠0→∅]
[[exit]] = λc.([[close()]](c) ∪ [[...]](c))

c∈C

c∈C
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Minimal SolutionMinimal Solution

{open}{closed}[[exit]]

∅{closed}[[refute(flag)]]

{closed}{closed}[[close()]]

{open}∅[[assert(flag)]]

{open}{closed}[[flag]]

{open}{closed}[[...]]
∅{closed}[[flag = 0]]

{closed}{closed}[[refute(condition)]]

{open}∅[[flag = 1]]

{open}{open}[[open()]]

{closed}{closed}[[assert(condition)]]

{closed}{closed}[[condition]]

{closed}{closed}[[entry]]

flag ≠ 0flag = 0

We know the file is open before close()
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ChallengesChallenges

The static analysis designer must choose C
• often as combinations of predicates from conditionals
• iterative refinement gradually adds predicates

Exponential blow-up:
• for k predicates, we have 2k different contexts
• redundancy often cuts this down

Reasoning about assert and refute:
• how to update the lattice elements sufficiently precisely
• possibly involves theorem proving
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ImprovementsImprovements

Run auxiliary analyses first, for example:
• constant propagation
• sign analysis

will help in handling flag assignments

Dead code propagation, change:
[[open()]] = λc.{open}

into the still sound but more precise:
[[open()]] = λc.if JOIN(v)(c)=∅ then ∅ else {open}
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Interprocedural AnalysisInterprocedural Analysis

Analyzing the body of a single function:
• intraprocedural analysis

Analyzing the whole program with function calls:
• interprocedural analysis

The alternative is to:
• analyze each function in isolation
• be maximally pessimistic about results of function calls
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CFG for Whole ProgramsCFG for Whole Programs

Construct a CFG for each function
Then glue them together to reflect function calls

Assume that all function calls are of the form:

id = f(E1, ..., En);

This can always be obtained by rewriting



48

48Static Analysis

Shadow VariablesShadow Variables

Introduce some extra variables in the program

For every function f the variable ret-f denoting 
its return value
For every call site with index i a variable call-i
denoting the computed value
For every local or formal x and call site with index 
i a register save-i-x
For every formal x and every call site with index i
a temporary variable temp-i-x
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Calling and Called FunctionCalling and Called Function

x = f(E1, ..., En);

var x1, ..., xk;

return E;

function g(a1, ..., an) function f(b1, ..., bm)
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Glued TogetherGlued Together

bj = save-i-bj
xj = save-i-xj
x = call-i

var x1, ..., xk;

ret-f = E;

save-i-bj = bj
save-i-xj = xj
temp-i-aj = Ej

aj = temp-i-aj

call-i = ret-f

function g(a1, ..., an) function f(b1, ..., bm)
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Example ProgramExample Program

foo(x,y) {

x = 2*y;

return x+1;

}

main() {

var a,b;

a = input;

b = foo(a,17);

return b;

}
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Resulting CFGResulting CFG

foo(x,y) {

x = 2*y;

return x+1;

}

main() {

var a,b;

a = input;

b = foo(a,17);

return b;

}

var a,b

a = input

save-1-a = a

save-1-b = b

temp-1-x = a

temp-1-y = 17

x = temp-1-x

y = temp-1-y

x = 2*y

ret-foo = x+1

call-1 = ret-foo

a = save-1-a

b = save-1-b

b = call-1

ret-main = b
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False Control FlowFalse Control Flow

foo(a) {

return a;

}

bar() {

var x;

x = foo(17);

return x;

}

baz() {

var y;

y = foo(18);

return y;

}

var x

save-1-x = x

a = 17

call-1 = ret-foo

x = save-1-x

x = call-1

ret-bar = x

var y

save-2-y = y

a = 18

call-2 = ret-foo

y = save-2-y

y = call-2

ret-baz = y

ret-foo = a
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False Control FlowFalse Control Flow

foo(a) {

return a;

}

bar() {

var x;

x = foo(17);

return x;

}

baz() {

var y;

y = foo(18);

return y;

}

var x

save-1-x = x

a = 17

call-1 = ret-foo

x = save-1-x

x = call-1

ret-bar = x

var y

save-2-y = y

a = 18

call-2 = ret-foo

y = save-2-y

y = call-2

ret-baz = y

ret-foo = a

Constant propagation
analysis would fail
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Polyvariance vs. MonovariancePolyvariance vs. Monovariance

A polyvariant analysis creates multiple copies of 
the CFG for the body of a called function

A monovariant analysis uses only one copy

Strategies determine the number of copies:
• the simplest is one copy for each call site
• dynamic heuristics are also possible
• important that only finitely many copies are created
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Polyvariant CFGPolyvariant CFG

var x

save-1-x = x

a = 17

call-1 = ret-foo

x = save-1-x

x = call-1

ret-bar = x

var y

save-2-y = y

a = 18

call-2 = ret-foo

y = save-2-y

y = call-2

ret-baz = y

ret-foo = a ret-foo = a

Constant propagation
analysis would succeed
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Tree ShakingTree Shaking

Identify those functions that are never called
• safely remove them from the program
• reduces size of the compiled executable
• reduces size of CFG for subsequent analyses

Uses monovariant interprocedural CFG

Essentially a transitive closure computation
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Setting UpSetting Up

The lattice is the powerset of all function names

For every CFG node v we introduce a constraint 
variable [[v]] denoting the set of function that 
could possibly be called in the future

We let entry(id) denote the entry node in the CFG 
for the function named id
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Tree Shaking ConstraintsTree Shaking Constraints

For assignments, conditions and output:
[[v]] =         [[w]]  ∪ funcs(E)  ∪ [[entry(f)]]

For all other nodes:
[[v]] =         [[w]]

Here funcs is defined as:
• funcs(id) = funcs(intconst) = funcs(input) = ∅
• funcs(E1 op E2) = funcs(E1) ∪ funcs(E2)
• funcs(id(E1,...,En)) = {id} ∪ funcs(Ei) 

∪
w∈succ(v)

∪
f∈funcs(E)

∪
w∈succ(v)


