Dataflow Analysis
Widening and Narrowing
Path Sensitivity
Interprocedural Analysis

Static Analysis 2009

Michael I. Schwartzbach
Computer Science, University of Aarhus

Sign Analysis

= Determine the sign (+,-,0) of all expressions
= The Sign lattice:

I
+ - 0
\}l/

= The full lattice is the map lattice: Vars — Sign
* where Vars is the set of variables in the program

Static Analysis

Sign Constraints

= The variable [[v]] denotes a map that gives the
sign value for all variables at the program point
after v

= For variable declarations:

[[V]] = [id,—2, ..., id —?]
* For assignments:

[[V]] = JOIN(v)[id—eval(JOIN(V),E)
= For all other nodes:

[V]] = JOIN(v) = L] [[w]]

we pred(v)

Static Analysis

Evaluating Signs

= The eval function is an abstract evaluation:
e eval(o,id) = o(id)
» eval(o,intconst) = sign(intconst)
» eval(o, E; op E,) = op(eval(c,E,),eval(c,E,))

* The sign function gives the sign of an integer

= The op function is an abstract evaluation of the
given operator

Static Analysis

Abstract Operators

1

L)L) L] LfL

L)L) L L|L

L)L) L LfL

L)L) L L L

L)L) L L L

Static Analysis

Monotonicity

The LI operator and map updates are monotone
Compositions preserve monotonicity
Are the abstract operators monotone?

This is verified by a tedious manual inspection
Or better, run an O(n3) algorithm for an nxn table:

* VXyXeL:XEX = xopy EX opy
* VXyyelL:yEy =xopy Exopy

Static Analysis

Increasing Precision

= Some loss of information:
e (2>0)==1Isanalyzed as ?

e +/+Is analyzed as ?, since e.g. %2 is rounded down

= Use aricher lattice for better precision:

= Abstract operators are now 8x8 tables

Static Analysis

Constant Propagation

= Determine variables with a constant value
= Similar to sign analysis, with basic lattice:

?

///i;:?ff?fi7§§§§33§:i?\\\

-3 -2 -1 O 1 2 3

——c

1

= Abstract operator for addition:
+(n,m) =if (n2? Amz?){n+m}else{?}

Static Analysis

Constant Folding

= Exploiting constant propagation:

var X,VY,Z;
R = 2A7¢
y = input,
Z = 2*X+Yy;
if (x<0) { y=z-3; } else { y=12 }
output vy;
1l
var X,VY,Z; var yj;
x = 27; [:j> y = input;
y = input; output 12;
z = 54+y;
if (0) { y=2-3; } else { y=12 }
output vy;

Static Analysis

Interval Analysis

= Compute upper and lower bounds for integers
= Lattice of intervals:
Interval = lift({ [I,h] |LlheNAl<h})
where:
N={-c,..-2,-1,0,1, 2, ..., o}
and intervals are ordered by inclusion:
[, h;] = [, h,] iffl, <1, Ahy<h,

Static Analysis

10

10

The Interval Lattice

[_21_1:' [_llo] [Oll] [112]

[_21_2] [_11_1] [OIO] [111] [212]

Static Analysis 11

11

Interval Analysis Lattice

= The total lattice for a program point is:
L = Vars — Interval
that provides bounds for each (integer) variable

= This lattice has infinite height, since the chain:

[0,0l]E [0,1]1 E[0,21E [0,3]1 E[0,4] ...
occurs In Interval

Static Analysis

12

12

Interval Constraints

* For the entry node:

[[entry]] = AX. [-c0, o]
* For assignments:

[[V]] = JOIN(v)[id—eval(JOIN(V),E))
* For all other nodes:

[[VI] = JOIN(V) = LI [[w]]

we pred(v)

Static Analysis

13

13

Evaluating Intervals

= The eval function is an abstract evaluation:
« eval(c,id) = ofid)
» eval(o,intconst) = [intconst, intconst]
» eval(o, E; op E,) = op(eval(c,E,),eval(c,E,))
= Abstract arithmetic operators:
* op([ly,hy1, [l hy1)=
[min XopY, max X op Yl
xe [ly,hy1, ye [l,, h,] xe [ly,hq1, ye [l,, hyl
= Abstract comparison operators:
« op([ly,hy1, 00, 1) =[0,1]

Static Analysis 14

14

Fixed-Point Problems

= The lattice has infinite height, so the fixed-point
algorithm does not work

* In L" the sequence of approximants:

F(L, 1, ..., 1)
need never converge

Static Analysis

15

15

widening

* Introduce a widening function »: L" — L" so that:

(-F)(L, L, ..., 1)

converges on a fixed-point that is larger than all of

the approximants F'(L, ., ..., 1)

= The function w coarsens the information

Static Analysis

16

16

Static Analysis

Turbo Charging

17

17

Widening for Intervals

The function o Is defined pointwise

Parameterized with a fixed finite subset B&N
e must contain -« and

 typically seeded with all integer constants occurring in
the given program

On single intervals:

o([l,h]) = [max{ie B|i<l}, min{ic B|h<i}]

Finds the nearest enclosing allowed interval

Static Analysis 18

18

Correctness of Widening

* Widening works when:
* ® IS an increasing and monotone function
* (L) is a finite lattice

= F(L, L, ..., 1) E (oF)(L, L, ..., 1)
since F is monotone and w Is increasing

= o-F Is a monotone function o(L)—n(L)
so the fixed-point exists

Static Analysis 19

19

Narrowing

= Widening shoots over the target
= Narrowing may improve the result by applying F
= Define:
fix =] F(L, L, ..., 1) fixo=] (oF)i(L, L, ..., 1)

then fix E fixw

= But we also have that:
fix EF(fixw) E fixm

so applying F again may improve the result

= This can be iterated arbitrarily many times

Static Analysis 20

20

Correctness of Narrowing

= F(fixw) E o(F(fixm)) = (o-F)(fixw) = fixw
* by induction and monotonicity of F we also have:
F*i(fixw) & F(fixm) Efixm

= fix = LIF(L, L, ..., 1) = LIF*(L, L, ..., L)
C F(LFi(L, L, ..., 1)) = F(fix) E F(fixw)
* by induction we also have:
fix & Fi(fixw)

Static Analysis 21

21

Static Analysis

Backing Up

22

22

Divergence in Action

y = 0;
X = 7;
[x—> L y—>1]
X = X+1; [x—> [8,8],y—[0,1

{ [x —> [8,8],y— [0,2

while (input) [x - [8,8],y— [0,3

1]
1]
1]

X = 7;
X = X+1;
y = y+1;

AN

N

Static Analysis

23

23

Widening in Action

y = 0;
X = 7;
[x—> 1, v — 1]
X = X+1; [x > [7,],y— [0,1]]

{ [x = [7,%],y— [0,7]]

while (input) [x > [7,0],y — [0,00]]

X = 7;
X = X+1; B={-,0,1,7,c}
y = y+l;

AN

N

Static Analysis

24

24

Narrowing in Action

y = 0;
X = 7;
X = X+1;

while (input)

X = 7;
X = X+1;
y = y+1;

AN

{

[x—> 1, v — 1]

[x > [7,0],y— [0,1]]
[x = [7,e],y— [0,7]]
[x = [7,0],y — [0,0]]

[x > [8,8],y — [0,00]]

N

Static Analysis

B — {_001 01 11 71 Oo}

25

25

Widening Functions

= A simple generic widening function:

X If X Is small enough
mW(X) = :
() T otherwise

= A difficult widening function (regular languages):

Z*

{a} c {a,ab} c {a,ab,abb} c ... 2 {ab*}

This is essentially machine learning...

Static Analysis 26

26

Information in Conditions

X = 1lnput;

y = 0;

z = 0;

while (x>0)
Z = Z+X;
if (17>y) { v = y+1; }
X = xX-1;

}

* The interval analysis (with widening) concludes:

X = [_Ooloo]a Y— [Oloo]; Z = [_OOIOO]

Static Analysis

Modeling Conditions
= Add two artifical statements

= The statement assert (E) models that E is true
In the current program state

= |t causes a runtime error otherwise

= The statement refute (E) models that E is false
In the current program state

= |t causes a runtime error otherwise

Static Analysis 28

28

Encoding Conditions

X = 1nput;
y = 0;
z = 0;

while (x>0)
assert (x>0) ;

Z = Z+X;

Preserves semantics since
assert and refute are

guarded by conditions

if (17>y) { assert(1l7>y); vy = y+1; }

X = xX-1;

}

refute (x>0);

Static Analysis

29

29

Constraints for Assert and Refute

A trivial but sound constraint is:

[[V]] = JOIN(V)
A non-trivial constraint for assert (Id>E):

[[V]] = JOIN(V)[id—gt(JOIN(v)(id),eval(JOIN(v),E))]
where

gt(lly, hyl, Oy, hol) = [y, hy 1 Ty, o]

= Similar constraints are defined for the dual cases
More tricky to define for all conditions...

Static Analysis 30

30

Exploiting Conditions

7z =
if (
X =

}

refute

X = 1input;

y = 0;

z = 0;
while (x>0) {

assert (x>0) ;

Z+X;

17>y) A
x-1;

(x>0) ;

assert (17>y); y = y+1; }

* The interval analysis now concludes:
X:[“X’,O],Y:[O,l7], Z:[0,00]

Static Analysis

31

31

Branch Correlations

= With assert and refute we have a simple form of
path sensitivity

= But it is insufficient to handle correlation of
branches in program:

if (17 > x) { ... }

if (17 > x) { ...}

Static Analysis

32

32

Open and Closed Files

= Built-in functions open () and close () on afile

= Requirements:
e never close a closed file
* never open an open file

= We want a static analysis to check this...

Static Analysis

33

33

A Tricky Example

if (condition)

open (
flag

} else

) ;

Static Analysis

34

34

The Naive Analysis (1/2)

= The lattice models the status of the file:

{open,closed}

| = (2{open,closed},g) /\

{open} {closed}

~_

%,
= For every CFG node, v, we have a constraint
variable [[v]] denoting the status after v

= JOIN(v) =) [[w]]

we pred(v)

Static Analysis

35

35

The Naive Analysis (2/2)

= Constraints for interesting statements:
[entry]] = {closed}

[open ()]] = {open}

[close ()]] ={closed}

= For all other CFG nodes:
[[V]] = JOIN(v)

= Before the close () statement the analysis
concludes that the file is {open,closed}

Static Analysis

36

36

Context Awareness

= We need to keep track of the £1ag variable
= Qur second attempt is the lattice:

L = (2{open,closed]y2{flag=0,f1ag#0} —x)

= Additionally, we add assert (...) and
refute (...) to keep track of conditionals

= Even so, we now only now that the file is
{open,closed} and that flag is {f1ag=0,f1ag#0}

Static Analysis 37

37

Relational Analysis

= We need an analysis that keeps track of relations
between variables

* This requires that we maintain multiple abstract
states per program point, one for each context

= For the file example we need the lattice:

L=C — 2{Open,closed}

where C = {f1ag=0,f1ag=0} IS the set of contexts

Static Analysis 38

38

Enhanced Program

if (condition) {
assert(condition) ;
open () ;
flag =

} else {
refute (condition) ;
flag = 0;

}

ALy

if (flag) {
assert(flag) ;
close () ;

} else {
refute(flag) ;

}

Static Analysis

39

39

Relational Constraints (1/2)

= For the file statements:

[entry]] = Ac.{closed}
[open ()]] = Ac.{open}

[closed ()]] = Ac.{closed}

* For £1ag assignments:

Static Analysis

[flag = EJ| = Ad.\JIOIN(v)(c)

infeasible

[flag = 0]] = [flag=O%Lé JOIN(V)(c), £lag#0—d]

[flag = n]] = [flag#O%L)CJOIN(V)(C), flag=0—]
Ce

40

40

Relational Constraints (2/2)

= For assert and refute statements:

[[assert (flag)]] =
[f1ag#0—JOIN(V)(flag#0) , flag=0—>]
[[refute (flag)]] =
[£1ag=0—JOIN(V)(flag=0) , flag#0—>]

= For all other CFG nodes:

[v]] = JOIN(V) = Ac._J[w]](c)

we pred(v)

Static Analysis

41

41

Generated Constraints

[[entry]] = Ac.{closed}

[[condition]] = [[entry]]

[[assert (condition)]] = [[condition]]

[[open ()]] = Ac.{open}

[[flag = 1]] = [flagz0—.c[[open ()]](c),flag=0—]
[[refute (condition)]] = condition

[[flag = 0]] =[flag=0—U.c[[refute (condition)]](c),flag#0—J]

[...l1=2c.([flag = 1]l(c) v [[flag = 0]|(c))

[[£1ag]] = [[...]

[[assert (flag)]] =[[flagz0—[[flag]](flag#0), flag=0—J]
[[close ()]] = Ac{closed}

[[refute (flag)]] =[flag=0—[[flag]](flag=0), flag#0—J]
[[exit]] = Ac.([[close ()]I(c) W I. . -]1(c))

Static Analysis

42

42

Minimal Solution

flag = 0 flag # 0
[[entry]] {closed} {closed}
[[condition]] {closed} {closed}
[[assert (condition)]] {closed} {closed}
[lopen ()]] {open} {open}
[[flag = 1]] %) {open}
[[refute (condition)]] {closed} {closed}
[[flag = 0]] {closed})
[...1l {closed} {open}
[[£lag]] {closed} {open}
[[assert (flag)]] (%) {open}
[[close ()]] {closed} {closed}
[[refute (flag)]] {closed} @
[[exit]] {closed} {open}

Static Analysis

= We know the file is open before close () \:.9

43

43

Challenges

* The static analysis designer must choose C
» often as combinations of predicates from conditionals
o iterative refinement gradually adds predicates

= Exponential blow-up:
 for k predicates, we have 2k different contexts
» redundancy often cuts this down

» Reasoning about assert and refute:

* how to update the lattice elements sufficiently precisely
» possibly involves theorem proving

Static Analysis 44

44

Improvements

= Run auxiliary analyses first, for example:
e constant propagation
e sign analysis
will help in handling £1ag assignments

= Dead code propagation, change:
[[open ()]] = Ac.{open}
Into the still sound but more precise:
[[open ()]] = Ac.if JOIN(V)(c)=D then & else {open}

Static Analysis

45

45

Interprocedural Analysis

* Analyzing the body of a single function:
 intraprocedural analysis

* Analyzing the whole program with function calls:
* interprocedural analysis

* The alternative is to:
» analyze each function in isolation
* be maximally pessimistic about results of function calls

Static Analysis

46

46

CFG for Whole Programs

Construct a CFG for each function
Then glue them together to reflect function calls

Assume that all function calls are of the form:

|d — f(Ell R En);

= This can always be obtained by rewriting

Static Analysis

47

47

Shadow Variables

* Introduce some extra variables in the program

* For every function £ the variable ret - £ denoting
Its return value

= For every call site with index i a variable call-i
denoting the computed value

= For every local or formal x and call site with index
i aregister save-i-x

* For every formal x and every call site with index i
a temporary variable temp-1i-x

Static Analysis 48

48

function g(a;, ..., a,) function f£(b,, ..., b,)

Calling and Called Function

m

Static Analysis

return E;

!

49

49

function g(a,,

Glued Together

Static Analysis

oy ay) function f (b,

call-i = ret-f

ret-f

E;

50

50

Example Program

foo(x,y) {
X = 2*%y;

return x+1;

main () {
var a,b;
a = input;
b = foo(a,17);

return b;

Static Analysis

51

51

Resulting CFG

foo(x,y) {
—» save-l-a = a — X = temp-1-x
X = 2%y;
var a,b A 4
return X+1; Save_l_b — b y — temp-l-y
} Y\ \ 4
a = input — temp-1-x = a
main () V
a = save-l-a « | temp-1-y = 17 — X = 2%y
var a,b;
a = input '
- b ! b = save-1-b ret-foo = x+1
b = foo(a,17);
A
return b; b = call-1 — call-1 = ret-foo
ret-main = b

:

Static Analysis

foo(a) {

return a;

bar ()
var x;
x = foo(17);

return Xx;

baz () {
var v;
y = foo(18);

return y;

}

Static Analysis

False Control Flow

T

var X

save-1-Xx = X

T

var y

save-2-y =y

I

ret-bar = x

:

a = 17 #f# a = 18
call-1 = ret-foo ret-foo = a » call-2 = ret-foo
A A
X = save-1-x Yy = save-2-y
A 4 A4
x = call-1 y = call-2

I

ret-baz =y

:

53

foo(a) {

return a;

bar ()
var x;
x = foo(17);

return Xx;

baz () {
var v;
y = foo(18);

return y;

Static Analysis

False Control Flow

var X

save-1-Xx = X

Constant propagation
analysis would fail

a = 17 %ik a = 18
call-1 = ret-foo ret-foo a » call-2 = ret-foo
y A
X = save-1-x Yy = save-2-y
A \ 4
x = call-1 y = call-2

I

ret-baz =y

:

54

54

Polyvariance vs. Monovariance

= A polyvariant analysis creates multiple copies of
the CFG for the body of a called function

= A monovariant analysis uses only one copy

= Strategies determine the number of copies:
» the simplest is one copy for each call site
» dynamic heuristics are also possible
e Important that only finitely many copies are created

Static Analysis

55

55

Polyvariant CFG

Constant propagation
analysis would succeed

var X var y
A A
save-1-x = X save-2-y =y
A4 A
a = 17 %T T% a = 18
call-1 = ret-foo [« ret-foo = a ret-foo = a » call-2 = ret-foo
A A
X = save-1-x Yy = save-2-y
A 4 A 4
x = call-1 y = call-2
ret-bar = x ret-baz =y
Static Analysis 56

56

Tree Shaking

» |dentify those functions that are never called
» safely remove them from the program
» reduces size of the compiled executable
» reduces size of CFG for subsequent analyses

= Uses monovariant interprocedural CFG

» Essentially a transitive closure computation

Static Analysis

57

57

Setting Up

= The lattice is the powerset of all function names
= For every CFG node v we introduce a constraint

variable [[v]] denoting the set of function that
could possibly be called in the future

= We let entry(id) denote the entry node in the CFG
for the function named id

Static Analysis 58

58

Tree Shaking Constraints

* For assignments, conditions and output:
(V] = \UJ [W]] w funcs(E) u _JI[lentry(f)]]

we succ(v) fe funcs(E)

= For all other nodes:
[v] = \UJ [wl]

we succ(Vv)
= Here funcs is defined as:
e funcs(id) = funcs(intconst) = funcs(input) = 9
» funcs(E, op E,) = funcs(E,) L funcs(E,)
e funcs(id (Eq, ..., E,)) = {id} U funcs(E))

Static Analysis 59

59

