Lattice Theory
Control Flow Graphs
Dataflow Analysis

Static Analysis 2009

Michael I. Schwartzbach
Computer Science, University of Aarhus

Partial Orders

= A partial order is a structure L = (S,E
* Sis aset

» C |s a binary relation that satisfies:
 reflexivity: VXeS: XEX
 transitivity: VX,Y,ZES: XEY AYEZ = XEZ
e anti-symmetry: VX,JES: XEY AYEX =X =Y

Static Analysis

Upper and Lower Bounds

Let X — S be a subset

We say that ye S is an upper bound (XE y) when:
V Xe X: XEy

We say that ye S is a lower bound (y £ X) when:
V xe X: YEX

A least upper bound LX is defined by:
XEUX A VYyeS: XEY = UXEY

A greatest lower bound MX is defined by:
MXEXAVYyeS: yEX = yENMX

Static Analysis

Lattices

= A lattice is a partial order where:
LX and MX existforall X S

= A lattice must have:
e a unique largest element, T= US
e a unique smallest element, L= NS

= |f Sis a finite set, then it is a lattice Iff:
e T and 1 exist
o XUy and yrx exist for all X,y €S

Static Analysis

These Partial Orders Are Lattices

BRIV
e

Static Analysis

These Partial Orders Are Not Lattices

Static Analysis

The Subset Lattice

= Every finite set A defines a lattice (24,<), where:
e L=
e T=A
e XUY=XUY
e XMYy=XNY
{0,1,2,3}

T

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

P s

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

=1t

{0} {1} {2} {3}
T
{

Static Analysis

Lattice Height

= The height of a lattice Is the length of the longest
path from Lto T

= The lattice (2A,<) has height |A|

{0,1,2,3}

T

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

R

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}
\/
{}

Static Analysis

Monotone and Increasing Functions

A function f;: L —L IS monotone when:
Xy € S: xey = f(x) € f(y)

Monotone functions are closed under composition
As functions, LI and M are both monotone

= A function is increasing when:

Vx e S: X E1(X)
Monotone is different from increasing
* e.g. all constant functions are monotone

Static Analysis

The Fixed-Point Theorem

* |n a lattice with finite height, every monotone
function f has a unique least fixed-point:

fix(f) = || fi(L)

i =20

such that f(fix(f)) = fix(f)

Static Analysis

10

10

Proof of Existence

= Clearly, LEf(1)
= Since f is monotone, we also have f(L)E (L)
= By induction, fi(L)E fi*1(L)
* This means that:
1Ef(L)ERA(L)E ... fi(l)...

IS an increasing chain
* | has finite height, so for some k: fk(1) = fk+1(L1)
= But then fix(f) = k(1)

Static Analysis

11

11

Proof of Unique Least

= Assume that x is another fixed-point: x = f(x)

Clearly, LE X
By induction, fi(1) E fi(x) = x

= |n particular, fix(f) = fk(L)E X
* Uniqueness then follows from anti-symmetry

Static Analysis

12

12

= The time complexity of fix(f) depends on:

Computing Fixed-Points

 the height of the lattice
 the cost of computing f
 the cost of testing equality

X=1;

do {t=Xx; x =1(x); }
while (X # t);

Static Analysis

13

13

Product Lattice

= IfL,, L,, ..., L, are lattices, then so is the product:
Lo XLox ... XL, = { (X{,X5,..,X,) | X

where C is defined pointwise

= Note that LI and 'l can be computed pointwise
= height(L,xL,x ... xL,) = height(L,)+ ... + height(L,)

Static Analysis 14

14

Sum Lattice

= IfL,, L,, ..., L, are lattices, then so is the sum:

L+L+ ... +L, = {(,x) | X;e LML, T}Hu{L1,T}

where:
« 1 and T are as expected
e (IX)E(,y) ifandonly ifi=jand X Ey

= height(L,+L,+ ... +L.) = max{height(L)}

Static Analysis

15

15

Lift Lattice

= If L is a lattice, then so is lift(L), which is:

1

= height(lift(L)) = height(L)+1

Static Analysis

16

16

Flat Lattice

= If Alis a finite set, the flat(A) is a lattice:
T
/N
N4
= height(flat(A)) = 2

Static Analysis

17

17

Map Lattice

= |f Als afinite set and L Is a lattice, then we obtain
the map lattice:

A — L={[a;—Xy, ..., a,—X,] | X € L}
ordered pointwise

= height(A — L) = |A|-height(L)

Static Analysis

18

18

Lattice Equations

» Let L be a lattice with finite height

= A equation system is of the form:
X1 = Fi(Xq, iy X)
X, = Fo(Xyq, «eny X))

X, = F(Xg, -y Xp)
where x; are variables and F;: L"—L is monotone

Static Analysis

19

19

Solving Equations

= Every equation system has a unique least
solution, which is the least fixed-point of the
function F: L"—L" defined by:

F(XqyeXp) = (F1(XqeeXn)s -oor F(XqseeesXp)

= The F function plugs into the right-hand sides

= A solution is always a fixed-point
o this is true for any kind of equation

Static Analysis 20

20

Control Flow Graphs

= A control flow graph (CFG) is a directed graph:

* nodes correspond to program points
» edges represent possible flow of control

» A CFG always has:
* a single point of entry
» a single point of exit

= Letv be anodeina CFG:
o pred(v) is the set of predecessor nodes
» succ(v) is the set of successor nodes

Static Analysis

21

21

CFG Construction (1/3)

* For the simpel while-fragment, CFGs are
constructed inductively

» CFGs for simple statements:

S S

id=E output E return E var id

L L

Static Analysis 22

22

CFG Construction (2/3)

* For a statement sequence S; S,:
« eliminate the exit node of S; and the entry node of S,
* glue the statements together

Static Analysis

8)

23

23

= Similarly for the other control structures:

Static Analysis

T

— E

]

CFG Construction (3/3)

.
(o b

24

24

An Example CFG

n = n-1;

return f;

var f

f=1

A

n>0

I
f=f*n

I

n=n-1r—

Static Analysis

return f

:

25

25

The Monotone Framework (1/2)

A CFG to be analyzed, nodes V = {v,,v,, ..., V. }

A finite-height lattice L of possible answers
 fixed or parametrized by the given program

A variable [[v]]e L for every CFG node v

A dataflow constraint for each syntactic construct
« relates the value of [[v]] to the variables for other nodes
 typically a node is related to its neighbors
» the constraints must be monotone functions:

[Vl = Fi(llvall, [Ivall, ... [Ival])

Static Analysis 26

26

The Monotone Framework (2/2)

= Extract all constraints for the complete CFG

= Solve constraints using the fixed-point algorithm:

e we work in the lattice L"
e computing the fixed-point of the combined function:

F(Xqye:Xp) = (F1(XqyeeX0)s ooy F(Xqs--:Xp))

* This solutions gives an answer from L for each
program point

Static Analysis

27

27

Generating and Solving Constraints

-
L
-
L

) LT_I iy

Sils

CFG

Static Analysis

constraints

v,

\ B
S
)

-_Il

fixed-point

[IvI] = {x,yz}
[[wl] = {x.,y}
[[al] = {
[Ipll = {y}

solution

28

28

Lattice Points as Answers

/

the trivial, useless answer

our answer (the fixed-point)
safe answers

unsafe answers the true answer

Static Analysis

29

29

The Naive Algorithm

X=(1,1,.

while (x#t);

oy L);

do{t=x; x=F(x);}

= Does not exploit any special structure

Static Analysis

30

30

Chaotic lteration

= Exploits the special structure of L"

do {
t; = Xq o G = X
X1 = F1(Xq, ey X0);

X, = F (X -y X);
} while (X;#t; v ... v X #t.);

Static Analysis

31

31

The Worklist Algorithm (1/2)

= Exploits the special structure of right-hand sides

= Most right-hand sides are gquite sparse:
e constraints on CFG nodes do not involve all others

= Use a map:
dep: V — 2V

that for ve V gives the variables w where v occurs
on the right-hand side of the constraint for w

Static Analysis 32

32

The Worklist Algorithm (2/2)

X; =4, ... %x,=4;
q=1[Vq .0y Vi];
while (g#[]) {
assume g = [v,, ...];
y = Fi(Xq, -y X))
g = q.tail();
It (y=x;) {
for (v e dep(v)) g.append(v);
Xi =Y,
}
}

Static Analysis

33

33

Further Improvements

= Use a priority gueue instead of a FIFO gueue:
 find clever heuristics for priorities

* Look at the graph of dependency edges:
 build strongly-connected components
» solve constraints bottom-up in the resulting DAG

Static Analysis

34

34

Liveness Analysis

= A variable is live at a program point if its current
value may be read in the remaining execution

= This is clearly undecidable, but the property can
be conservatively approximated

= The answer "dead” must be the true one
e dead variables may be ignored

Static Analysis

35

35

A Lattice for Liveness

= A subset lattice of program variables

var X,VY,Z;

X = 1nput;
while (x>1)
y = xX/2;
if (y>3) x
Z = X-4;
if (z>0) x
Z = Z-1;

)
output x;

Static Analysis

| = (2{X,y,z}’ g)

/ the trivial answer

{xy,z}
T~

Xyt {y.z} {xz}

>
K v @

~.]
{}

36

36

The Control Flow Graph

X = input —x > 11—y = x/2 My > 3 X = X-Vy
A
var X,Y,Z Z = X-4 |«
| ,
z > 0 "X = x/2
zZ =z
» output x
Static Analysis 37

37

Setting Up

= For every CFG node, v, we have a variable [[V]]:

» the subset of program variables that are live at the

program point before v

= Since the analysis Is conservative, the computed

sets may be too large

= Auxiliary definition:

JOIN(V) = [[w]]

we succ(Vv)

Static Analysis

38

38

Liveness Constraints

For the exit node: _ —
vars(E) = variables occurring in E

[[exit]] = {}
For conditions and output:
[[V]] = JOIN(V) U vars(E)

= For assignments:
[[V]] = JOIN(V) \ {id} U vars(E)
For variable declarations:
[[V]] = JOIN(V) \ {id,, ..., id }
For all other nodes:

right-hand sides are monotone
[[v]] = JOIN(v) since JOIN is monotone

Static Analysis

39

39

Generated Constraints

[var x,v, z]] = [[z=input]] \ {x,y,z}
[x=input]] = [[x>1]] \ {x}

[x>1]] = ([[y=x/2]] v [[output x]]) U {x}
[y=x/2]] = ([ly>3]1 \{v}) v {x}

[y>3]] = [[x=x-v]] U [[z=x-4]] U {y}
[x=x-y]] = ([z=x-4]] \{x}) L {x}

[z>0]] = [[x=x/2]] U [[z=2-1]] U {z}
[x=x/2]] = ([[z=2-1]] \ {x}) U {z}
[output x]] = [[exit]] U {x}

[exit]] = {}

Static Analysis

40

40

Least Solution

[entry]] = {} [z>0]] = {x,2}
[var x,y,z]]={} [x=x/2]] = {x,2}
[x=input]] = {} [z=2-1]] = {x,2}
[x>1]] = {x} [output x]] = {x}
[y=x/2]] = {x} [exit]] = {}

[y>3]] = x,v}

[x=x-y]] = {x,v}

[z=x-4]] = {x}

= Many non-trivial answers!

Static Analysis

41

41

Optimizations

» Variables y and z are never simultaneously live
= they can share the same variable location

* The value assigned in z=z-1 Is never read
= the assigment can be skipped

var X,VYz;

X = input;
while (x>1) {
vz = X/2; * better register allocation
if (yz>3) x = x-yz; « a few clock cycles saved
yz = x-4
(

}

output x;

Static Analysis

42

42

Time Complexity

With n CFG nodes and k variables:
 the lattice has height k-n

e each lattice element has size k
e each u, \, = operation takes time O(k)

Each iteration uses O(n) operations:
« each iteration takes time O(k-n)

There are at most k-n iterations
Total time complexity: O(k?n?)

Static Analysis

Subsets can be represented as bitvectors:

43

43

Avallable Expressions Analysis

= A (nontrivial) expression is available at a program
point if its current value has already been
computed earlier in the execution

= The approximation includes too few expressions
* the answer "available” must be the true one
» available expression may not be re-computed

Static Analysis

44

44

A Lattice for Available Expressions

= A reverse subset lattice of nontrivial expressions

var X,vy,z,a,b;

Z = a+b;

Yy = a*b; | = (2{a+b, a*b, y>a+b, a+1}’ ;))

while (y > a+b) {
a = a+l;

X = a+b;

Static Analysis

45

45

Reverse Subset Lattice

/ the trivial answer
{}

T

{a+b} {a*Db} {y>a+b} {a+1}

ST eI

{a+b, a*b} {a+b, y>a+b} {a+b,a+1} {a*b,y>a+b} {a*b,a+1} {y>a+b, a+1}

N ==/

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b,a+1} {a*b, y>a+b, a+1}

) e e G

{a+b, a*b, y>a+b, a+1}

Static Analysis

46

46

Static Analysis

The Flow Graph

!

var X,y,z,a,b

A

Z=a+b

y=a*b

— y>a+b [«

A

a=a+1

A 4

X=a+b —

EEEEENG

47

47

Setting Up

= For every CFG node, v, we have a variable [[V]]:

» the subset of program variables that are available at
the program point after v

= Since the analysis Is conservative, the computed
sets may be too small

= Auxiliary definition:

JOIN(v) = (Y [[w]]

we pred(v)

Static Analysis

48

48

Auxiliary Functions

= The function Jid removes all expressions that
contain a reference to the variable id

= The function exps(E) is defined as:
o exps(intconst) = J
o exps(id) =
e exps(input) =<
+ exps(E, op Ey) = {E; 0p E,} U exps(E,;) U exps(E,)
but don’t include expressions containing input

Static Analysis

49

49

Avallability Constraints

For the entry node:

[[entry]] = {}

For conditions and output:

[[V]] = JOIN(V) U exps(E)

* For assignments:

Static Analysis

[[V]] = (JOIN(v) U exps(E))lid

For all other nodes:

[[v]] = JOIN(v)

50

50

Generated Constraints

[entry]] = {}

[var x,v,z,a,b]] =[[entry]]

[z=a+Db]] = exps(a+b){z

[y=a+*b]] = ([[z=a+Db]] U exps(a*b))y

[y>a+b]] = ([[y=a*b]] N [[x=a+b]]) U exps(y>a+b)
[a=a+1]] = ([[y>a+b]] U exps(a+1))la

[x=a+Db]] = ([[a=a+1]] U exps(a+b))dx

[exit]] = [[y>a+D]]

Static Analysis

51

51

Least Solution

[entry]] = {}

[var x,v,z,a,b]] ={}
[z=a+Db]] = {a+b}
[y=a*Db]] = {a+b, a*b}
[y>a+Db]] = {a+b, y>a+b}
[a=a+1]] = {}

[x=a+Db]] = {a+b}

[exit]] = {a+Db}

= Many nontrivial answers!

Static Analysis

52

52

Optimizations

= \We notice that a+b Is available before the loop
= The program can be optimized (slightly):

var X,y,X,a,b,aplusb;
aplusb = a+b;
z = aplusb;
y = a*b;
while (y > aplusb) {
a = a+l;
aplusb = a+b;

X = aplusb;

Static Analysis

53

53

Very Busy Expressions Analysis

= A (nontrivial) expression is very busy if it will
definitely be evaluated before its value changes

= The approximation includes too few expressions
» the answer "very busy” must be the true one
e very busy expressions may be pre-computed

= Same lattice as for available expressions

Static Analysis

54

54

Setting Up

= For every CFG node, v, we have a variable [[V]]:

» the subset of program variables that are very busy at
the program point before v

= Since the analysis Is conservative, the computed
sets may be too small

= Auxiliary definition:

JOIN(V) = () [[w]] , W,

we succ(v) W,

Static Analysis

Very Busy Constraints

For the exit node:

[[exit]] = {}

For conditions and output:

[[V]] = JOIN(V) U exps(E)

* For assignments:

Static Analysis

[[V]] = JOIN(V)did U exps(E)

For all other nodes:

[[v]] = JOIN(v)

56

56

An Example Program

var x,a,b;

X = 1nput;
a = x-1;
b = x-2;

while (x > 0) {
output a*b-x;
X = x-1;

}

output a*b;

* The analysis shows that a*b Is very busy

Static Analysis

57

57

Code Hoisting

var xX,a,b;

X = 1nput;
a = x-1;
b = x-2;

while (x > 0) {
output a*b-x;
X = xX-1;

}

output a*b;

)

var X,a,b,atimesb;

X = 1nput;
a = x-1;
b = x-2;

atimesb = a*b;
while (x > 0) {

output atimesb-x;

X = xX-1;

}

output atimesb;

* The analysis shows that a*b Is very busy

Static Analysis

58

58

Reaching Definitions Analysis

= The reaching definitions for a program point are
those assignments that may define the current
values of variables

= The conservative approximation may include too
many possible assignments

Static Analysis 59

59

A Lattice for Reaching Definitions

* The subset lattice of assignments

var X,VY,Z;

X = 1nput;
while (x > 1)
y = x/2;
if (y>3) x
Z = X-4;
if (z>0) x
Z = Z-1;

)

output x;

{

L — (2{x=input, v=x/2, X=X-Y, Z=X-4, X=X/2, z=z—l}’c)

Static Analysis

60

60

Reaching Definitions Constraints

= For assignments:

Static Analysis

Auxiliary definition:

[[V]] = JOIN(V)did U {v}

For all other nodes:

[[v]] = JOIN(v)

JOIN(V) = [[w]]

we pred(v)

The function lid removes assignments to id

61

61

Def-Use Graph

» Reaching definitions define the def-use graph:
 like a CFG but with edges from def to use nodes
» basis for dead code elimination and code motion

output x

X=X/2

Static Analysis

62

62

Forwards vs. Backwards

= A forwards analysis:
« computes information about the past behavior
« available expressions, reaching definitions

* A backwards analysis:
e computes information about the future behavior
 liveness, very busy expressions

Static Analysis

63

63

May vs. Must

= A may analysis:
» describes information that possibly is true
e an upper approximation
 liveness, reaching definitions

= A must analysis:
» describes information that definitely is true
* a lower approximation
« available expressions, very busy expressions

Static Analysis

64

64

Classifying Analyses

forwards

backwards

reaching definitions

[[v]] describes state after v

liveness

[[v]] describes state before v

JOIN(v) = LI [wll = (MY [w]]

we pred(v) we pred(v)

may
JOIN(v) = L w1 = \J [[w]] JOIN(M) = LI 1twil = U [w]
we pred(v) we pred(v) wesucc(v) We succ(v)
available expressions very busy expressions
[[v]] describes state after v [[v]] describes state before v
must

JOINW) = L [wil = (MY [w]]

we succ(v) wesucc(v)

Static Analysis

65

65

Initialized Variables Analysis

= Compute for each program point those variables
that have definitely been initialized in the past

= = forwards must analysis
= Reverse subset lattice of all variables

= JOIN(v) = ([[w]]

we pred(v)

" [[entry]] = {}
* For assignments: [[v]] = JOIN(v) u {id}
= For all others: [[v]] = JOIN(v)

Static Analysis

66

66

