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Partial OrdersPartial Orders

A partial order is a structure L = (S,   )
S is a set

is a binary relation that satisfies:
• reflexivity: ∀x∈S: x   x
• transitivity: ∀x,y,z∈S: x   y ∧ y   z ⇒ x   z
• anti-symmetry: ∀x,y∈S: x   y ∧ y   x ⇒ x = y
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Upper and Lower BoundsUpper and Lower Bounds

Let X ⊆ S be a subset
We say that y∈S is an upper bound (X    y) when:

∀ x∈X: x   y
We say that y∈S is a lower bound (y    X) when:

∀ x∈X: y   x

A least upper bound    X is defined by:
X      X ∧ ∀y∈S: X   y ⇒ X   y

A greatest lower bound    X is defined by:
X    X ∧ ∀y∈S: y   X ⇒ y     X
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LatticesLattices

A lattice is a partial order where:
X and    X exist for all X ⊆ S

A lattice must have:
• a unique largest element,     =    S 
• a unique smallest element,     =    S

If S is a finite set, then it is a lattice iff:
• and    exist
• x   y and y   x exist for all x,y ∈S
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These Partial Orders Are LatticesThese Partial Orders Are Lattices
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These Partial Orders Are Not LatticesThese Partial Orders Are Not Lattices
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The Subset LatticeThe Subset Lattice

Every finite set A defines a lattice (2A,⊆), where:
• = ∅
• = A
• x   y = x ∪ y
• x   y = x ∩ y

{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}
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Lattice HeightLattice Height

The height of a lattice is the length of the longest 
path from    to    
The lattice (2A,⊆) has height |A|

{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}
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Monotone and Increasing FunctionsMonotone and Increasing Functions

A function f: L →L is monotone when:
∀x,y ∈ S: x   y ⇒ f(x)    f(y)

Monotone functions are closed under composition
As functions,    and    are both monotone

A function is increasing when:
∀x ∈ S: x    f(x)

Monotone is different from increasing
• e.g. all constant functions are monotone
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The FixedThe Fixed--Point TheoremPoint Theorem

In a lattice with finite height, every monotone 
function f has a unique least fixed-point:

fix(f) =      fi(  ) 

such that f(fix(f)) = fix(f)

i ≥0
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Proof of ExistenceProof of Existence

Clearly,       f(   ) 
Since f is monotone, we also have f(   )    f2(   )
By induction, fi(   )    fi+1(   )
This means that:

f(   )    f2(   )      ...  fi(   ) ...
is an increasing chain
L has finite height, so for some k: fk(   ) = fk+1(   ) 
But then fix(f) = fk(   )
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Proof of Unique LeastProof of Unique Least

Assume that x is another fixed-point: x = f(x)
Clearly,        x
By induction, fi(   )    fi(x) = x
In particular, fix(f) = fk(   )    x
Uniqueness then follows from anti-symmetry
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Computing FixedComputing Fixed--PointsPoints

The time complexity of fix(f) depends on:
• the height of the lattice
• the cost of computing f
• the cost of testing equality

x =    ;
do { t = x; x = f(x); }
while (x ≠ t);
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Product LatticeProduct Lattice

If L1, L2, ..., Ln are lattices, then so is the product:

L1×L2× ... ×Ln = { (x1,x2,...,xn) | xi ∈ Li }

where     is defined pointwise

Note that     and     can be computed pointwise
height(L1×L2× ... ×Ln) = height(L1)+ ... + height(Ln)
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Sum LatticeSum Lattice

If L1, L2, ..., Ln are lattices, then so is the sum:

L1+L2+ ... +Ln = { (i,xi) | xi ∈ Li\{   ,   }} ∪ {   ,   }

where:
• and    are as expected
• (i,x)    (j,y) if and only if i=j and x    y

height(L1+L2+ ... +Ln) = max{height(Li)}
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Lift LatticeLift Lattice

If L is a lattice, then so is lift(L), which is:

height(lift(L)) = height(L)+1
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Flat LatticeFlat Lattice

If A is a finite set, the flat(A) is a lattice:

a1 a2 ...   an

height(flat(A)) = 2
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Map LatticeMap Lattice

If A is a finite set and L is a lattice, then we obtain 
the map lattice:

A → L = { [a1→x1, ..., an→xn] | xi ∈ Li }

ordered pointwise

height(A → L) = |A|⋅height(L)
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Lattice EquationsLattice Equations

Let L be a lattice with finite height

A equation system is of the form:
x1 = F1(x1, ..., xn)
x2 = F2(x1, ..., xn)
...
xn = Fn(x1, ..., xn)

where xi are variables and Fi: Ln→L is monotone
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Solving EquationsSolving Equations

Every equation system has a unique least 
solution, which is the least fixed-point of the 
function F: Ln→Ln defined by:

F(x1,...,xn) = (F1(x1,...,xn), ..., Fn(x1,...,xn))

The F function plugs into the right-hand sides
A solution is always a fixed-point 
• this is true for any kind of equation
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Control Flow GraphsControl Flow Graphs

A control flow graph (CFG) is a directed graph:
• nodes correspond to program points
• edges represent possible flow of control

A CFG always has:
• a single point of entry
• a single point of exit

Let v be a node in a CFG:
• pred(v) is the set of predecessor nodes
• succ(v) is the set of successor nodes
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CFG Construction (1/3)CFG Construction (1/3)

For the simpel while-fragment, CFGs are 
constructed inductively

CFGs for simple statements:

id = E output E return E var id
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CFG Construction (2/3)CFG Construction (2/3)

For a statement sequence S1 S2:
• eliminate the exit node of S1 and the entry node of S2

• glue the statements together

S1 S2

S1

S2
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CFG Construction (3/3)CFG Construction (3/3)

Similarly for the other control structures:

E

S

E

S1 S2

E

S
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An Example CFGAn Example CFG

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f
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The Monotone Framework (1/2)The Monotone Framework (1/2)

A CFG to be analyzed, nodes V = {v1,v2, ..., vn}
A finite-height lattice L of possible answers
• fixed or parametrized by the given program

A variable [[v]]∈L for every CFG node v

A dataflow constraint for each syntactic construct
• relates the value of [[vi]] to the variables for other nodes
• typically a node is related to its neighbors
• the constraints must be monotone functions:

[[vi]] = Fi([[v1]], [[v2]], ..., [[vn]])
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The Monotone Framework (2/2)The Monotone Framework (2/2)

Extract all constraints for the complete CFG

Solve constraints using the fixed-point algorithm:
• we work in the lattice Ln

• computing the fixed-point of the combined function:
F(x1,...,xn) = (F1(x1,...,xn), ..., Fn(x1,...,xn))

This solutions gives an answer from L for each 
program point
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Generating and Solving ConstraintsGenerating and Solving Constraints

constraints

[[v]] = {x,yz}
[[w]] = {x,y}
[[q]] = {}
[[p]] = {y}

solution

fixed-point

CFG
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Lattice Points as AnswersLattice Points as Answers

the trivial, useless answer

the true answer

our answer (the fixed-point)
safe answers

unsafe answers
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The Naive AlgorithmThe Naive Algorithm

x = (   ,   , ...,    );
do { t = x; x = F(x); }
while (x≠t);

Does not exploit any special structure



31

31Static Analysis

Chaotic IterationChaotic Iteration

Exploits the special structure of Ln

x1 =    ; ... xn =    ;
do {
t1 = x1; ... tn = xn;
x1 = F1(x1, ..., xn);
...
xn = Fn(x1, ..., xn);

} while (x1≠t1 ∨ ... ∨ xn≠tn);
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The Worklist Algorithm (1/2)The Worklist Algorithm (1/2)

Exploits the special structure of right-hand sides

Most right-hand sides are quite sparse:
• constraints on CFG nodes do not involve all others

Use a map:

dep: V → 2V

that for v∈V gives the variables w where v occurs 
on the right-hand side of the constraint for w
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The Worklist Algorithm (2/2)The Worklist Algorithm (2/2)

x1 =    ; ... xn =    ;
q = [v1, ..., vn];
while (q≠[]) {

assume q = [vi, ...];
y = Fi(x1, ..., xn);
q = q.tail();
if (y≠xi) {
for (v ∈ dep(vi)) q.append(v);
xi = y;

}
}
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Further ImprovementsFurther Improvements

Use a priority queue instead of a FIFO queue:
• find clever heuristics for priorities

Look at the graph of dependency edges:
• build strongly-connected components
• solve constraints bottom-up in the resulting DAG
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Liveness AnalysisLiveness Analysis

A variable is live at a program point if its current 
value may be read in the remaining execution

This is clearly undecidable, but the property can 
be conservatively approximated

The answer ”dead” must be the true one
• dead variables may be ignored
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A Lattice for LivenessA Lattice for Liveness

A subset lattice of program variables
var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

L = (2{x,y,z}, ⊆)

{x,y,z}

{x,y}

{x}

{x,z}{y,z}

{y} {z}

{}

the trivial answer
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The Control Flow GraphThe Control Flow Graph

z = x-4

x = input x > 1 y = x/2 y > 3 x = x-y

var x,y,z

z > 0 x = x/2

z = z-1

output x
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Setting UpSetting Up

For every CFG node, v, we have a variable [[v]]:
• the subset of program variables that are live at the 

program point before v

Since the analysis is conservative, the computed 
sets may be too large

Auxiliary definition:

JOIN(v) =      [[w]]∪
w∈succ(v)

v

w1 w2

wk
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Liveness Constraints Liveness Constraints 

For the exit node:
[[exit]] = {}

For conditions and output:
[[v]] = JOIN(v) ∪ vars(E)

For assignments:
[[v]] = JOIN(v) \ {id} ∪ vars(E)

For variable declarations:
[[v]] = JOIN(v) \ {id1, ..., idn}

For all other nodes:
[[v]] = JOIN(v)

vars(E) = variables occurring in E

right-hand sides are monotone
since JOIN is monotone
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Generated ConstraintsGenerated Constraints

[[var x,y,z]] = [[z=input]] \ {x,y,z}
[[x=input]] = [[x>1]] \ {x}
[[x>1]] = ([[y=x/2]] ∪ [[output x]]) ∪ {x}
[[y=x/2]] = ([[y>3]] \ {y}) ∪ {x}
[[y>3]] = [[x=x-y]] ∪ [[z=x-4]] ∪ {y}
[[x=x-y]] = ([[z=x-4]] \ {x}) ∪ {x}
[[z>0]] = [[x=x/2]] ∪ [[z=z-1]] ∪ {z}
[[x=x/2]] = ([[z=z-1]] \ {x}) ∪ {z}
[[output x]] = [[exit]] ∪ {x}
[[exit]] = {}
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Least SolutionLeast Solution

[[entry]] = {} [[z>0]] = {x,z}
[[var x,y,z]] = {} [[x=x/2]] = {x,z}
[[x=input]] = {} [[z=z-1]] = {x,z}
[[x>1]] = {x} [[output x]] = {x}
[[y=x/2]] = {x} [[exit]] = {}
[[y>3]] = {x,y}
[[x=x-y]] = {x,y}
[[z=x-4]] = {x}

Many non-trivial answers!
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OptimizationsOptimizations

Variables y and z are never simultaneously live
⇒ they can share the same variable location

The value assigned in z=z-1 is never read
⇒ the assigment can be skipped

var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;

• better register allocation 
• a few clock cycles saved
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Time ComplexityTime Complexity

With n CFG nodes and k variables:
• the lattice has height k⋅n

Subsets can be represented as bitvectors:
• each lattice element has size k
• each ∪, \, = operation takes time O(k)

Each iteration uses O(n) operations:
• each iteration takes time O(k⋅n)

There are at most k⋅n iterations
Total time complexity: O(k2n2)
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Available Expressions AnalysisAvailable Expressions Analysis

A (nontrivial) expression is available at a program 
point if its current value has already been 
computed earlier in the execution

The approximation includes too few expressions
• the answer ”available” must be the true one
• available expression may not be re-computed
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A Lattice for Available ExpressionsA Lattice for Available Expressions

A reverse subset lattice of nontrivial expressions

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

L = (2{a+b, a*b, y>a+b, a+1}, ⊇)
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Reverse Subset LatticeReverse Subset Lattice

{a+b, y>a+b}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b}

{a+b, a*b, y>a+b, a+1}

{a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b} {a*b} {y>a+b} {a+1}

{}

the trivial answer
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The Flow GraphThe Flow Graph

var x,y,z,a,b

z=a+b

y=a*b

y>a+b

a=a+1

x=a+b
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Setting UpSetting Up

For every CFG node, v, we have a variable [[v]]:
• the subset of program variables that are available at 

the program point after v

Since the analysis is conservative, the computed 
sets may be too small

Auxiliary definition:

JOIN(v) =      [[w]]∩
w∈pred(v) v

w1

w2

wk
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Auxiliary FunctionsAuxiliary Functions

The function ↓id removes all expressions that 
contain a reference to the variable id

The function exps(E) is defined as:
• exps(intconst) = ∅
• exps(id) = ∅
• exps(input) = ∅
• exps(E1 op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2) 

but don’t include expressions containing input
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Availability ConstraintsAvailability Constraints

For the entry node:
[[entry]] = {}

For conditions and output:
[[v]] = JOIN(v) ∪ exps(E)

For assignments:
[[v]] = (JOIN(v) ∪ exps(E))↓id

For all other nodes:
[[v]] = JOIN(v)
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Generated ConstraintsGenerated Constraints

[[entry]] = {}
[[var x,y,z,a,b]] = [[entry]]
[[z=a+b]] = exps(a+b)↓z
[[y=a*b]] = ([[z=a+b]] ∪ exps(a*b))↓y
[[y>a+b]] = ([[y=a*b]] ∩ [[x=a+b]]) ∪ exps(y>a+b)
[[a=a+1]] = ([[y>a+b]] ∪ exps(a+1))↓a
[[x=a+b]] = ([[a=a+1]] ∪ exps(a+b))↓x
[[exit]] = [[y>a+b]]
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Least SolutionLeast Solution

[[entry]] = {}
[[var x,y,z,a,b]] = {}
[[z=a+b]] = {a+b}
[[y=a*b]] = {a+b, a*b}
[[y>a+b]] = {a+b, y>a+b}
[[a=a+1]] = {}
[[x=a+b]] = {a+b}
[[exit]] = {a+b}

Many nontrivial answers!
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OptimizationsOptimizations

We notice that a+b is available before the loop
The program can be optimized (slightly):

var x,y,x,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}
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Very Busy Expressions AnalysisVery Busy Expressions Analysis

A (nontrivial) expression is very busy if it will 
definitely be evaluated before its value changes

The approximation includes too few expressions
• the answer ”very busy” must be the true one
• very busy expressions may be pre-computed

Same lattice as for available expressions
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Setting UpSetting Up

For every CFG node, v, we have a variable [[v]]:
• the subset of program variables that are very busy at 

the program point before v

Since the analysis is conservative, the computed 
sets may be too small

Auxiliary definition:

JOIN(v) =      [[w]]∩
w∈succ(v)

v

w1 w2

wk
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Very Busy ConstraintsVery Busy Constraints

For the exit node:
[[exit]] = {}

For conditions and output:
[[v]] = JOIN(v) ∪ exps(E)

For assignments:
[[v]] = JOIN(v)↓id ∪ exps(E)

For all other nodes:
[[v]] = JOIN(v)
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An Example ProgramAn Example Program

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;

The analysis shows that a*b is very busy 
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Code HoistingCode Hoisting

var x,a,b; var x,a,b,atimesb;

x = input; x = input;

a = x-1; a = x-1;

b = x-2; b = x-2;

while (x > 0) { atimesb = a*b;

output a*b-x; while (x > 0) {

x = x-1; output atimesb-x;

} x = x-1;

output a*b; }

output atimesb;

The analysis shows that a*b is very busy 
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Reaching Definitions AnalysisReaching Definitions Analysis

The reaching definitions for a program point are 
those assignments that may define the current 
values of variables

The conservative approximation may include too 
many possible assignments



60

60Static Analysis

A Lattice for Reaching DefinitionsA Lattice for Reaching Definitions

The subset lattice of assignments
var x,y,z;

x = input;

while (x > 1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

L = (2{x=input, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1},⊆)
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Reaching Definitions ConstraintsReaching Definitions Constraints

For assignments:
[[v]] = JOIN(v)↓id ∪ {v}

For all other nodes:
[[v]] = JOIN(v)

Auxiliary definition:

JOIN(v) =      [[w]]

The function ↓id removes assignments to id

∪
w∈pred(v) v

w1

w2

wk
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DefDef--Use GraphUse Graph

Reaching definitions define the def-use graph:
• like a CFG but with edges from def to use nodes
• basis for dead code elimination and code motion

x>1

x=input

y=x/2

y>3

x=x-y

z=x-4

z>0 x=x/2

z=z-1

output x
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Forwards vs. BackwardsForwards vs. Backwards

A forwards analysis:
• computes information about the past behavior
• available expressions, reaching definitions

A backwards analysis:
• computes information about the future behavior
• liveness, very busy expressions
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May vs. MustMay vs. Must

A may analysis:
• describes information that possibly is true
• an upper approximation
• liveness, reaching definitions

A must analysis:
• describes information that definitely is true
• a lower approximation
• available expressions, very busy expressions
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Classifying AnalysesClassifying Analyses

very busy expressions

[[v]] describes state before v

JOIN(v) =       [[w]] =        [[w]]

available expressions

[[v]] describes state after v

JOIN(v) =       [[w]] =        [[w]]
must

liveness

[[v]] describes state before v

JOIN(v) =       [[w]] =        [[w]]

reaching definitions

[[v]] describes state after v

JOIN(v) =       [[w]] =        [[w]]
may

backwardsforwards

w∈succ(v)

w∈pred(v)

w∈pred(v)

w∈succ(v)

∪∪

∩ ∩

w∈succ(v)w∈pred(v)

w∈pred(v) w∈succ(v)
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Initialized Variables AnalysisInitialized Variables Analysis

Compute for each program point those variables 
that have definitely been initialized in the past
⇒ forwards must analysis
Reverse subset lattice of all variables 

JOIN(v) =        [[w]]

[[entry]] = {}
For assignments: [[v]] = JOIN(v) ∪ {id}
For all others: [[v]] = JOIN(v)

∩
w∈pred(v)


