
1

IntroductionIntroduction
A Tiny Example LanguageA Tiny Example Language

Type AnalysisType Analysis

Static Analysis 2009Static Analysis 2009

Michael I. Schwartzbach
Computer Science, University of Aarhus

2

2Static Analysis

Questions About ProgramsQuestions About Programs

Does the program terminate?
How large can the heap become during
execution?
What is the possible output?

3

3Static Analysis

Program PointsProgram Points

foo(p,x) {

var f,q;

if (*p==0) { f=1; }

else {

q = malloc;

*q = (*p)-1;

f=(*p)*((x)(q,x));

}

return f;

}

A property holds at a program point if it holds in
any such state for any execution with any input

any point in the program
= any value of the PC

4

4Static Analysis

Questions About Program PointsQuestions About Program Points

Will the value of x be read in the future?
Can the pointer p be null?
Which variables can p point to?
Is the variable x initialized before it is read?
What is a lower and upper bound on the value of
the integer variable x?
At which program points could x be assigned its
current value?
Do p and q point to disjoint structures in the
heap?

5

5Static Analysis

Why Are The Answers Interesting?Why Are The Answers Interesting?

Ensure correctness:
• verify behavior
• catch bugs early

Increase efficiency:
• resource usage
• compiler optimizations

6

6Static Analysis

RiceRice’’s Theorem, 1953s Theorem, 1953

7

7Static Analysis

RiceRice’’s Theorems Theorem

Any non-trivial property of the behavior of
programs in a Turing-complete language is
undecidable!

8

8Static Analysis

Easy ReductionEasy Reduction

Can we decide if a variable has a constant value?

x = 17; if (TM(j)) x = 18;

Here, x is constant if and only if the j’th Turing
machine halts on empty input.

9

9Static Analysis

ApproximationApproximation

Approximate answers may be decidable!

The approximation must be conservative:
• either ”yes” or ”no” must always be the correct answer
• which direction depends on the client application
• the useful answer must always be correct

More subtle approximations if not only ”yes”/”no”

10

10Static Analysis

Example ApproximationsExample Approximations

Decide if a function is ever called at runtime:
• if ”no”, remove the function from the code
• if ”yes”, don’t do anything
• the ”no” answer must always be correct if given

Decide if a cast (A)x will always succeed:
• if ”yes”, don’t generate a runtime check
• if ”no”, generate code for the cast
• the ”yes” answer must always be correct if given

11

11Static Analysis

Beyond Beyond ””YesYes””//””NoNo”” ProblemsProblems

Which variables may be the targets of a pointer
variable p?

If we want to replace *p by x:
• answer &x if x is guaranteed to be the only target
• answer ? otherwise

If we want to know the maximal size of *p:
• answer {&x, &y, &z, ...}
• guaranteed to contain all targets (but may be too large)

12

12Static Analysis

The Engineering ChallengeThe Engineering Challenge

A correct but trivial approximation algorithm may
just give the useless answer every time

The engineering challenge is to give the useful
answer often enough to fuel the client application

This is the hard (and fun) part of static analysis...

13

13Static Analysis

Engineering in Practice (1/4)Engineering in Practice (1/4)

malloc

malloc

&x malloc

*p &y

*q

malloc

Where do the pointers come from?

14

14Static Analysis

Engineering in Practice (2/4)Engineering in Practice (2/4)

malloc

malloc

&x malloc

*p &y

*q

malloc

The trivial answer: from somewhere!

15

15Static Analysis

Engineering in Practice (3/4)Engineering in Practice (3/4)

malloc

malloc

&x malloc

*p &y

*q

malloc

The hard answer: from a few places!

16

16Static Analysis

Engineering in Practice (4/4)Engineering in Practice (4/4)

malloc

malloc

&x malloc

*p &y

*q

malloc

Over the last 15 years:
≥ 500 publications, ≥ 50 PhD theses

17

17Static Analysis

The The PhasesPhases of of GCC (1/2)GCC (1/2)

Parsing
Tree optimization
RTL generation
Sibling call optimization
Jump optimization
Register scan
Jump threading
Common subexpression elimination
Loop optimizations
Jump bypassing
Data flow analysis
Instruction combination

If-conversion
Register movement
Instruction scheduling
Register allocation
Basic block reordering
Delayed branch scheduling
Branch shortening
Assembly output
Debugging output

18

18Static Analysis

The The PhasesPhases of of GCC (2/2)GCC (2/2)

Parsing
Tree optimization
RTL generation
Sibling call optimization
Jump optimization
Register scan
Jump threading
Common subexpression elimination
Loop optimizations
Jump bypassing
Data flow analysis
Instruction combination

If-conversion
Register movement
Instruction scheduling
Register allocation
Basic block reordering
Delayed branch scheduling
Branch shortening
Assembly output
Debugging output

Static analysis uses 60%
of the compilation time

19

19Static Analysis

Bug FindingBug Finding

int main() {

char *p,*q;

p = NULL;

printf("%s",p);

q = (char *)malloc(100);

p = q;

free(q);

*p = 'x';

free(p);

p = (char *)malloc(100);

p = (char *)malloc(100);

q = p;

strcat(p,q);

}

gcc –Wall foo.c
lint foo.c

No errors!

20

20Static Analysis

Optimizations or Bug Finding?Optimizations or Bug Finding?

Moore’s Law:
Advances in hardware doubles computing power
every 18 months

Proebsting’s Law
Advances in optimization techniques doubles
computing power every 18 years

So why bother with compiler optimizations?

21

21Static Analysis

An Eternal StruggleAn Eternal Struggle

Compiler optimizations yield a nearly constant
speedup factor of 4

Nobody would give that up regardless of
processor speed!

Increases in language abstractions require
constant progress just to stay in place

22

22Static Analysis

The Optimizer Must Undo AbstractionsThe Optimizer Must Undo Abstractions

Variables abstract away from register
• the optimizer must find an efficient mapping

Control structures abstract away from gotos
• the optimizer must find and simplify the goto graph

Data structures abstract away from memory
• the optimizer must find an efficient layout

...

Methods abstract away from procedures
• the optimizer must find the intended implementation

23

23Static Analysis

The Case of BETAThe Case of BETA

The BETA language unifies as patterns:
• abstract classes
• concrete classes
• methods
• functions

A (hypothetical) optimizing BETA compiler must
classify patterns to recover this information

Example: all patterns are heap-allocated, but 50%
are methods that could be stack-allocated

24

24Static Analysis

Static Analysis ConceptsStatic Analysis Concepts

Constraints and solutions
Lattices, fixed-points, equations
Flow-sensitive vs. flow-insensitive
Control flow graph
Dataflow analysis
Widening and narrowing
Interprocedural vs. intraprocedural
Polyvariance vs. monovariance
Control flow analysis
Pointer analysis
Shape analysis
Context- and path-sensitivity

this course

25

25Static Analysis

The TIP LanguageThe TIP Language

Tiny Imperative Programming language

Example language used in this course:
• minimal C-style syntax
• cut down as much as possible
• all concepts that make static analysis challenging

Java implementation available
• thanks to Johnni Winther

26

26Static Analysis

ExpressionsExpressions

E → intconst
→ id
→ E+E | E–E | E*E | E/E | E>E | E==E
→ (E)

→ input

The input expression reads an integer from the
input stream
The comparison operators yield 0 and 1

27

27Static Analysis

StatementsStatements

S → id = E;
→ output E;
→ S S
→ if (E) { S }

→ if (E) { S } else { S }

→ while (E) { S }

→ var id, ..., id;

28

28Static Analysis

StatementsStatements

In conditions, 0 is false, all other values are true

The output statement writes an integer value to
the output stream

The var statement declares a collection of
uninitialized variables

29

29Static Analysis

FunctionsFunctions

Functions take any number of arguments and
return a single value

F → id (id, ..., id)

{ var id, ..., id; S return E }

Function calls are an extra kind of expressions:

E → id (E, ..., E)

30

30Static Analysis

Dynamic MemoryDynamic Memory

E → &id
→ malloc

→ *E
→ null

S → *id = E;

Pointer arithmetics is not permitted

31

31Static Analysis

Function PointersFunction Pointers

Function names denote function pointers

Generalized function calls:

E → (E)(E, ..., E)

Function pointers are a simple model for objects
or higher-order functions

32

32Static Analysis

ProgramsPrograms

A program is a collection of functions
The final function initiates execution
• its arguments are taken from the input stream
• its result is placed on the output stream

We assume that all declared identifiers are unique

P → F ... F

33

33Static Analysis

An Iterative Factorial FunctionAn Iterative Factorial Function

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

34

34Static Analysis

A Recursive Factorial FunctionA Recursive Factorial Function

rec(n) {

var f;

if (n==0) { f=1; }

else { f=n*rec(n-1); }

return f;

}

35

35Static Analysis

An Unnecessarily Complicated FunctionAn Unnecessarily Complicated Function

foo(p,x) { main() {

var f,q; var n;

if (*p==0) { f=1; } n = input;

else { return foo(&n,foo);

q = malloc; }

*q = (*p)-1;

f=(*p)*((x)(q,x));

}

return f;

}

36

36Static Analysis

Type ErrorsType Errors

Reasonable restrictions on operations:
• arithmetic operators apply only to integers
• comparisons apply only to like values
• only integers can be input and output
• conditions must be integers
• only functions can be called
• the * operator applies only to pointers

Violations result in runtime errors

37

37Static Analysis

Type CheckingType Checking

Can type errors occur during runtime?
This is interesting, hence instantly undecidable

Instead, we use conservative approximation
• a program is typable if it satisfies some type constraints
• these are systematically derived from the syntax tree
• if typable, then no runtime errors occur
• but some programs will be unfairly rejected (slack)

38

38Static Analysis

TypabilityTypability

typableno type errors

slack

39

39Static Analysis

Fighting SlackFighting Slack

Make the type checker a bit more clever:

An eternal struggle

40

40Static Analysis

Fighting SlackFighting Slack

Make the type checker a bit more clever:

An eternal struggle
And a great source of publications

41

41Static Analysis

Be Careful Out ThereBe Careful Out There

The type checker may be unsound:

Example: covariant arrays in Java
• a deliberate pragmatic choice

42

42Static Analysis

TypesTypes

Types describe the possible values:

τ → int

→ &τ
→ (τ, ..., τ) -> τ

These describe integers, pointer, and functions

Types are terms generated by this grammar

43

43Static Analysis

General TermsGeneral Terms

Constructor symbols:
• 0-ary: a, b, c
• 1-ary: d, e
• 2-ary: f, g, h
• 3-ary: i, j, k

Terms:
• a
• d(a)
• h(a,g(d(a),b))

Terms with variables:
• f(X,b)
• h(X,g(Y,Z))

44

44Static Analysis

The Unification ProblemThe Unification Problem

An equality between two terms with variables:

k(X,b,Y) = k(f(Y,Z),Z,d(Z))

A solution (a unifier) is an assignment from
variables to terms that makes both sides equal:

X = f(d(b),b)
Y = d(b)
Z = b

45

45Static Analysis

Unification ErrorsUnification Errors

Constructor error:

d(X) = e(X)

Arity error:

a = a(X)

46

46Static Analysis

The Unification AlgorithmThe Unification Algorithm

Paterson and Wegman (1976)
In time O(n):
• finds a most general unifier
• or decides that none exists

This is used as a backend for type checking

47

47Static Analysis

Regular TermsRegular Terms

Infinite but (eventually) repeating:

• e(e(e(e(e(e(...))))))
• d(a,d(a,d(a, ...)))
• f(f(f(f(...),f(...)),f(f(...),f(...))),f(f(f(...),f(...)),f(f(...),f(...))))

Only finitely many different subtrees

A non-regular term:

• f(a,f(d(a),f(d(d(a)),f(d(d(d(a))),...))))

48

48Static Analysis

Regular UnificationRegular Unification

Paterson and Wegman (1976)
The unification problem can be solved in O(nα(n))

α(n) is the inverse Ackermann function:
• smallest k such that n ≤ Ack(k,k)
• this is never bigger than 5 for any real value of n

49

49Static Analysis

Type ConstraintsType Constraints

We generate type constraints from an AST:
• all constraints are equalities
• they can be solved using the unification algorithm

Type variables:
• for each identifier id we have the variable [[id]]
• for each expression E we have the variable [[E]]

Recall that all identifiers are unique
The expression E is an AST node, not syntax

50

50Static Analysis

Generating Constraints (1/2)Generating Constraints (1/2)

intconst: [[intconst]] = int
E1 op E2: [[E1]] = [[E2]] = [[E1 op E2]] = int
E1 == E2: [[E1]] = [[E2]] ∧ [[E1==E2]] = int
input: [[input]] = int
id = E: [[id]] = [[E]]
output E: [[E]] = int
if (E) {S}: [[E]] = int
if (E) {S1} else {S2}: [[E]] = int
while (E) {S}: [[E]] = int

51

51Static Analysis

Generating Constraints (2/2)Generating Constraints (2/2)

id(id1, ...,idn){ ... return E; }:
[[id]] = ([[id1]], ..., [[idn]]) -> [[E]]

(E)(E1, ..., En):
[[E]] = ([[E1]], ..., [[En]]) -> [[(E)(E1, ..., En)]]

&id: [[&id]] = &[[id]]
malloc: [[malloc]] = &α
null: [[null]] = &α
*E: [[E]] = &[[*E]]
*id = E: [[id]] = &[[E]]

52

52Static Analysis

Generating and Solving ConstraintsGenerating and Solving Constraints

AST

constraints

[[p]] = &int
[[q]] = &int
[[malloc]] = &int
[[x]] = φ
[[foo]] = φ
[[&n]] = &int
[[main]] = ()->int

solution

unification

53

53Static Analysis

The Complicated FunctionThe Complicated Function

foo(p,x) { main() {

var f,q; var n;

if (*p==0) { f=1; } n = input;

else { return foo(&n,foo);

q = malloc; }

*q = (*p)-1;

f=(*p)*((x)(q,x));

}

return f;

}

54

54Static Analysis

Generated ConstraintsGenerated Constraints

[[foo]] = ([[p]],[[x]])->[[f]] [[*p==0]] = int
[[*p]] = int [[f]] = [[1]]
[[1]] = int [[0]] = int
[[p]] = &[[*p]] [[q]] = [[malloc]]
[[malloc]] = &α [[q]] = &[[(*p)-1]]
[[q]] = &[[*q]] [[*p]] = int
[[f]] = [[(*p)*((x)(q,x))]] [[(*p)*((x)(q,x))]] = int
[[(x)(q,x)]] = int [[x]] = ([[q]],[[x]])->[[(x)(q,x)]]
[[input]] = int [[main]] = ()->[[foo(&n,foo)]]
[[n]] = [[input]] [[&n]] = &[[n]]
[[foo]] =([[&n]],[[foo]])->[[foo(&n,foo)]] [[(*p)-1]] = int

55

55Static Analysis

SolutionsSolutions

[[p]] = &int
[[q]] = &int
[[malloc]] = &int
[[x]] = φ
[[foo]] = φ
[[&n]] = &int
[[main]] = ()->int

Here, φ is the regular type that is the unfolding of:
φ = (&int,φ)->int

All other variables are assigned int

NO
 T

YP
E

ER
RO

RS

56

56Static Analysis

Recursive Data StructuresRecursive Data Structures

The program:
var p;

p = malloc;

*p = p;

creates the constraints:
[[p]] = &α
[[p]] = &[[p]]
which have the solution:
[[p]] = ψ, where ψ = &ψ

57

57Static Analysis

Infinitely Many SolutionsInfinitely Many Solutions

The function:

poly(x) {

return *x;

}

has type &α->α for any type α

58

58Static Analysis

SlackSlack

bar(g,x) {

var r;

if (x==0) r=g; else r=bar(2,0);

return r+1;

}

main() {

return bar(null,1)

}

This never cause a type error, but is not typable:
int = [[r]] = [[g]] = &α

59

59Static Analysis

Other ErrorsOther Errors

Not all errors are type errors:
• dereference of null pointers
• reading of uninitialized variables
• division by zero
• escaping stack cells

Other kinds of static analysis may catch these

baz() {
var x;
return &x;

}

main() {
var p;
p=baz();
*p=1;
return *p;

}

60

60Static Analysis

FlowFlow--SensitivitySensitivity

Type checking is flow-insensitive:
• statements may be permuted without affecting typability
• constraints are generated from AST nodes

Other analyses must be flow-sensitive:
• the flow of statements affects the results
• constraints are generated from flow graph nodes

