
Case studies: Flight software verification and
analysis of obfuscated binaries

Jan Midtgaard

Week 7, Abstract Interpretation

Aarhus University, Q4 - 2012



Last time

2 / 22

Two case studies:

� Control-Flow Analysis of Function Calls and Returns
by Abstract Interpretation, Midtgaard and Jensen,
ICFP’09 + IC’12

� Abstract Debugging of Higher-Order Imperative
Languages, Bourdoncle, PLDI’93



Today

3 / 22

Two papers and then some:

� First paper: A Static Analyzer for Large
Safety-Critical Software, Blanchet, Cousot, Cousot,
Feret, Mauborgne, Miné, Monniaux, and Rival,
PLDI’03

� A bit on compositional analysis

� Second paper: Context-Sensitive Analysis of
Obfuscated x86 Executables, Lakhotia, Boccardo,
Singh, and Manacero, PEPM’10 / HOSC’11

� Course retrospective and wrap-up



A Static Analyzer for Large Safety-Critical
Software



5 / 22

[see PLDI’03 slides]



The ASTRÉE design refinement algorithm

6 / 22

1. Run static analysis with false alarms

2. Manually inspect cause of false alarm

3. Possible causes

� Either rewrite abstract transfer function to
strengthen it,

� Refine a widening which is too coarse, or

� Design a new abstract domain that can express
the missed invariant

4. Wash, rinse, repeat



Compositional semantics and analysis (1/2)

7 / 22

ASTRÉE is based on compositional semantics and
analysis: the semantics (or analysis) of a compound
statement is a combination of the semantics (or
analysis) of its parts.

For example:
[[S1 ; S2]]

♯(E♯) = [[S2]] ◦ [[S1]]
♯(E♯)

[[if c then S1 else S2]]
♯(E♯) = [[S1]](guard

♯(E♯, c))

⊔♯ [[S2]](guard
♯(E♯,¬c))

[[while c do S]]♯(E♯) = . . . lfpF ♯ . . .

where F ♯(E♯′) = E♯ ⊔♯ [[S]](guard ♯(E♯′, c))

The classical transition system semantics and derived
analyses we have studied does not have this property.



Compositional semantics and analysis (2/2)

8 / 22

The classical transition system semantics and derived
analyses we have studied does not have this property.

Compositional semantics is preferable, because we can
reason by structural induction.

Compositional analysis is preferable, because we avoid
a global fixpoint computation:

� The analysis of sequential code is sequential

� The analysis of a loop involves a loop (namely
fixpoint iteration)

In the end the resulting analysis is more efficient.

When combined with Bourdoncle’s minimal widening
insight the resulting analysis is also more precise.



Context-Sensitive Analysis of Obfuscated
x86 Executables



10 / 22

[see PEPM’10 slides]



RIC Motivation

11 / 22

Suppose we want to represent the set of adresses
{4000, 4004}?

Intervals would over-approximate:

γ([4000, 4004]) = {4000, 4001, 4002, 4003, 4004}

thereby losing track of the 4-byte alignment!

Simple congruences would be too imprecise:

γ(0 mod 4) = {0, 4, ..., 4000, 4004, ...}



RIC definition

12 / 22

RIC is short for Reduced Interval Congruence, which is
a rather descriptive name:

Formally, the RIC domain is a triple:

RIC = N× Z× Z

The meaning of an element is:

γ(s[lb, ub]) = {z | lb ≤ z ≤ ub ∧ z = lb mod s}

For example:
γ(2[1, 9]) = {1, 3, 5, 7, 9}



Abstractions for the toolbox

13 / 22

The paper presents two sequence abstractions, nicely
formulated as Galois connections for the toolbox:

The k-CONTEXT ABSTRACTION cutting off after length k.

The l-CONTEXT ABSTRACTION collapsing loops of
reoccurring elements.

Nicely packed and ready
to take home. . .



Summary



Summary

15 / 22

Two case studies based on recent research articles:

� First paper: A Static Analyzer for Large
Safety-Critical Software, Blanchet, Cousot, Cousot,
Feret, Mauborgne, Miné, Monniaux, and Rival,
PLDI’03

� A bit on compositional analysis

� Second paper: Context-Sensitive Analysis of
Obfuscated x86 Executables, Lakhotia, Boccardo,
Singh, and Manacero, PEPM’10 / HOSC’11



Course retrospective and wrap-up



Recap of promises

17 / 22

[Abstract interpretation] is simply an alternative view —
an eye opener to a new world.

It can be used to explain existing approaches and
extend or strengthen them (e.g, using disjunctive
completion, forward/backward analysis, . . . )

[You are now] in a position to make an informed opinion

It is not just an academic theory: it has been used to
check/verify flight control software for both Airbus and
Mars missions.

It [has been] bloody — there [was] mathematics — there
[was] semantics



Learning outcomes and competences

18 / 22

The participants must at the end of the course be able
to:

� describe and explain basic analyses in terms of
classical abstract interpretation.

� apply and reason about Galois connections.

� implement abstract interpreters on the basis of the
derived program analysis.

Suggestions for additions and changes are very
welcome!



Project, report, and exam

19 / 22

Project - a chance for you to apply your newly acquired
skills to a topic of your choice (both mathematics
and programming, preferably)

Report - hand in a report explaining the challenges you
faced, how you solved it, and your results

Exam - explain how you applied your newly acquired
skills (roughly one half), and
we’ll have an informed discussion of the outcome
(roughly one half)



You know Kung-fu

20 / 22



Exam: show me

21 / 22



If you want more static analysis. . .

22 / 22

There’s DANSAS’12 this summer — a yearly Danish
static analysis conference.

Thursday, August 24, 2012, at SDU in Odense

http://dansas.imada.sdu.dk/

(Free registration and lunch!)

http://dansas.imada.sdu.dk/

	Last time
	Today
	A Static Analyzer for Large Safety-Critical Software
	The ASTRÉE design refinement algorithm
	Compositional semantics and analysis (1/2)
	Compositional semantics and analysis (2/2)

	Context-Sensitive Analysis of Obfuscated x86 Executables
	RIC Motivation
	RIC definition
	Abstractions for the toolbox

	Summary
	Summary

	Course retrospective and wrap-up
	Recap of promises
	Learning outcomes and competences
	Project, report, and exam
	You know Kung-fu
	Exam: show me
	If you want more static analysis…


