
Case studies: Control-Flow Analysis and

Abstract Debugging

Jan Midtgaard

Week 6, Abstract Interpretation

Aarhus University, Q4 - 2012

Last time

2 / 67

A catalogue of abstractions

� Toolbox abstractions

� Structural abstractions: sums, pairs/tuples, . . .

� Numerical abstractions: constants, intervals,
congruences, polyhedra, . . .

� Concretization-based abstract interpretation, briefly

A retrospective on the 3 counter machine analysis, incl.
constraint extraction

Today

3 / 67

Based on two research articles:

� Control-Flow Analysis of Function Calls and Returns
by Abstract Interpretation, Midtgaard and Jensen,
IC’12 (ICFP’09)

� Abstract Debugging of Higher-Order Imperative
Languages, Bourdoncle, PLDI’93

Control-Flow Analysis of Function Calls

and Returns by Abstract Interpretation

What: control-flow analysis

5 / 67

Control-flow analysis (CFA) is a static analysis for
determining inter-procedural control-flow:

for each call-site predict which function is called

What: control-flow analysis

5 / 67

Control-flow analysis (CFA) is a static analysis for
determining inter-procedural control-flow:

for each call-site predict which function is called

Predictions are conservative due to our failure to solve
the Halting problem

What: control-flow analysis

5 / 67

Control-flow analysis (CFA) is a static analysis for
determining inter-procedural control-flow:

for each call-site predict which function is called

Predictions are conservative due to our failure to solve
the Halting problem

CFA has been the subject of much research:
Jones:ICALP81, Rozas:BSc84, Shivers:PLDI88, Sestoft:FPCA89,

Bondorf:SCP91, Henglein:TR92, Heintze:LFP94,

Palsberg:TOPLAS95, Jagannathan-Wright:SAS95,

Nielson-Nielson:POPL97, Ashley-Dybvig:TOPLAS98,

Might-Shivers:POPL06 . . . (just to name a few)

Why CFA?

6 / 67

CFA is useful for program transformers, and other static
analyses in compilers, program verification, etc.

As such CFA can be considered an “analysis primitive”

The analysis is relevant to all languages with some form
of procedural parameters (C, C#, JavaScript, . . .) hence
not just functional languages (ML, Scheme, Haskell, . . .)

Textbook control-flow analysis

7 / 67

A textbook constraint-based CFA emits constraints of
the form:

{u1} ⊆ rhs1 ∧ . . . ∧ {un} ⊆ rhsn =⇒ lhs ⊆ rhs

Textbook control-flow analysis

7 / 67

A textbook constraint-based CFA emits constraints of
the form:

{u1} ⊆ rhs1 ∧ . . . ∧ {un} ⊆ rhsn =⇒ lhs ⊆ rhs

For all (λ (x) e) in the program we generate:

{(λ (x) e)} ⊆ J(λ (x) e)K

and for all (λ (x) e) and (e0 e1) we generate:

{(λ (x) e)} ⊆ Je0K =⇒ Je1K ⊆ JxK ∧ JeK ⊆ J(e0 e1)K

which are then solved iteratively by a constraint solver.

Abstract Interpretation

8 / 67

Canonical (Galois connection-based) abstract
interpretation is presented as (Cousot:MJ81):

� a collecting semantics (e.g., reachable states) of a

� transition system,

� systematically approximated through Galois
connections

Lots of variations (Cousot-Cousot:JLC92):
trace-based collecting semantics, concretization-only,
abstraction-only, . . .

Two takes to correctness

9 / 67

� Standard CFAs are verified a posteriori
(semantics, analysis, correctness proof), whereas

� Abstract interpretation-based analyses are correct
by construction (Galois connection-based
calculation)

Two takes to correctness

9 / 67

� Standard CFAs are verified a posteriori
(semantics, analysis, correctness proof), whereas

� Abstract interpretation-based analyses are correct
by construction (Galois connection-based
calculation)

Which CFA do we obtain by taking the Cousot-route?

(Cliffhanger)

Two takes to correctness

9 / 67

� Standard CFAs are verified a posteriori
(semantics, analysis, correctness proof), whereas

� Abstract interpretation-based analyses are correct
by construction (Galois connection-based
calculation)

Which CFA do we obtain by taking the Cousot-route?

How is the result related to constraint-based CFA?

(Another cliffhanger)

Enough cliffhanging: Three contributions

10 / 67

� Derivation of a call-return CFA for ANF by abstract
interpretation

� Extraction of an equivalent constraint-based CFA

� Lock-step equivalence proof to earlier derived
CPS-based CFA

Outline

11 / 67

Introduction

Analysis derivation

Extracting constraints

Comparing ANF/CPS analyses

Conclusion

Source language: ANF

12 / 67

ANF grammar:

P ∋ p ::= s (programs)

T ∋ t ::= c | x | (λ (x) s) (trivial expressions)

C ∋ s ::= t (serious expressions)

| (let ((x t)) s)

| (t0 t1)

| (let ((x (t0 t1))) s)

Following Reynolds, the grammar distinguishes serious
and trivial expressions.

Wanted: transition system

13 / 67

Let’s use the CaEK abstract machine!

The CaEK (Flanagan-al:PLDI93) is a simple three
component machine:

C – the code component (a serious expression)

E – the environment component

K – the stack component

Furthermore (as we shall see) the machine is tail-call
optimized

CaEK semantics

14 / 67

Values, environments,
and stacks:

Val ∋ w ::= c | [(λ (x) s), e]

Env ∋ e ::= • | e[x 7→ w]

K ∋ k ::= stop | [x, s, e] :: k

Helper function:

µ : T × Env ⇀ Val

µ(c, e) = c

µ(x, e) = e(x)

µ((λ (x) s), e) = [(λ (x) s), e]

Machine transitions:

〈t, e, [x, s′, e ′] :: k ′〉 −→ 〈s′, e ′[x 7→ µ(t, e)], k ′〉

〈(let ((x t)) s), e, k〉 −→ 〈s, e[x 7→ µ(t, e)], k〉

〈(t0 t1), e, k〉 −→ 〈s′, e ′[x 7→ w], k〉

if [(λ (x) s′), e ′] = µ(t0, e) and w = µ(t1, e)

〈(let ((x (t0 t1))) s), e, k〉 −→ 〈s′, e ′[y 7→ w], [x, s, e] :: k〉

if [(λ (y) s′), e ′] = µ(t0, e) and w = µ(t1, e)

Next step: Collecting semantics

15 / 67

We choose a standard reachable states collecting
semantics (Cousot:MJ81) defined in terms of the
transition function:

F : ℘(C × Env ×K)→ ℘(C × Env ×K)

F (S) = Ip ∪ {s | ∃s
′ ∈ S : s ′ −→ s}

where Ip = {〈p, •, [xr, xr, •] :: stop〉}

Next step: Collecting semantics

15 / 67

We choose a standard reachable states collecting
semantics (Cousot:MJ81) defined in terms of the
transition function:

F : ℘(C × Env ×K)→ ℘(C × Env ×K)

F (S) = Ip ∪ {s | ∃s
′ ∈ S : s ′ −→ s}

where Ip = {〈p, •, [xr, xr, •] :: stop〉}

The reachable states can now be expressed as lfpF .

Next step: Collecting semantics

15 / 67

We choose a standard reachable states collecting
semantics (Cousot:MJ81) defined in terms of the
transition function:

F : ℘(C × Env ×K)→ ℘(C × Env ×K)

F (S) = Ip ∪ {s | ∃s
′ ∈ S : s ′ −→ s}

where Ip = {〈p, •, [xr, xr, •] :: stop〉}

The reachable states can now be expressed as lfpF .

The collecting semantics is ideal in terms of precision

It is also as hard as running the program hence we need
to approximate it.

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

. . . calculate . . .

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

. . . calculate . . .

. . . calculate . . .

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

. . . calculate . . .

. . . calculate . . .

. . . calculate . . .

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

. . . calculate . . .

. . . calculate . . .

. . . calculate . . . = F ♯(S)

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

. . . calculate . . .

. . . calculate . . .

. . . calculate . . . = F ♯(S)

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

. . . calculate . . .

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

. . . calculate . . .

. . . calculate . . .

. . . calculate . . . = F ♯(S)

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

. . . calculate . . .

. . . calculate . . .

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

. . . calculate . . .

. . . calculate . . .

. . . calculate . . . = F ♯(S)

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

. . . calculate . . .

. . . calculate . . .

. . . calculate . . .

Approximating the collecting semantics

16 / 67

We calculate abstract transfer functions using
well-known strategies:

α(F (γ(S))) = . . . = . . . = . . .

. . . calculate . . .

. . . calculate . . .

. . . calculate . . . = F ♯(S)

and the “pushing of α’s”:

α(F (S)) = . . . = . . . ⊆⊗ . . .

. . . calculate . . .

. . . calculate . . .

. . . calculate . . . = F ♯(α(S))

Derivation outline

17 / 67

℘(C × Env ×K)

α×

��

℘(C)× ℘(C ×K)× ℘(Env)

γ×

OO

ρ

��

ρ(℘(C)× ℘(C ×K)× ℘(Env))

1

OO

α⊗

��

℘(C)× (C/≡ → ℘(K ♯))× Env ♯

γ⊗

OO

collecting semantics

-

-

analysis

Derivation outline

17 / 67

℘(C × Env ×K)

α×

��

℘(C)× ℘(C ×K)× ℘(Env)

γ×

OO

ρ

��

ρ(℘(C)× ℘(C ×K)× ℘(Env))

1

OO

α⊗

��

℘(C)× (C/≡ → ℘(K ♯))× Env ♯

γ⊗

OO

collecting semantics

-

-

analysis

� Project reachable expres-
sions

� Preserve expr-stack relation

� Merge environments

Step 1: Projecting machine states

18 / 67

The first abstraction projects off a set of expressions
and a set of environments:

℘(C × Env ×K) −−−→←−−−α×

γ×
℘(C)× ℘(C ×K)× ℘(Env)

where

α×(S) = 〈π1S , {〈s, k〉 | ∃e : 〈s, e, k〉 ∈ S}, π2S 〉

γ×(〈C, F , E 〉) = {〈s, e, k〉 | s ∈ C ∧ 〈s, k〉 ∈ F ∧ e ∈ E}

We calculate a new transition function using the first
strategy:

α× ◦ F
c ◦ γ× = · · · = F×

Derivation outline

19 / 67

℘(C × Env ×K)

α×

��

℘(C)× ℘(C ×K)× ℘(Env)

γ×

OO

ρ

��

ρ(℘(C)× ℘(C ×K)× ℘(Env))

1

OO

α⊗

��

℘(C)× (C/≡ → ℘(K ♯))× Env ♯

γ⊗

OO

collecting semantics

-

-

analysis

Derivation outline

19 / 67

℘(C × Env ×K)

α×

��

℘(C)× ℘(C ×K)× ℘(Env)

γ×

OO

ρ

��

ρ(℘(C)× ℘(C ×K)× ℘(Env))

1

OO

α⊗

��

℘(C)× (C/≡ → ℘(K ♯))× Env ♯

γ⊗

OO

collecting semantics

-

-

analysis

Ensure expr-stack relation and
environment are global

Step 2: A closure operator on machine states

20 / 67

A closure operator ensures that

� all expr-stack pairs are part of the global set, and

� all sub-environments are part of the global
environment.

However we first need two “sub-component” orderings:

� an order ≻ on environments

� an order ⋗ on expr-stack pairs

with ≻∗ and ⋗
∗ being the reflexive transitive closures of

the two.

Step 2: A closure operator on machine states

21 / 67

Now we can formulate the closure operator:

℘(C)×℘(C ×K)×℘(Env) −−→←−−
ρ

1

ρ(℘(C)×℘(C ×K)×℘(Env))

where

ρ(〈C, F , E 〉) = 〈C, {〈s, k〉 | ∃〈s′, k ′〉 ∈ F : 〈s′, k ′〉⋗∗ 〈s, k〉},

{e | ∃〈s, k〉 ∈ F : 〈s, k〉 ≻∗ e ∨ ∃e ′ ∈ E : e ′ ≻∗ e}〉

Again we calculate a new transition function using the
first strategy:

ρ ◦ F× ◦ 1 = · · · = F ρ

Derivation outline

22 / 67

℘(C × Env ×K)

α×

��

℘(C)× ℘(C ×K)× ℘(Env)

γ×

OO

ρ

��

ρ(℘(C)× ℘(C ×K)× ℘(Env))

1

OO

α⊗

��

℘(C)× (C/≡ → ℘(K ♯))× Env ♯

γ⊗

OO

collecting semantics

-

-

analysis

Derivation outline

22 / 67

℘(C × Env ×K)

α×

��

℘(C)× ℘(C ×K)× ℘(Env)

γ×

OO

ρ

��

ρ(℘(C)× ℘(C ×K)× ℘(Env))

1

OO

α⊗

��

℘(C)× (C/≡ → ℘(K ♯))× Env ♯

γ⊗

OO

collecting semantics

-

-

analysis

� Approximate closures by
their lambda

� Approximate stacks by
their top frame

� Merge expressions with
same return point

Step 3a: Abstracting the expression-stack relation (1/2)

23 / 67

We abstract stacks to the top-of-stack:

K ♯ ∋ k ♯ ::= stop | [x, s] (abstract stacks)

using an elementwise operator:

@(〈s, stop〉) = 〈s, stop〉

@(〈s, [x, s′, e] :: k〉) = 〈s, [x, s′]〉

which induces a Galois connection:

℘(C ×K) −−−→←−−−
α@

γ@

℘(C ×K ♯)

where α@(F) = {@(〈s, k〉) | 〈s, k〉 ∈ F}.

Step 3a: Abstracting the expression-stack relation (2/2)

24 / 67

Some expressions share their return points, e.g.,
(let ((x t)) s) and s, which induces an equivalence
relation ≡:

(let ((x t)) s)≡s

(let ((x (t0 t1))) s)≡s

and another elementwise operator (and corresponding
Galois connection):

@′(〈s, k ♯〉) = 〈[s]≡, k
♯〉

By composing the above with a pointwise coding we get:

℘(C ×K) −−−→←−−−
αst

γst
C/≡ → ℘(K ♯)

Step 3b: Abstracting values and envs

25 / 67

We abstract values to abstract values

Val ♯ ∋ w ♯ ::= c | [(λ (x) s)]

using yet another elementwise abstraction:

@(c) = c

@([(λ (x) s), e]) = [(λ (x) s)]

Based on the value abstraction, we can do a pointwise
abstraction of a set of functions:

℘(Env) −−−→←−−−αΠ

γΠ
Var → ℘(Val ♯)

The third and final calculation

26 / 67

We calculate the final transition function using the
second strategy:

α⊗ ◦ F
ρ = . . . ⊆⊗ F ♯ ◦ α⊗

Note: this is not a complete abstraction

The resulting analysis

27 / 67

By the fixed-point transfer theorem the analysis of a
program p is lfpF ♯

p, where

F ♯ : P → ℘(C)× (C/≡ → ℘(K ♯))× Env ♯ → ℘(C)× (C/≡ → ℘(K ♯))× Env ♯

F ♯
p(〈C, F ♯, E ♯〉) =

〈{p}, [[p]≡ 7→ {[xr, xr]}, [xr]≡ 7→ {stop}], λ_. ∅〉

∪⊗
⋃

⊗
{t}⊆C

{[x, s′]}⊆F
♯([t]≡)

〈{s′}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(let ((x t)) s)}⊆C

〈{s}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(t0 t1)}⊆C

{[(λ (x) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ F ♯([(t0 t1)]≡)], E
♯ ∪̇ [x 7→ µ♯(t1,E

♯)]〉

∪⊗
⋃

⊗
{(let ((x (t0 t1))) s)}⊆C

{[(λ (y) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ {[x, s]}], E
♯ ∪̇ [y 7→ µ♯(t1,E

♯)]〉

Analysis characteristics

28 / 67

� We obtain a CFA with reachability (Ayers:WSA92,
Palsberg-Schwartzbach:IAC95, Biswas:POPL97,
Gasser-Nielson-Nielson:ICFP97, . . .)

� It predicts both calls and returns (in the presence of
tail-call optimization!)

� Think of it as “CFA by control-stack approximation”

29 / 67

[Demo]

(fold your hands, please)

Outline

30 / 67

Introduction

Analysis derivation

Extracting constraints

Comparing ANF/CPS analyses

Conclusion

Recall the analysis

31 / 67

F ♯
p(〈C, F ♯, E ♯〉) =

〈{p}, [[p]≡ 7→ {[xr, xr]}, [xr]≡ 7→ {stop}], λ_. ∅〉

∪⊗
⋃

⊗
{t}⊆C

{[x, s′]}⊆F
♯([t]≡)

〈{s′}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(let ((x t)) s)}⊆C

〈{s}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(t0 t1)}⊆C

{[(λ (x) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ F ♯([(t0 t1)]≡)], E
♯ ∪̇ [x 7→ µ♯(t1,E

♯)]〉

∪⊗
⋃

⊗
{(let ((x (t0 t1))) s)}⊆C

{[(λ (y) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ {[x, s]}], E
♯ ∪̇ [y 7→ µ♯(t1,E

♯)]〉

Recall the analysis and read off constraints

31 / 67

F ♯
p(〈C, F ♯, E ♯〉) =

〈{p}, [[p]≡ 7→ {[xr, xr]}, [xr]≡ 7→ {stop}], λ_. ∅〉

∪⊗
⋃

⊗
{t}⊆C

{[x, s′]}⊆F
♯([t]≡)

〈{s′}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(let ((x t)) s)}⊆C

〈{s}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(t0 t1)}⊆C

{[(λ (x) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ F ♯([(t0 t1)]≡)], E
♯ ∪̇ [x 7→ µ♯(t1,E

♯)]〉

∪⊗
⋃

⊗
{(let ((x (t0 t1))) s)}⊆C

{[(λ (y) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ {[x, s]}], E
♯ ∪̇ [y 7→ µ♯(t1,E

♯)]〉

For program p:

{p} ⊆ C {[xr, xr]} ⊆ F ♯([p]≡) {stop} ⊆ F ♯([xr]≡)

Recall the analysis and read off constraints

31 / 67

F ♯
p(〈C, F ♯, E ♯〉) =

〈{p}, [[p]≡ 7→ {[xr, xr]}, [xr]≡ 7→ {stop}], λ_. ∅〉

∪⊗
⋃

⊗
{t}⊆C

{[x, s′]}⊆F
♯([t]≡)

〈{s′}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(let ((x t)) s)}⊆C

〈{s}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(t0 t1)}⊆C

{[(λ (x) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ F ♯([(t0 t1)]≡)], E
♯ ∪̇ [x 7→ µ♯(t1,E

♯)]〉

∪⊗
⋃

⊗
{(let ((x (t0 t1))) s)}⊆C

{[(λ (y) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ {[x, s]}], E
♯ ∪̇ [y 7→ µ♯(t1,E

♯)]〉

For each t and (let ((x (t0 t1))) s
′) in p:

{t} ⊆ C ∧ {[x, s′]} ⊆ F ♯([t]≡)⇒

{

{s′} ⊆ C ∧

µsym(t,E
♯) ⊆ E ♯(x)

(where we partially evaluate the call to µsym)

Recall the analysis and read off constraints

31 / 67

F ♯
p(〈C, F ♯, E ♯〉) =

〈{p}, [[p]≡ 7→ {[xr, xr]}, [xr]≡ 7→ {stop}], λ_. ∅〉

∪⊗
⋃

⊗
{t}⊆C

{[x, s′]}⊆F
♯([t]≡)

〈{s′}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(let ((x t)) s)}⊆C

〈{s}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(t0 t1)}⊆C

{[(λ (x) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ F ♯([(t0 t1)]≡)], E
♯ ∪̇ [x 7→ µ♯(t1,E

♯)]〉

∪⊗
⋃

⊗
{(let ((x (t0 t1))) s)}⊆C

{[(λ (y) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ {[x, s]}], E
♯ ∪̇ [y 7→ µ♯(t1,E

♯)]〉

For each (let ((x t)) s) in p:

{(let ((x t)) s)} ⊆ C ⇒

{

{s} ⊆ C ∧

µsym(t,E
♯) ⊆ E ♯(x)

(where we partially evaluate the call to µsym)

Recall the analysis and read off constraints

31 / 67

F ♯
p(〈C, F ♯, E ♯〉) =

〈{p}, [[p]≡ 7→ {[xr, xr]}, [xr]≡ 7→ {stop}], λ_. ∅〉

∪⊗
⋃

⊗
{t}⊆C

{[x, s′]}⊆F
♯([t]≡)

〈{s′}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(let ((x t)) s)}⊆C

〈{s}, F ♯, E ♯ ∪̇ [x 7→ µ♯(t,E ♯)]〉

∪⊗
⋃

⊗
{(t0 t1)}⊆C

{[(λ (x) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ F ♯([(t0 t1)]≡)], E
♯ ∪̇ [x 7→ µ♯(t1,E

♯)]〉

∪⊗
⋃

⊗
{(let ((x (t0 t1))) s)}⊆C

{[(λ (y) s
′
)]}∈µ♯(t0,E

♯)

〈{s′}, F ♯ ∪̇ [[s′]≡ 7→ {[x, s]}], E
♯ ∪̇ [y 7→ µ♯(t1,E

♯)]〉

Yeah yeah, we get the idea. . .

Analysis equivalence

32 / 67

The resulting constraint-based CFA is equivalent:

Theorem:

A solution to the CFA constraints of p is a safe
approximation of the least fixed point of the
analysis function F ♯. Furthermore, the least
solution to the CFA constraints is equal to the
least fixed point of F ♯.

Outline

33 / 67

Introduction

Analysis derivation

Extracting constraints

Comparing ANF/CPS analyses

Conclusion

Deriving a CPS analysis from the CE-machine

34 / 67

For CPS terms it’s the same story:

℘(SExp × Env)

α×

��

collecting semantics

℘(SExp)× ℘(Env)

γ×

OO

α⊗

��

-

℘(SExp)× Env ♯

γ⊗

OO

CPS CFA

(previously derived in Midtgaard-Jensen:SAS08)

Deriving a CPS analysis from the CE-machine

34 / 67

For CPS terms it’s the same story:

℘(SExp × Env)

α×

��

collecting semantics

℘(SExp)× ℘(Env)

γ×

OO

α⊗

��

-

℘(SExp)× Env ♯

γ⊗

OO

CPS CFA

αΠ ◦ ρ

(previously derived in Midtgaard-Jensen:SAS08)

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

Iteration 1

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

Iteration 2

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

Iteration 3

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

Iteration 4

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

Iteration 5

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

Iteration 6

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

Iteration 7

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Lock-step equivalence to CPS analysis

35 / 67

l e t f = (fn x => x) i n
l e t a1 = f cn1 i n

l e t a2 = f cn2 i n a2

let f = _ in

fn x =>

x

let a1 = _ @ _ in

f cn1 let a2 = _ @ _ in

f cn2

a2

let xr = _ in xr

Binding: red arrows

Return point: blue arrows

Reachability: green nodes

Iteration 8 - fixpoint

fn kp => (fn f =>
f ccn1 (fn a1 =>

f ccn2 (fn a2 => kp a2)))
(fn x , k1 => k1 x)

fn kp =>

@

fn f =>

@

f ccn1 fn a1 =>

@

f ccn2 fn a2 =>

@

kp a2

fn x,k1 =>

@

k1 x

fn vr => kr vr

Analysis equivalence

36 / 67

The formal equivalence result relates:

ANF reachability ←→ CPS reachability
ANF abstract stacks ←→ CPS continuation closures

ANF closures ←→ CPS function closures

(See paper for details)

Why should you care?

37 / 67

CFA has developed in two camps:

� Direct style CFA camp: Jones’81, Sestoft:FPCA89,
Bondorf:SCP91, Palsberg:TOPLAS95, . . .

� CPS-based CFA camp: Shivers:PLDI88,
Ayers:WSA92, Ashley-Dybvig:TOPLAS98, . . .

The resulting analyses are not necessarily comparable
(Sabry-Felleisen:PLDI94, Mossin:PhD97, . . .)

Why should you care?

37 / 67

CFA has developed in two camps:

� Direct style CFA camp: Jones’81, Sestoft:FPCA89,
Bondorf:SCP91, Palsberg:TOPLAS95, . . .

� CPS-based CFA camp: Shivers:PLDI88,
Ayers:WSA92, Ashley-Dybvig:TOPLAS98, . . .

Conclusion

Summary and Conclusion

39 / 67

� Traditional abstract interpretation provides
guidelines for disciplined analysis development

� It enabled us to derive a CFA predicting both calls
and returns

� We have illustrated how to read off an equivalent
constraint-based analysis

� Furthermore the resulting analysis is lock-step
equivalent to a CPS analysis

� The top-down AI approach allows us to
systematically break and preserve relations present
in the collecting semantics

Abstract Debugging of Higher-Order

Imperative Languages

Basic idea and context

41 / 67

Instead of ’dataflow analysis’ or ’program verification’,
an analysis is used for ’abstract debugging’,

i.e. using abstract interpretation to locate the cause of
bugs statically (without running the program!)

Achieved through a cool combination of
forwards/backwards analysis

Basic idea and context

41 / 67

Instead of ’dataflow analysis’ or ’program verification’,
an analysis is used for ’abstract debugging’,

i.e. using abstract interpretation to locate the cause of
bugs statically (without running the program!)

Achieved through a cool combination of
forwards/backwards analysis

Historic context: "...applicable to languages such as
Pascal, Modula-2, Modula-3, C or C++"

The paper is from 1993 — Java wasn’t invented until
1995. All examples are given in Pascal

A crash course in Pascal (enough to parse examples)

42 / 67

� imperative programming language

– types: integers, arrays, ...

– statement-based: assignment (:=),
if-then-else, loops (while, for,
repeat-until)

� lexically scoped, variables are declared with var

� blocks are written begin. . .end (instead of {. . .})

� read(n) reads input from stdin and assigns result
to variable n

� write(n) outputs variable n to stdout

Pascal peculiarity 1

43 / 67

A function returns its result by "assigning it to the
function’s name":

function Fac(n: integer): integer;

begin

if n = 0 then

Fac := l

else

Fac := n * Fac(n-1)

end;

Pascal peculiarity 2

44 / 67

Arrays are indexed as indicated by their declaration:

program For;

var i, n : integer;

T : array [1..100] of integer;

begin

read(n);

for i := 0 to n do

read(T[i])

end.

Problem 1: for i=0 the statement read(T[i]) indexes
the array out-of-bounds

Problem 2: for this program, the input n also has to be
< 101

Two types of assertions

45 / 67

The debugger is driven by two types of assertions:

Invariant assertions these are similar to normal
assert statements: properties that must always
hold at this point.

Example: x > 0 at some program point

Intermittent assertions these are different: properties
that eventually hold at this point

Example: false (i.e. bottom) at program exit
(meaning end of program not reachable)

Properties in collecting semantics

46 / 67

Semantically, these properties can be expressed as a
combination of forward/backward/lfp/gfp:

� Descendants of a set of states Σ (forward):

lfp(λX.Σ ∪ post [τ](X))

� Ascendants of a set of states Σ (backward):

lfp(λX.Σ ∪ pre [τ](X))

� Ascendants not leading to error in Serr (backward):

gfp(λX. pre [τ](X)\Serr)

Assertion properties, more generally

47 / 67

For a property Π ∈ ℘(S), that will eventually hold:

eventually(Π) = lfp(λX.Π ∪ pre [τ](X))

with the corresponding Kleene sequence:

eventually(Π) = Π ∪ pre [τ](Π) ∪ pre2[τ](Π) ∪ . . .

For a property Π ∈ ℘(S), that must always hold:

always(Π) = gfp(λX.Π ∩ pre [τ](X))

with the corresponding Kleene sequence:

always(Π) = Π ∩ pre [τ](Π) ∩ pre2[τ](Π) ∩ . . .

Assertions as always/eventually properties

48 / 67

Programs are modeled using PC ×Memory pairs.

Property πk always holds at point ck (for all k ∈ Ka)

Πa = {〈c, m〉 ∈ S | ∀k ∈ Ka : c = ck =⇒ m ∈ πk}
(invariant ass.)

at all other points c, the memory m is true (anything)

Property πk eventually holds at point ck (for some
k ∈ Ke)

Πe = {〈c, m〉 ∈ S | ∃k ∈ Ke : c = ck ∧ m ∈ πk}
(intermittent ass.)

at all other points c, the memory m is false (non-existing)

Fixed point computation, (coll.) semantically

49 / 67

Semantically we seek the limit I of the sequence

S = I0 ⊇ I1 ⊇ I2 ⊇ I3 ⊇ . . .

where

� Ik+1 = lfp(λX. Ik ∩ (Sin ∪ post [τ](X)))

� Ik+2 = gfp(λX. Ik+1 ∩ Πa ∩ pre [τ](X))

� Ik+3 = lfp(λX. Ik+2 ∩ (Πe ∪ pre [τ](X)))

The fixed point computation continues to propagate
forwards (k + 1), backwards (k + 2), backwards (k + 3)

Error detection from fixed point result

50 / 67

� All s ∈ Sin\I break one of the programmer’s
invariants, since s is not in Πa or will not lead to a
state in Πe.

� All s ∈ post∗[τ](I)\I also break an invariant, since s
follows from the forwards flow from I, but not from
the backwards flow.

Hence such states can be reported to the programmer.

From fixed point semantics to analysis

51 / 67

The analysis is similar, except it performs fixed point
computations over an abstract domain.

The analysis and semantics are (of course) connected
by Galois connections.

It is expressed as forward and backward “semantic
equations”.

These equations are similar to the IMP semantics from
week 2

(and to the constraints we extracted last week).

Forward equation example

52 / 67

0 : x0 = ⊤

1 : read(i); x1 = [[read(i)]](x0)

2 : while (i ≤ 100) do x2 = [[i ≤ 100]](x1) ⊔ [[i ≤ 100]](x3)

3 : i := i+ 1 x3 = [[i := i+ 1]](x2)

4 : x4 = [[i > 100]](x1) ⊔ [[i > 100]](x3)

where

� [[−]] abstract the primitive operations, and

� the xi’s represent an abstract memory per program
point

Backward intermittent equation example

53 / 67

0 : x0 = [[read(i)]]−1(x1)

1 : read(i); x1 = [[i ≤ 100]]−1(x2) ⊔ [[i > 100]]−1(x4)

2 : while (i ≤ 100) do x2 = α({10}) ⊔ [[i := i+ 1]]−1(x3)

3 : i := i+ 1 x3 = [[i ≤ 100]]−1(x2) ⊔ [[i > 100]]−1(x4)

4 : x4 = x4

where

� the intermittent assertion i = 10 has been inserted
(to mimic join with Πe), and

� [[−]]−1 abstract the backwards primitive operations.

Backward invariant equation example

54 / 67

0 : x0 = [[read(i)]]−1(x1)

1 : read(i); x1 = [[i ≤ 100]]−1(x2) ⊔ [[i > 100]]−1(x4)

2 : while (i ≤ 100) do x2 = α({0, 1, 2, . . . }) ⊓ [[i := i+ 1]]−1(x3)

3 : i := i+ 1 x3 = [[i ≤ 100]]−1(x2) ⊔ [[i > 100]]−1(x4)

4 : x4 = x4

where

� the invariant assertion i ≥ 0 has been inserted
(to mimic meet with Πa), and

� [[−]]−1 abstract the backwards primitive operations.

Minimal use of widening

55 / 67

To speed up convergence or guarantee termination the
analysis uses widening/narrowing operators.

Widening (and narrowing) represent information loss, so
we want to minimize the number of widenings.

Only loops (cycles) can lead to infinite chains in the
analysis.

Convergence is guaranteed by at least one widening
operator per cycle in the equation dependency graph.

Forward equations with widening

56 / 67

x0 = ⊤

read(i); x1 = [[read(i)]](x0)

while (i ≤ 100) do x2 = x2 ▽ ([[i ≤ 100]](x1) ⊔ [[i ≤ 100]](x3))

i := i+ 1 x3 = [[i := i+ 1]](x2)

x4 = [[i > 100]](x1) ⊔ [[i > 100]](x3)

where

� the widening operator breaks the x2–x3–x2
dependency cycle of the above equations

Interval analysis

57 / 67

The analysis prototype uses an interval lattice that
correctly models underflow/overflow:

l, u ∈ [−2b−1; 2b−1 − 1]

of finite height 2b. However Bourdoncle still uses
widening to speed up convergence.

For strictly increasing upper bounds, interval widening
jumps to top (2b−1 − 1)

and for strictly decreasing lower bounds, interval
widening jumps to bottom (−2b−1)

Hence the resulting analysis converges in at most 4
iterations

Analysis complexity

58 / 67

One can simply solve the equations by Kleene fixed
point iteration.

However there are more clever approaches based on
chaotic iteration.

Bourdoncle combines two strategies:

� First compute intraprocedural fixed points, based on
the dependency graph,

� then compute interprocedural fixed points, based on
the call graph

The resulting algorithm is quadratic in the program size
(assuming the number of variables is constant).

Prototype

59 / 67

The prototype implementation consists of

� approx. 20000 lines of C

� incl. 4000 lines of X-window GUI

It first extracts semantic equations, which are
subsequently solved.

The prototype is configurable. By default it performs

� a forward analysis,

� two backward analyses, and

� a final forward analysis

McCarthy’s 91 function

60 / 67

Bourdoncle analyses (a generalization of) the following
benchmark program:

MC(n) =

{

n− 10 if n > 100

MC(MC(n+ 11)) if ≤ 100

which is functionally equivalent to:

MC(n) =

{

n− 10 if n > 100

91 if ≤ 100

It is interesting for static analysis, because the constant
91 does not appear anywhere in the source text.

McCarthy’s 91 function, generalized

61 / 67

Bourdoncle analyses the following generalized
benchmark program:

MCk(n) =

{

n− 10 if n > 100

MCk
k(n+10k − 9) if ≤ 100

which is still functionally equivalent to:

MCk(n) =

{

n− 10 if n > 100

91 if ≤ 100

But now MCk contains k recursive calls.

MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

If we (invariant) assert n ≤ 101 here,

MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

If we (invariant) assert n ≤ 101 here,

the analysis proves m = 91 here

MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.
If we (intermittent) assert m = 91 here,

MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

the analysis finds that n ≤ 101 is a nec-
essary condition here

If we (intermittent) assert m = 91 here,

MC9 in Pascal, buggy

63 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 71)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

MC9 in Pascal, buggy

63 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 71)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.
If we (intermittent) assert true here,

MC9 in Pascal, buggy

63 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 71)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

the analysis finds that n ≥ 101 is a nec-
essary termination condition here

If we (intermittent) assert true here,

Syntox tool for download

64 / 67

Bourdoncle keeps a binary executable for download:
http://web.me.com/fbourdoncle/page18/page6/page6.html

It is however restricted to

� sparc (Suns),

� solaris (Sun + Solaris) or

� mips (MIPS/Ultrix DECStation)

Let me know if you find a machine (or an emulator) able
to run it.

http://web.me.com/fbourdoncle/page18/page6/page6.html

Summary and conclusion

65 / 67

A very nice application of abstract interpretation
machinery.

Overall the basic techniques are very well presented.

Hence they are directly applicable to an "abstract 3CM
debugger" (which would be a very cool project).

For more complex features (reference parameters with
aliasing, recursive function calls, ...) more details are
swept under the rug.

Summary

Summary

67 / 67

Two case studies based on research articles:

� Control-Flow Analysis of Function Calls and Returns
by Abstract Interpretation, Midtgaard and Jensen,
ICFP’09

� Abstract Debugging of Higher-Order Imperative
Languages, Bourdoncle, PLDI’93

	Last time
	Today
	Control-Flow Analysis of Function Calls and Returns by Abstract Interpretation
	Introduction
	Analysis derivation
	Step 1: Projecting machine states
	Step 2: A closure operator on machine states
	Step 2: A closure operator on machine states
	Step 3a: Abstracting the expression-stack relation (1/2)
	Step 3a: Abstracting the expression-stack relation (2/2)
	Step 3b: Abstracting values and envs
	The third and final calculation

	Extracting constraints
	Comparing ANF/CPS analyses
	Analysis equivalence

	Conclusion
	Abstract Debugging of Higher-Order Imperative Languages
	Basic idea and context
	A crash course in Pascal (enough to parse examples)
	Pascal peculiarity 1
	Pascal peculiarity 2
	Two types of assertions
	Properties in collecting semantics
	Assertion properties, more generally
	Assertions as always/eventually properties
	Fixed point computation, (coll.) semantically
	Error detection from fixed point result
	From fixed point semantics to analysis
	Forward equation example
	Backward intermittent equation example
	Backward invariant equation example
	Minimal use of widening
	Forward equations with widening
	Interval analysis
	Analysis complexity
	Prototype
	McCarthy's 91 function
	McCarthy's 91 function, generalized
	MC9 in Pascal
	MC9 in Pascal, buggy
	Syntox tool for download
	Summary and conclusion

	Summary
	Summary

