
Case studies: Control-Flow Analysis and
Abstract Debugging

Jan Midtgaard

Week 6, Abstract Interpretation

Aarhus University, Q4 - 2012



Last time

2 / 67

A catalogue of abstractions

! Toolbox abstractions

! Structural abstractions: sums, pairs/tuples, . . .

! Numerical abstractions: constants, intervals,
congruences, polyhedra, . . .

! Concretization-based abstract interpretation, briefly

A retrospective on the 3 counter machine analysis, incl.
constraint extraction



Abstract Debugging of Higher-Order
Imperative Languages



Basic idea and context

41 / 67

Instead of ’dataflow analysis’ or ’program verification’,
an analysis is used for ’abstract debugging’,

i.e. using abstract interpretation to locate the cause of
bugs statically (without running the program!)

Achieved through a cool combination of
forwards/backwards analysis



Basic idea and context

41 / 67

Instead of ’dataflow analysis’ or ’program verification’,
an analysis is used for ’abstract debugging’,

i.e. using abstract interpretation to locate the cause of
bugs statically (without running the program!)

Achieved through a cool combination of
forwards/backwards analysis

Historic context: "...applicable to languages such as
Pascal, Modula-2, Modula-3, C or C++"

The paper is from 1993 — Java wasn’t invented until
1995. All examples are given in Pascal



A crash course in Pascal (enough to parse examples)

42 / 67

! imperative programming language

– types: integers, arrays, ...

– statement-based: assignment (:=),
if-then-else, loops (while, for,
repeat-until)

! lexically scoped, variables are declared with var

! blocks are written begin. . .end (instead of {. . .})

! read(n) reads input from stdin and assigns result
to variable n

! write(n) outputs variable n to stdout



Pascal peculiarity 1

43 / 67

A function returns its result by "assigning it to the
function’s name":

function Fac(n: integer): integer;

begin

if n = 0 then

Fac := l

else

Fac := n * Fac(n-1)

end;



Pascal peculiarity 2

44 / 67

Arrays are indexed as indicated by their declaration:

program For;

var i, n : integer;

T : array [1..100] of integer;

begin

read(n);

for i := 0 to n do

read(T[i])

end.

Problem 1: for i=0 the statement read(T[i]) indexes
the array out-of-bounds

Problem 2: for this program, the input n also has to be
< 101



Two types of assertions

45 / 67

The debugger is driven by two types of assertions:

Invariant assertions these are similar to normal
assert statements: properties that must always
hold at this point.

Example: x > 0 at some program point

Intermittent assertions these are different: properties
that eventually hold at this point

Example: false (i.e. bottom) at program exit
(meaning end of program not reachable)



Properties in collecting semantics

46 / 67

Semantically, these properties can be expressed as a
combination of forward/backward/lfp/gfp:

! Descendants of a set of states Σ (forward):

lfp(λX.Σ ∪ post [τ ](X))

! Ascendants of a set of states Σ (backward):

lfp(λX.Σ ∪ pre [τ ](X))

! Ascendants not leading to error in Serr (backward):

gfp(λX. pre [τ ](X)\Serr)



Assertion properties, more generally

47 / 67

For a property Π ∈ ℘(S), that will eventually hold:

eventually(Π) = lfp(λX.Π ∪ pre [τ ](X))

with the corresponding Kleene sequence:

eventually(Π) = Π ∪ pre [τ ](Π) ∪ pre2[τ ](Π) ∪ . . .

For a property Π ∈ ℘(S), that must always hold:

always(Π) = gfp(λX.Π ∩ pre [τ ](X))

with the corresponding Kleene sequence:

always(Π) = Π ∩ pre [τ ](Π) ∩ pre2[τ ](Π) ∩ . . .



Assertions as always/eventually properties

48 / 67

Programs are modeled using PC ×Memory pairs.

Property πk always holds at point ck (for all k ∈ Ka)

Πa = {⟨c, m⟩ ∈ S | ∀k ∈ Ka : c = ck =⇒ m ∈ πk}
(invariant ass.)

at all other points c, the memory m is true (anything)

Property πk eventually holds at point ck (for some
k ∈ Ke)

Πe = {⟨c, m⟩ ∈ S | ∃k ∈ Ke : c = ck ∧ m ∈ πk}
(intermittent ass.)

at all other points c, the memory m is false (non-existing)



Fixed point computation, (coll.) semantically

49 / 67

Semantically we seek the limit I of the sequence

S = I0 ⊇ I1 ⊇ I2 ⊇ I3 ⊇ . . .

where

! Ik+1 = lfp(λX. Ik ∩ (Sin ∪ post [τ ](X)))

! Ik+2 = gfp(λX. Ik+1 ∩ Πa ∩ pre [τ ](X))

! Ik+3 = lfp(λX. Ik+2 ∩ (Πe ∪ pre [τ ](X)))

The fixed point computation continues to propagate
forwards (k + 1), backwards (k + 2), backwards (k + 3)



Error detection from fixed point result

50 / 67

! All s ∈ Sin\I break one of the programmer’s
invariants, since s is not in Πa or will not lead to a
state in Πe.

! All s ∈ post∗[τ ](I)\I also break an invariant, since s
follows from the forwards flow from I, but not from
the backwards flow.

Hence such states can be reported to the programmer.



From fixed point semantics to analysis

51 / 67

The analysis is similar, except it performs fixed point
computations over an abstract domain.

The analysis and semantics are (of course) connected
by Galois connections.

It is expressed as forward and backward “semantic
equations”.

These equations are similar to the IMP semantics from
week 2

(and to the constraints we extracted last week).



Minimal use of widening

55 / 67

To speed up convergence or guarantee termination the
analysis uses widening/narrowing operators.

Widening (and narrowing) represent information loss, so
we want to minimize the number of widenings.

Only loops (cycles) can lead to infinite chains in the
analysis.

Convergence is guaranteed by at least one widening
operator per cycle in the equation dependency graph.



Interval analysis

57 / 67

The analysis prototype uses an interval lattice that
correctly models underflow/overflow:

l, u ∈ [−2b−1; 2b−1 − 1]

of finite height 2b. However Bourdoncle still uses
widening to speed up convergence.

For strictly increasing upper bounds, interval widening
jumps to top (2b−1 − 1)

and for strictly decreasing lower bounds, interval
widening jumps to bottom (−2b−1)

Hence the resulting analysis converges in at most 4
iterations



Analysis complexity

58 / 67

One can simply solve the equations by Kleene fixed
point iteration.

However there are more clever approaches based on
chaotic iteration.

Bourdoncle combines two strategies:

! First compute intraprocedural fixed points, based on
the dependency graph,

! then compute interprocedural fixed points, based on
the call graph

The resulting algorithm is quadratic in the program size
(assuming the number of variables is constant).



Prototype

59 / 67

The prototype implementation consists of

! approx. 20000 lines of C

! incl. 4000 lines of X-window GUI

It first extracts semantic equations, which are
subsequently solved.

The prototype is configurable. By default it performs

! a forward analysis,

! two backward analyses, and

! a final forward analysis



McCarthy’s 91 function

60 / 67

Bourdoncle analyses (a generalization of) the following
benchmark program:

MC(n) =

{

n− 10 if n > 100

MC(MC(n+ 11)) if ≤ 100

which is functionally equivalent to:

MC(n) =

{

n− 10 if n > 100

91 if ≤ 100

It is interesting for static analysis, because the constant
91 does not appear anywhere in the source text.



McCarthy’s 91 function, generalized

61 / 67

Bourdoncle analyses the following generalized
benchmark program:

MCk(n) =

{

n− 10 if n > 100

MCk
k(n+10k − 9) if ≤ 100

which is still functionally equivalent to:

MCk(n) =

{

n− 10 if n > 100

91 if ≤ 100

But now MCk contains k recursive calls.



MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.



MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

If we (invariant) assert n ≤ 101 here,



MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

If we (invariant) assert n ≤ 101 here,

the analysis proves m = 91 here



MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.
If we (intermittent) assert m = 91 here,



MC9 in Pascal

62 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 81)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

the analysis finds that n ≤ 101 is a nec-
essary condition here

If we (intermittent) assert m = 91 here,



MC9 in Pascal, buggy

63 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 71)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.



MC9 in Pascal, buggy

63 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 71)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.
If we (intermittent) assert true here,



MC9 in Pascal, buggy

63 / 67

program McCarthy;

var m, n : integer;

function MC(n: integer) : integer;

begin

if (n > 100) then

MC := n - 10

else

MC := MC(MC(MC(MC(MC(

MC(MC(MC(MC (n + 71)))))))))

end;

begin

read(n);

m := MC(n);

writeln(m)

end.

the analysis finds that n ≥ 101 is a nec-
essary termination condition here

If we (intermittent) assert true here,



Syntox tool for download

64 / 67

Bourdoncle keeps a binary executable for download:
http://web.me.com/fbourdoncle/page18/page6/page6.html

It is however restricted to

! sparc (Suns),

! solaris (Sun + Solaris) or

! mips (MIPS/Ultrix DECStation)

Let me know if you find a machine (or an emulator) able
to run it.



Summary and conclusion

65 / 67

A very nice application of abstract interpretation
machinery.

Overall the basic techniques are very well presented.

Hence they are directly applicable to an "abstract 3CM
debugger" (which would be a very cool project).

For more complex features (reference parameters with
aliasing, recursive function calls, ...) more details are
swept under the rug.


	Last time
	Today
	Control-Flow Analysis of Function Calls and Returns by Abstract Interpretation
	Introduction
	Analysis derivation
	Step 1: Projecting machine states
	Step 2: A closure operator on machine states
	Step 2: A closure operator on machine states
	Step 3a: Abstracting the expression-stack relation (1/2)
	Step 3a: Abstracting the expression-stack relation (2/2)
	Step 3b: Abstracting values and envs
	The third and final calculation

	Extracting constraints
	Comparing ANF/CPS analyses
	Analysis equivalence

	Conclusion
	Abstract Debugging of Higher-Order Imperative Languages
	Basic idea and context
	A crash course in Pascal (enough to parse examples)
	Pascal peculiarity 1
	Pascal peculiarity 2
	Two types of assertions
	Properties in collecting semantics
	Assertion properties, more generally
	Assertions as always/eventually properties
	Fixed point computation, (coll.) semantically
	Error detection from fixed point result
	From fixed point semantics to analysis
	Forward equation example
	Backward intermittent equation example
	Backward invariant equation example
	Minimal use of widening
	Forward equations with widening
	Interval analysis
	Analysis complexity
	Prototype
	McCarthy's 91 function
	McCarthy's 91 function, generalized
	MC9 in Pascal
	MC9 in Pascal, buggy
	Syntox tool for download
	Summary and conclusion

	Summary
	Summary


