
Numerical and Structural Abstractions

Jan Midtgaard

Week 5, Abstract Interpretation

Aarhus University, Q4 - 2012

Last time

2 / 57

More approximation methods for abstract interpretation:

! Partitioning

! Relational and attribute independent analysis

! Inducing, abstracting, approximating fixed points

! Widening, narrowing

! Forwards/backwards analysis

+ analysis of Plotkin’s three counter machine

Today

3 / 57

A catalogue of abstractions

! Toolbox abstractions

! Structural abstractions: sums, pairs/tuples, . . .

! Numerical abstractions: constants, intervals,
polyhedra

! Concretization-based abstract interpretation, briefly

A retrospective on the 3 counter machine analysis, incl.
constraint extraction

Toolbox abstractions

Warm up: Collapsing abstractions

5 / 57

The collapsing abstraction into a two element lattice:

α(∅) = ⊥

α(S) = # if S $= ∅

γ(⊥) = ∅

γ(#) = S

〈℘(S);⊆〉 −−→−→←−−−
α

γ
〈{#,⊥};+〉

is slightly better than the completely collapsing
abstraction:

α(S) = ⊥

γ(⊥) = S
〈℘(S);⊆〉 −−→−→←−−−

α

γ
〈{⊥};+〉

Subset abstraction

6 / 57

Given a set C and a strict subset A ⊂ C hereof, the
restriction to the subset induces a Galois connection:

〈℘(C);⊆〉 −−−→−→←−−−−
α⊂

γ⊂
〈℘(A);⊆〉

α⊂(X) = X ∩ A

γ⊂(Y) = Y ∪ (C \ A)

For example, in a control-flow analysis of untyped
functional programs one can choose to focus on
functional values (closures) and not model numbers:

〈℘(Clo + Num);⊆〉 −−−→−→←−−−−
α⊂

γ⊂
〈℘(Clo);⊆〉

(Note: by a sum A+B we mean the disjoint union)

Elementwise abstraction

7 / 57

Let an elementwise operator @ : C → A be given.
Define

α(P) = {@(p) | p ∈ P}

γ(Q) = {p | @(p) ∈ Q}

Then
〈℘(C);⊆〉 −−→←−−α

γ
〈℘(A);⊆〉

In particular, if @ is onto, we have

〈℘(C);⊆〉 −−→−→←−−−
α

γ
〈℘(A);⊆〉

For example, Parity is isomorphic to an elementwise
abstraction.
Q: what would A and @ be in this case?

Structural abstractions

Structural?

9 / 57

How is State# constructed? It is possible to
invent State#, and then the pair of adjoined
functions. Another approach consists in
inducing State# from the structure of State.

—Alain Deutsch, POPL’90

Abstracting sums as a product

10 / 57

We can abstract sums by first utilizing a simple
isomorphism:

〈℘(A+B);⊆〉 −−→−→←←−−−α

γ
〈℘(A)× ℘(B);⊆×〉

where

α(S) = ({a | a ∈ S ∩ A}, {b | b ∈ S ∩ B})

This isomorphism will typically enable further
approximation.

For example, the values of a mini-Scheme language
could be such a disjoint sum: closure or number

Componentwise abstraction

11 / 57

We can abstract a Cartesian product (e.g., the outcome
of the previous isomorphism) componentwise:

〈℘(Ci);⊆〉 −−−→←−−−αi

γi
〈Ai;+i〉 i ∈ {1, . . . , n}

〈℘(C1)× . . .× ℘(Cn);⊆×〉 −−→←−−α
γ
〈A1 × . . .× An;+×〉

with
α(〈X1, . . ., Xn〉) = 〈α1(X1), . . ., αn(Xn)〉

γ(〈x1, . . ., xn〉) = 〈γ1(x1), . . ., γn(xn)〉

and writing +× for componentwise inclusion.

For example, last week we used the “triple version” for
abstracting the 3 Counter Machine memory.

Abstracting pairs, coarsely

12 / 57

We can approximate a set-of-pairs by an abstract pair:

〈℘(C1);⊆〉 −−−→←−−−α1

γ1
〈A1;≤1〉 〈℘(C2);⊆〉 −−−→←−−−α2

γ2
〈A2;≤2〉

〈℘(C1 × C2);⊆〉 −−→←−−α
γ
〈A1 × A2;≤×〉

where

α(S) = 〈α1({a | (a, b) ∈ S}), α2({b | (a, b) ∈ S})〉

For example, we used this approach to abstract the
three memory registers of the 3CM.

Abstracting pairs, better

13 / 57

Utilizing the well-known isomorphism

〈℘(C1 × C2);⊆〉 −−→−→←←−−−α

γ
〈C1 → ℘(C2); ⊆̇〉

we can approximate the set-of-pairs as a function
between abstract domains:

〈℘(C1);⊆〉 −−−→←−−−α1

γ1
〈A1;≤1〉 〈℘(C2);⊆〉 −−−→←−−−α2

γ2
〈A2;≤2〉

〈℘(C1 × C2);⊆〉 −−→←−−α
γ
〈A1 → A2; ≤̇2〉

where

α(S) =
˙⊔
{[α1({a}) 2→ α2({b})] | 〈a, b〉 ∈ S}

Abstracting pairs, relationally

14 / 57

Finally we can go all-in and approximate the set-of-pairs
as an abstract set-of-pairs:

〈℘(C1);⊆〉 −−−→←−−−α1

γ1
〈A1;≤1〉 〈℘(C2);⊆〉 −−−→←−−−α2

γ2
〈A2;≤2〉

〈℘(C1 × C2);⊆〉 −−→←−−α
γ
〈℘(A1 × A2)/≡;⊆〉

where α(S) = {〈α1({a}), α2({b})〉 | 〈a, b〉 ∈ S}

Note: this requires a domain reduction, equating all
elements with the same meaning, e.g., in ℘(Par × Par),
{〈#, even〉} ≡ {〈odd , even〉, 〈even, even〉}.

Perhaps a fun project abstracting the 3CM in this
manner?

Comparing the three pair abstractions

15 / 57

Suppose we abstract the signs of the following set

S = {〈−1, −1〉, 〈0, 0〉, 〈1, 1〉, 〈−1, 1〉}

coarsely: better: relationally:

1−1−2

1

−1

−2

•

•

••

1−1−2

1

−1

−2

•

•

••

1−1−2

1

−1

−2

•

•

••

α(S) = 〈#, #〉

α(S) = [neg 2→ #,

0 2→ 0,

pos 2→ pos]

α(S) =

{〈neg , neg〉, 〈0, 0〉,

〈pos , pos〉, 〈neg , pos〉}

Abstracting monotone functions

16 / 57

Similar to the ’better abstraction’ of pairs, we can
approximate monotone functions by monotone abstract
functions:

〈C1;⊆1〉 −−−→←−−−α1

γ1
〈A1;≤1〉 〈C2;⊆2〉 −−−→←−−−α2

γ2
〈A2;≤2〉

〈C1
m
−→ C2; ⊆̇2〉 −−→←−−α

γ
〈A1

m
−→ A2; ≤̇2〉

where X
m
−→ Y are the monotone functions from X to Y

and
α(f) = α2 ◦ f ◦ γ1
γ(g) = γ2 ◦ g ◦ α1

Abstracting sequences

17 / 57

We can abstract a set of sequences (rather crudely) by
collapsing their elements:

〈℘(C);⊆〉 −−→←−−α
γ
〈A;≤〉

〈℘(C∗);⊆〉 −−−→←−−−
α∗

γ∗

〈A;≤〉

where

α∗(S) = α({x | x ∈ s ∧ s ∈ S})

Numerical abstractions

Numerical abstractions

19 / 57

We’ve already come across a few numerical abstract
domains: parity, signs, intervals, . . .

All of these were attribute independent (or
non-relational): they don’t express relations between
(the values of) variables.

Let’s recap what we have seen and supplement with
some new ones, both non-relational and relational.

What is a numerical abstract domain?

20 / 57

A computer-representable property, with
! top and bottom: #, ⊥

! join, meet, and comparison operators: 7, 8, and +

! widening and narrowing operators (optional, for
domains with infinite strictly incr./decr. chains)

! some primitive operations: +,-,*,/

! other basic operations: test, assignment

! with matching backwards operations (optional, for
(forwards/) backwards analysis)

! a γ-function mapping elements to their meaning
(mathematical, not necessarily computable)

The parity domain

21 / 57

Par = {#, odd , even,⊥}

〈℘(N0);⊆〉 −−→−→←−−−
α

γ
〈Par ;+〉

#

⊥

odd even

where

γ(⊥) = ∅

γ(odd) = {n ∈ N0 | n mod 2 = 1}

γ(even) = {n ∈ N0 | n mod 2 = 0}

γ(#) = N0

A simple sign domain

22 / 57

Sign = {#, ˙pos , ˙neg , 0,⊥}

〈℘(Z);⊆〉 −−→−→←−−−
α

γ
〈Sign;+〉

#

0

˙neg ˙pos

⊥
where

γ(⊥) = ∅

γ(0) = {0}

γ(˙pos) = {n ∈ Z | n ≥ 0}

γ(˙neg) = {n ∈ Z | n ≤ 0}

γ(#) = Z

Another simple sign domain

23 / 57

Sign = {#, pos , neg , 0,⊥}

〈℘(Z);⊆〉 −−→−→←−−−
α

γ
〈Sign;+〉

#

0neg pos

⊥
where

γ(⊥) = ∅

γ(0) = {0}

γ(pos) = {n ∈ Z | n > 0}

γ(neg) = {n ∈ Z | n < 0}

γ(#) = Z

The improved sign domain

24 / 57

Sign = {#, $= 0, ˙pos , ˙neg , pos , neg , 0,⊥}

〈℘(Z);⊆〉 −−→−→←−−−
α

γ
〈Sign;+〉

#

$= 0

0

˙neg ˙pos

neg pos

⊥
where

γ(⊥) = ∅

γ(0) = {0}

γ(pos) = {n ∈ Z | n > 0}

γ(neg) = {n ∈ Z | n < 0}

γ(˙pos) = {n ∈ Z | n ≥ 0}

γ(˙neg) = {n ∈ Z | n ≤ 0}

γ($= 0) = {n ∈ Z | n $= 0}

γ(#) = Z

The constant propagation domain (Kildall:73)

25 / 57

Const = Z ∪ {#,⊥}

〈℘(Z);⊆〉 −−→−→←−−−
α

γ
〈Const ;+〉

#

. . . −2−1 0 1 2 . . .

⊥
where

γ(#) = Z

γ(n) = {n}

γ(⊥) = ∅

α({n1, n2, . . . }) = #

α({n}) = n

α(∅) = ⊥

Simple congruences (Granger’89)

26 / 57

Cong = {⊥} ∪ {a+ bZ | a, b ∈ Z :

(b = 0) ∨ (0 ≤ a < b)}

〈℘(Z);⊆〉 −−→−→←−−−
α

γ

〈Cong ;+〉

γ(⊥) = ∅

γ(a+ bZ) = {a+ bz | z ∈ Z}

0+1Z

/ | \

0+2Z 1+2Z 1+3Z ...

/ \ \ /

... ... 1+6Z

...

... 0+0Z 1+0Z 2+0Z ...

\ \ | / /

bot

Ordering:

⊥ + (a+ bZ)

(a+ bZ) + (a′ + b′Z) ⇐⇒ (b′ | gcd(|a− a′|, b))

x ≡ a mod b

Simple congruences, continued

27 / 57

Join: ⊥ 7 (a+ bZ) = a+ bZ

(a+ bZ) 7 ⊥ = a+ bZ

(a+ bZ) 7 (a′ + b′Z) = (min(a, a′) + gcd(|a− a′|, b, b′)Z)

Note: there are no infinite, strictly increasing chains.
However there are infinite, strictly decreasing chains:

0 + 1Z " 1 + 2Z " 1 + 6Z " 1 + 12Z " . . .

hence we may need a narrowing. . .

Simple congruences, continued

27 / 57

Join: ⊥ 7 (a+ bZ) = a+ bZ

(a+ bZ) 7 ⊥ = a+ bZ

(a+ bZ) 7 (a′ + b′Z) = (min(a, a′) + gcd(|a− a′|, b, b′)Z)

Note: there are no infinite, strictly increasing chains.
However there are infinite, strictly decreasing chains:

0 + 1Z " 1 + 2Z " 1 + 6Z " 1 + 12Z " . . .

hence we may need a narrowing. . .

Q: what do the elements 0 + 2Z and 1 + 2Z represent
together with ⊥ and 0 + 1Z?

Simple congruences, continued

27 / 57

Join: ⊥ 7 (a+ bZ) = a+ bZ

(a+ bZ) 7 ⊥ = a+ bZ

(a+ bZ) 7 (a′ + b′Z) = (min(a, a′) + gcd(|a− a′|, b, b′)Z)

Note: there are no infinite, strictly increasing chains.
However there are infinite, strictly decreasing chains:

0 + 1Z " 1 + 2Z " 1 + 6Z " 1 + 12Z " . . .

hence we may need a narrowing. . .

Q: what do the elements 0 + 2Z and 1 + 2Z represent
together with ⊥ and 0 + 1Z?

Q: what about . . . , 0 + 0Z, 1 + 0Z, 2 + 0Z, 3 + 0Z, . . .
together with ⊥ and 0 + 1Z?

Simple congruence operations

28 / 57

The arithmetic operators over congruences, e.g.,
addition:

(a+ bZ) +⊥ = ⊥

⊥+ (a+ bZ) = ⊥

(a+ bZ) + (c+ dZ) = ((a+ c) mod gcd(b, d)) + gcd(b, d)Z

and multiplication:

(a+ bZ) ∗ ⊥ = ⊥

⊥ ∗ (a+ bZ) = ⊥

(a+ bZ) ∗ (c+ dZ) = (ac mod gcd(ad, bc, bd))

+ gcd(ad, bc, bd)Z

Intervals (Moore’66, Cousot-Cousot’76)

29 / 57

Interval = {⊥} ∪ {[l, u] | l ∈ Z ∪ {−∞}

∧ u ∈ Z ∪ {+∞} ∧ l ≤ u}

〈℘(Z);⊆〉 −−→−→←−−−
α

γ

〈Interval ;+〉

[−∞,∞]
.
.
.

. . . [−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2] . .

. . . [−2,−1] [−1, 0] [0, 1] [1, 2] . . .

. . . [−2, 0] [−1, 1] [0, 2] . . .

. . . [−2, 1] [−1, 2] . . .

. . . [−2, 2] . . .

.

⊥

γ(⊥) = ∅

γ([a, b]) = {n ∈ Z | a ≤ n ≤ b}

α(∅) = ⊥

α(S) = [minS,maxS]

Note: intervals over R also work, however over Q the
resulting domain is not complete.

Intervals, continued (2/3)

30 / 57

Least upper bounds:

X 7 ⊥ = X

⊥ 7 Y = Y

[a, b] 7 [c, d] = [min(a, c),max(b, d)]

Greatest lower bounds:

X 8 ⊥ = ⊥

⊥ 8 Y = ⊥

[a, b] 8 [c, d] =

{

[max(a, c),min(b, d)] if max(a, c) ≤ min(b, d)

⊥ otherwise

Intervals, continued (3/3)

31 / 57

Interval addition:

⊥+X = ⊥

X +⊥ = ⊥

[a, b] + [c, d] = [a+ c, b+ d]

Widening and narrowing:

⊥# I = I I #⊥ = I

[a, b]#[c, d] =

[{

−∞ c < a

a c ≥ a
,

{

+∞ d > b

b d ≤ b

]

⊥$ I = ⊥ I $⊥ = ⊥

[a, b]$[c, d] =

[{

c a = −∞

a otherwise
,

{

d b = +∞

b otherwise

]

Interval widening example

32 / 57

Widening with ⊥ yields identity:

∅#[1, 100] = [1, 100]

Increasing upper bounds expand to∞:

[1, 100]#[1, 101] = [1,∞]

Decreasing lower bounds expand to −∞:

[1,∞]#[0, 102] = [−∞,∞]

Convex Polyhedra

Convex Polyhedra (1/2)

34 / 57

We can use inequalities to describe the relationship
between numerical variables of a program, e.g.:

y ≥ 1 ∧ x+ y ≥ 3 ∧ − x+ y ≤ 1

for two variables x and y.

The inequalities represent
a convex polyhedron.

These form the abstract
values of the polyhedra
domain, which is a rela-
tional abstract domain.

y ^ /

| /

3 | /

| /

2 | \

| \

1 | ---------------

|

0 +--------------------->

0 1 2 3 4 5 6 ... x

Representation (implementation)

35 / 57

Convex polyhedra are represented using double
description (with variables X = {x1, . . . , xn}):

! a system of inequalities (A,B) where A is an m× n
matrix, B is an m vector, and
γ(A,B) = {X | AX ≥ B}

! a system of generators (V,R) of vertices and rays
where V = {V1, . . . , Vk}, R = {R1, . . . , Rl}, and

γ(V,R) = {Σk
i=1λiVi + Σl

i=1µiRi | λi ≥ 0 ∧

µi ≥ 0 ∧ Σk
i=1λi = 1}

An domain implementation will typically translate back
and forth between the two, trying to minimize the
number of conversions.

Representation example

36 / 57

For example, we can represent

y ≥ 1 ∧ x+ y ≥ 3 ∧ − x+ y ≤ 1

as a system of inequalities: AX ≥ B




0 1
1 1
1 −1





[

x
y

]

≥





1
3
−1





as a system of generators:

V = {V0 : (2, 1), V1 : (1, 2)}

R = {R0 : (1, 0), R1 : (1, 1)}

y ^ /

| _

3 | /| R1

|V1/

2 | \

| \ R0

1 | x-> - - - - - -

| V0

0 +--------------------->

0 1 2 3 4 5 6 ... x

Convex Polyhedra (2/2)

37 / 57

Operations, some of which are easier on one
representation, rather than the other:

7 – returns a convex hull, which is an
over-approximation of the union of two polyhedra.

Easily expressed as a union of the corresponding
generators.

8 – returns the polyhedron representing the intersection
of two polyhedra.

Easily expressed as the conjunction of the two
constraint systems.

But there is a catch

38 / 57

The polyhedra lattice is not complete: there exists
strictly infinite chains for which the limit is not in the
domain. Example: a disk.

Hence for some sets, e.g., a disk, there is no best
abstraction.

As a consequence the abstraction to polyhedra is not a
Galois connection.

A possible relaxation is to consider only concretization
functions. . .

Concretization-based abstract interpretation

39 / 57

Proposition. Assume 〈C;+,7〉 is a poset, F : C → C is
a continuous function, ⊥c ∈ C such that ⊥c + F (⊥c),
and

⊔

n∈N F
n(⊥c) exists.

Assume A is a set, γ : A→ C is a function, ≤ is a
preorder, defined as: c ≤ c′ ⇐⇒ γ(c) + γ(c′), ⊥a ∈ A
such that ⊥c + γ(⊥a), G : A→ A is a monotone function
such that F ◦ γ + γ ◦ G and # is a widening operator.

Then the upward iteration sequence with widening is
ultimately stationary with limit a, such that lfpF + γ(a)
and G(a) ≤ a.

As an alternative, Miné suggests a framework based on
partial Galois connections, in which α is a partial
function.

Want more abstractions?

40 / 57

There are many more numerical abstractions, see, e.g.,
Miné’s thesis or this link:

http://bugseng.com/products/ppl/abstractions

The Two Variables per Inequality (TVPI) domain is a
restricted form of polyhedra, only expressing relations
between two variables: aijxi + bijxj ≤ cij

Miné’s Octagon domain is another restricted form of
polyhedra, also expressing relations between two
variables: ±xi ± xj ≤ cij

Q: what do we get by restricting to one variable per
inequality?

http://bugseng.com/products/ppl/abstractions

Numerical domains, botanically

41 / 57

ATTRIBUTE INDEPENDENT DOMAINS (NON-RELATIONAL):

Parity, Sign, Constants, Simple Congruences,
Intervals, . . .

RELATIONAL DOMAINS:

Polyhedra, Octagons, TVPI, . . .

A few connections between numerical
abstractions

From intervals to a constant/sign combination

43 / 57

[−∞,∞]
...

. . . [−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2] . . .

. . . [−2,−1] [−1, 0] [0, 1] [1, 2] . . .

. . . [−2, 0] [−1, 1] [0, 2] . . .

. . . [−2, 1] [−1, 2] . . .

. . . [−2, 2] . . .

.

⊥

−−→−→←−−−
α

γ

#
neg pos

. . . −2 −1 0 1 2 . . .

⊥
where

α(⊥) = ⊥

α([a, a]) = a

α([a, b]) =











pos if a ≥ 0

neg if b ≤ 0

otherwise

From the constant/sign combination to . . .

44 / 57

This domain can (naturally) be abstracted to both
constants: #

neg pos

. . . −2−1 0 1 2 . . .

⊥

−−→−→←−−−
α

γ

#

. . . −2−1 0 1 2 . . .

⊥

and signs:

#
neg pos

. . . −2−1 0 1 2 . . .

⊥

−−→−→←−−−
α

γ

#

0

˙neg ˙pos

⊥

From the constant/sign combination to . . .

45 / 57

Both can be abstracted into a simple two-point domain:

#

0

˙neg ˙pos

⊥

−−→−→←−−−
α

γ #

⊥

and all the way down to a one-point lattice:

#

⊥
−−→−→←−−−

α

γ

⊥

Connection summary

46 / 57

To summarize:

Interval ConstSign

Const

Sign

TopBot ⊥

A nice lattice of lattices! %̈

The 3 counter machine analysis, revisited

The 3 counter machine analysis, revisited

48 / 57

We arrived at an abstract transition function T, but the
analysis is the least fixed point lfp of T.

Q: Which fixed point theorem(s) of the three from last
time are we using?

Design choices of the analysis

49 / 57

The resulting analysis associates an abstract memory to
each program point:

℘(PC × N0 × N0 × N0) −−→←−−
α

γ

PC → (Parity × Parity × Parity)

Design choices of the analysis

49 / 57

The resulting analysis associates an abstract memory to
each program point:

℘(PC × N0 × N0 × N0) −−→←−−
α

γ

PC → (Parity × Parity × Parity)

Alternatively we could have abstracted the components
separately as follows:

℘(PC × N0 × N0 × N0) −−→←−−
α

γ

℘(PC)× (Parity × Parity × Parity)

Design choices of the analysis

49 / 57

The resulting analysis associates an abstract memory to
each program point:

℘(PC × N0 × N0 × N0) −−→←−−
α

γ

PC → (Parity × Parity × Parity)

Alternatively we could have abstracted the components
separately as follows:

℘(PC × N0 × N0 × N0) −−→←−−
α

γ

℘(PC)× (Parity × Parity × Parity)

Q: how would you characterize the first analysis using
static analysis terminology?

Design choices of the analysis

49 / 57

The resulting analysis associates an abstract memory to
each program point:

℘(PC × N0 × N0 × N0) −−→←−−
α

γ

PC → (Parity × Parity × Parity)

Alternatively we could have abstracted the components
separately as follows:

℘(PC × N0 × N0 × N0) −−→←−−
α

γ

℘(PC)× (Parity × Parity × Parity)

Q: how would you characterize the first analysis using
static analysis terminology?

Q: how would you characterize the second?

Alternative 3 counter machine analyses?

50 / 57

Q: What changes if we want to switch to a different
numerical abstraction (intervals, congruences, . . .)?

or rather,

Q: which assumptions about Parity did we rely on?

Alternative 3 counter machine analyses?

50 / 57

Q: What changes if we want to switch to a different
numerical abstraction (intervals, congruences, . . .)?

or rather,

Q: which assumptions about Parity did we rely on?

℘(N0 × N0 × N0) −→←− ℘(N0)× ℘(N0)× ℘(N0)

℘(N0) −→−→←−− Par ℘(N0) −→−→←−− Par ℘(N0) −→−→←−− Par

℘(N0)× ℘(N0)× ℘(N0) −→←− Par × Par × Par

℘(N0 × N0 × N0) −→←− Par × Par × Par

PC → ℘(N0 × N0 × N0) −→←− PC → Par × Par × Par

From fixed points to constraints

51 / 57

Recall: a fixed point of T satisfies: T (S#) = S#

and a post-fixed point satisfies: T (S#) + S#

Any post-fixed point of T is a sound approximation of
lfpT

In our case, T is defined as a big (pointwise) join:

T (S#) = X1 7̇X2 7̇ . . . 7̇Xn +̇S#

which is equivalent to:

X1 +̇S# ∧ X2 +̇S# ∧ . . . ∧ Xn +̇S#

Extracting 3 counter machine constraints (1/4)

52 / 57

T(S#) = (<bot,bot,bot>. [1 -> <top, even, even>])

U.

U. (<bot,bot,bot>. [pc+1 -> [x++]#(S#(pc))])

pc in Dom(S#)

P_pc = inc x

(...and for y and z)

U.

U. (<bot,bot,bot>. [pc+1 -> [x--]#(S#(pc))])

pc in Dom(S#)

P_pc = dec x

(...and for y and z)

U.

U. (<bot,bot,bot>. [pc’ -> [x==0]#(S#(pc))])

pc in Dom(S#) U. (<bot,bot,bot>. [pc’’ -> [x<>0]#(S#(pc))])

P_pc = zero x pc’ else pc’’

(...and for y and z)

C. S#

Extracting 3 counter machine constraints (2/4)

53 / 57

(<bot,bot,bot>. [1 -> <top, even, even>]) C. S#

/\

U. (<bot,bot,bot>. [pc+1 -> [x++]#(S#(pc))]) C. S#

pc in Dom(S#)

P_pc = inc x

(...and for y and z)

/\

U. (<bot,bot,bot>. [pc+1 -> [x--]#(S#(pc))]) C. S#

pc in Dom(S#)

P_pc = dec x

(...and for y and z)

/\

U. (<bot,bot,bot>. [pc’ -> [x==0]#(S#(pc))]) C. S#

pc in Dom(S#) U. (<bot,bot,bot>. [pc’’ -> [x<>0]#(S#(pc))])

P_pc = zero x pc’ else pc’’

(...and for y and z)

Extracting 3 counter machine constraints (3/4)

54 / 57

<top, even, even> C S#(1)

/\

for all pc in Dom(S#), such that P_pc = inc x :

[x++]#(S#(pc)) C S#(pc+1)

(...and for y and z)

/\

for all pc in Dom(S#), such that P_pc = dec x :

[x--]#(S#(pc)) C S#(pc+1)

(...and for y and z)

/\

for all pc in Dom(S#), such that P_pc = zero x pc’ else pc’’ :

[x==0]#(S#(pc)) C S#(pc’)

/\ [x<>0]#(S#(pc)) C S#(pc’’)

(...and for y and z)

. . . not that far from the constraint-based analyses of ’dOvs’ and ’Static Analysis’.

Extracting 3 counter machine constraints (4/4)

55 / 57

<top, even, even> C S#(1)

/\

for all "inc x" instructions in P with program counter pc :

[x++]#(S#(pc)) C S#(pc+1)

(...and for y and z)

/\

for all "dec x" instructions in P with program counter pc :

[x--]#(S#(pc)) C S#(pc+1)

(...and for y and z)

/\

for all "zero x pc’ else pc’’" instructions in P with program counter pc

[x==0]#(S#(pc)) C S#(pc’)

/\ [x<>0]#(S#(pc)) C S#(pc’’)

(...and for y and z)

. . . not that far from the constraint-based analyses of ’dOvs’ and ’Static Analysis’.

Summary

Summary

57 / 57

A catalogue of abstractions

! Toolbox abstractions

! Structural abstractions: sums, pairs/tuples, . . .

! Numerical abstractions: constants, intervals,
congruences, polyhedra, . . .

! Concretization-based abstract interpretation, briefly

A retrospective on the 3 counter machine analysis, incl.
constraint extraction

	Last time
	Today
	Toolbox abstractions
	Warm up: Collapsing abstractions
	Subset abstraction
	Elementwise abstraction

	Structural abstractions
	Structural?
	Abstracting sums as a product
	Componentwise abstraction
	Abstracting pairs, coarsely
	Abstracting pairs, better
	Abstracting pairs, relationally
	Comparing the three pair abstractions
	Abstracting monotone functions
	Abstracting sequences

	Numerical abstractions
	Numerical abstractions
	What is a numerical abstract domain?
	The parity domain
	A simple sign domain
	Another simple sign domain
	The improved sign domain
	The constant propagation domain (Kildall:73)
	Simple congruences (Granger'89)
	Simple congruences, continued
	Simple congruence operations
	Intervals (Moore'66, Cousot-Cousot'76)
	Intervals, continued (2/3)
	Intervals, continued (3/3)
	Interval widening example

	Convex Polyhedra
	Convex Polyhedra (1/2)
	Representation (implementation)
	Representation example
	Convex Polyhedra (2/2)
	But there is a catch
	Concretization-based abstract interpretation
	Want more abstractions?
	Numerical domains, botanically

	A few connections between numerical abstractions
	From intervals to a constant/sign combination
	From the constant/sign combination to …
	From the constant/sign combination to …
	Connection summary

	The 3 counter machine analysis, revisited
	The 3 counter machine analysis, revisited
	Design choices of the analysis
	Alternative 3 counter machine analyses?
	From fixed points to constraints
	Extracting 3 counter machine constraints (1/4)
	Extracting 3 counter machine constraints (2/4)
	Extracting 3 counter machine constraints (3/4)
	Extracting 3 counter machine constraints (4/4)

	Summary
	Summary

