Numerical and Structural Abstractions

Jan Midtgaard

Week 5, Abstract Interpretation

Aarhus University, Q4 - 2012

Last time

More approximation methods for abstract interpretation:
0 Partitioning
0 Relational and attribute independent analysis
0 Inducing, abstracting, approximating fixed points
0 Widening, narrowing
0 Forwards/backwards analysis

+ analysis of Plotkin’s three counter machine

2/57

Today

A catalogue of abstractions
0 Toolbox abstractions
0 Structural abstractions: sums, pairs/tuples, ...

0 Numerical abstractions: constants, intervals,
polyhedra

0 Concretization-based abstract interpretation, briefly

A retrospective on the 3 counter machine analysis, incl.
constraint extraction

3/57

Toolbox abstractions

Warm up: Collapsing abstractions

The collapsing abstraction into a two element lattice:

L (9(S); C) +== ({T, L};C)
if S0 .

//vv

)
S

s slightly better than the completely collapsing
abstraction:

a(S)
v(L)

L (p(S); C) &= ({L};T)
S

5/57

Subset abstraction

Given a set C' and a strict subset A ¢ ' hereof, the
restriction to the subset induces a Galois connection:

(9(C); C) == (p(A); C)

ac

ac(X)=XNA
1Y) =Y U(C\ A4)

For example, in a control-flow analysis of untyped
functional programs one can choose to focus on
functional values (closures) and not model numbers:

(9(Clo + Num): C) = (p(Clo); C)

ac

(Note: by a sum A + B we mean the disjoint union) 5

Elementwise abstraction

Let an elementwise operator @ : C' — A be given.
Define

{@(p) | pe P}
(Q)Z{ | @(p) € Q}

Then N
(9(C); ©) == (p(A4); S)

In particular, if @ is onto, we have
8l
(P(C); ©) == (p(4); S)

For example, Parity is isomorphic to an elementwise

abstraction.
Q: what would A and @ be in this case?

7157

Structural abstractions

Structural?

How is State™ constructed? It is possible to
invent State™, and then the pair of adjoined
functions. Another approach consists Iin
inducing State™ from the structure of State.

—Alain Deutsch, POPL90

9/57

Abstracting sums as a product

We can abstract sums by first utilizing a simple
iIsomorphism:

(p(A+ B); C) $— (p(A) x p(B); Cx)
where
a(S)=Halae SNA}L{b|be SN BY})

This isomorphism will typically enable further
approximation.

For example, the values of a mini-Scheme language
could be such a disjoint sum: closure or number

10/57

Componentwise abstraction

We can abstract a Cartesian product (e.g., the outcome
of the previous isomorphism) componentwise:

(0(C);C) =5 (A C) e {l,....n}

QY

.
(p(Cr) X ... x p(C)); Cx) %T (A1 X ... X Ap; Ey)

with
a({(Xq, ..., Xp)) = (a1(Xq), ..., ap(Xy))

7(<x17 R :L’n>) <71(ZE1)7 T ’Vn(aj’n»

and writing =, for componentwise inclusion.

For example, last week we used the “triple version” for
abstracting the 3 Counter Machine memory.

11/57

Abstracting pairs, coarsely

We can approximate a set-of-pairs by an abstract pair:

(9(C1);C) &= (A <1) (9(Ch); C) = (Ay; <o)

1 P

-
(p(Cr x Cy); C) H@ (A1 X Ag; <y)

where

a(S) = {a1(ia | (a,b) € 5}), a2({b [(a,b) € 5}))

For example, we used this approach to abstract the
three memory registers of the 3CM.

12 /57

Abstracting pairs, better

Utilizing the well-known isomorphism
Y .
(P(C1 x C3); ©) =5 (C1 = p(Ca); ©)

we can approximate the set-of-pairs as a function
between abstract domains:

(P(C1):C) == (A <1) (9(C2);) = (Ay)

a1

Y .
W(C1 x C2);) &= (A1 = Ay <y)

where

a(S) = U{[al({a}) — a2({b})] [{a, b) € 5}

13 /57

Abstracting pairs, relationally

Finally we can go all-in and approximate the set-of-pairs
as an abstract set-of-pairs:

(P(C1):C) == (A <t) (p(C2); C) == (A3 <o)

((C1 x C2); C) €5 (p(As x A)/=C)

where a(5) = {(a({a}), a2(10})) [(a, b) € 5}

Note: this requires a domain reduction, equating all
elements with the same meaning, e.g., in p(Par x Par),
{(T, even)} = {(odd, even), (even, even)}.

Perhaps a fun project abstracting the 3CM in this
manner? 14157

Comparing the three pair abstractions

Suppose we abstract the signs of the following set

S = {<_17 _1>7 <Oa O>7 <17 1>7 <_17 1>}

coarsely: better: relationally:
o] 4+ o o] 4+ o o] + o
gl o1 o)
—2 L —2 L —2 L
a(S) = [neg — T, a(S) =
a(S)=(T,T) 00, {(neg, neg), (0, 0),

pos > pos] (pos, pos), (neg, pos)}

15/57

Abstracting monotone functions

Similar to the ‘better abstraction’ of pairs, we can
approximate monotone functions by monotone abstract
functions:

71 2
(C1; <) ﬁh (A1; <1) (Cq; Co) —= (Ag; <o)

07%)

m . i m .
(C1 — Cy; Co) Ha (A — Ag; <o)

where X = Y are the monotone functions from X to YV
and

@(f):Oézofo’h
Y(g) =20 9°

16 /57

Abstracting sequences

We can abstract a set of sequences (rather crudely) by
collapsing their elements:

(p(C); ©) 5 (A <)
(p(C*); ©) = (4; <)

a*

where

a'(S)=a{x|zres N seS})

17 /57

Numerical abstractions

Numerical abstractions

We've already come across a few numerical abstract
domains: parity, signs, intervals, ...

All of these were attribute independent (or
non-relational): they don't express relations between
(the values of) variables.

Let’s recap what we have seen and supplement with
some new ones, both non-relational and relational.

19/57

What is a numerical abstract domain?

A computer-representable property, with
0 top and bottom: T, L

0 join, meet, and comparison operators: LI, N, and C

0 widening and narrowing operators (optional, for
domains with infinite strictly incr./decr. chains)

0 Some primitive operations: +, —, x, /
0 other basic operations: test, assignment

0 with matching backwards operations (optional, for
(forwards/) backwards analysis)

0 a y-function mapping elements to their meaning
(mathematical, not necessarily computable) 20157

The parity domain

T
Par ={T, odd, even, 1} /
odd even
P N\
(6(No); ©) == (Par;C) |
where

(L) =10
v(odd) = {n € Ny | n mod 2 =1}
v(even) —{nGNO | n mod 2 =0}
) =

(T

21/57

A simple sign domain

Sign = { T, pos, neg,0, L}

(0(Z); C) < (Sign: C)

where
v(L) =10
v(0) = {0}
V(pos) ={n € Z|n =0}
v(neg) ={n € Z|n<0;
V(T) =2

SN
neq DOS

N/

22 / 57

Another simple sign domain

S’ign — {T, POS, neq., ()7 J_} / \

(9(Z); C) % (Sign; C) neg\()/]?OS
where 1
v(L) =10
~7(0) = {0}
v(pos) ={ne€Z | n>0}
v(neg) ={n € Z | n <0}
Y(T) =7

23 /57

The improved sign domain

Sign = {T,# 0, pos, neg, pos, neg,0, 1} /—i_\

) neg #0 pos
(W(Z); ©) == (Sign; E) \>< ><‘

y(L) =10 -
7(0) = {0}
v(pos) ={n € Z | n > 0}
v(neg) ={n € Z | n < 0}
v(pos) ={n €Z | n >0}
Y(neg) ={n € Z | n <0}
Y(#0) = {n € Z|n# 0}
"}/(T) — Z 24 /57

The constant propagation domain (Kildall:73)

Const =7ZU{T, 1L}

N\

(0(Z); C) %» (Const;) \///

where
v(T) =27 a({ni,ne,...}) =T
v(n) ={n} a({n}) =n
(L) =10 a(@) =1

Simple congruences (Granger’89)

Cong={L}U{a+b0Z |a,beZ: /Ole \

(b=0) Vv 0<a<d)} gy27 14272 1437 ...

/\ N/
.. 1+67
g
(p(Z); ©) == (Cong; T)
~(L) =0 ... 0+0z 1+0Z 240z ...
NN S
Y(a+bZ)={a+bz |z € Z} Dot
Ordering: r=a modb
1 C (a+07Z)

(a+b7) C (a +VZ) < (| ged(|a— d'|,b))

26 / 57

Simple congruences, continued

Join: | L (a+bZ)=a+bZ
(a+bZ)U L =a+ bZ
(a+bZ)U (a' +b'7Z) = (min(a, a’) + ged(|a — d'|, b, b")Z)

Note: there are no infinite, strictly increasing chains.
However there are infinite, strictly decreasing chains:

0+1Z2231+224231+6Z231+ 1227 ...

hence we may need a narrowing. ..

27 /57

Simple congruences, continued

Join: | L (a+bZ)=a+bZ
(a+bZ)U L =a+ bZ
(a+bZ)U (a' +b'7Z) = (min(a, a’) + ged(|a — d'|, b, b")Z)

Note: there are no infinite, strictly increasing chains.
However there are infinite, strictly decreasing chains:

0+1Z2231+224231+6Z231+ 1227 ...

hence we may need a narrowing. ..

Q: what do the elements 0 4 2Z and 1 + 2Z represent
together with 1. and 0 + 177

27 /57

Simple congruences, continued

Join: | L (a+bZ)=a+bZ
(a+bZ)U L =a+ bZ
(a+bZ)U (a' +b'7Z) = (min(a, a’) + ged(|a — d'|, b, b")Z)

Note: there are no infinite, strictly increasing chains.
However there are infinite, strictly decreasing chains:

0+1Z2231+224231+6Z231+ 1227 ...

hence we may need a narrowing. ..

Q: what do the elements 0 4 2Z and 1 + 2Z represent
together with 1. and 0 + 177

Q: what about ..., 0+0Z,14+0Z,2 +0Z,3 4+ 0Z, . ..
together with 1. and 0 + 177 27 /57

Simple congruence operations

The arithmetic operators over congruences, e.g.,
addition:

(a+0Z)+ L =1
l+(a+0Z)=1
(@ +bZ) + (c+dZ) = ((a + ¢) mod ged(b,d)) + ged(b, d)Z

and multiplication:

(a+bZ)x L =1
Lx(a+bZ) =1

(a + bZ) % (c + dZ) = (ac mod gecd(ad, be, bd))
+ ged(ad, be, bd)Z.

28 / 57

Intervals (Moore'66, Cousot-Cousot’/76)

[—O0,00]

Interval = { L} U{|l,u] |l € ZU{—0o0} .
AN ueZU{+oo} AN Il<u} ...\ /o

NN
Y [—2,1] [-1,2]
(p(Z); C) ——s (Interval; C) N soN NS
@ [=2,0] [-1,1] [0, 2]
7/ N\ 7/ N\ 7/ N\
[—2,—1] [—1,0] m 1] (1, 2]
/7 N\ 7/ N\ N\ 7/ N\
—2] [-1, 1] [] [1,1] 2, 2]

(L) =10 o) = L
Y(la,b)) ={n € Z |a<n<b} «a(S)=|minS, maxS5]

Note: intervals over R also work, however over QQ the
resulting domain is not complete.

29 /57

Intervals, continued (2/3)

Least upper bounds:

XUl=X
lyuy =Y
la,b] U ¢, d] = [min(a, ¢), max(b, d)]

Greatest lower bounds:

XMl=1
1Ny =1

. b M e, d] = {[max(a,c),min(b, d)] if max(a,c) < min(b,d)
| | L otherwise

30/57

Intervals, continued (3/3)

Interval addition:

L+X=1
X+1=1
a,b] +[c,d] = [a+ ¢, b+ d]

Widening and narrowing:

1vi=1 Iv.li=1
a.b] Ve, d] = -0 c<a +o00 d>0b
’ 7 a c>a |b d<b
1Al =1 Inl =1

la,b] Ale,d] =

c a=—00 d b=+
a otherwise ' |b otherwise o

Interval widening example

Widening with L yields identity:
O v[1,100] = [1,100]
Increasing upper bounds expand to oc:

1,100] v[1, 101]

1, o]

Decreasing lower bounds expand to —oc:

1, 00| V|0, 102] = [—00, 0]

32 /57

Convex Polyhedra

Convex Polyhedra (1/2)

We can use inequalities to describe the relationship
between numerical variables of a program, e.g.:

y>1 AN x4+4y>23 N —x+y<1

for two variables x and y.

The inequalities represent |
a convex polyhedron. 31/
|
|
|
|
|

These form the abstract
values of the polyhedra
domain, which is a rela-

tional abstract domain. 012345 6

34 /57

Representation (implementation)

Convex polyhedra are represented using double
description (with variables X = {x1,...,x,}):

0 a system of inequalities (A, B) where Aisanm x n
matrix, B is an m vector, and
V(A B) =1X | AX > B}

0 a system of generators (V, R) of vertices and rays
where V ={V;,.... Vi}, R={Ry,..., R}, and
Y(V,R) = {S AV + Sis iR | i >0 A

>0 A XN =1}
An domain implementation will typically translate back

and forth between the two, trying to minimize the
number of conversions.

35/57

Representation example

For example, we can represent

y>1 N x+y>23 AN —x+y<1

as a system of inequalities: AX > B

as a system of generators:

Vi=1:(21),V:(12);
R={{Ry:(1,0),R;:(1,1)}

0 1
11

Convex Polyhedra (2/2)

Operations, some of which are easier on one
representation, rather than the other:

LI — returns a convex hull, which is an
over-approximation of the union of two polyhedra.

Easily expressed as a union of the corresponding
generators.

1 — returns the polyhedron representing the intersection
of two polyhedra.

Easily expressed as the conjunction of the two
constraint systems.

37 /57

But there Is a catch

The polyhedra lattice is not complete: there exists
strictly infinite chains for which the limit is not in the
domain. Example: a disk.

Hence for some sets, e.g., a disk, there is no best
abstraction.

As a consequence the abstraction to polyhedra is not a
Galois connection.

A possible relaxation is to consider only concretization
functions. ..

38 /57

Concretization-based abstract interpretation

Proposition. Assume (C';C, L) isaposet, F': C — C'is
a continuous function, L. € C'such that L. C F(L,.),
and | |, . F"(L.) exists.

Assume Aisaset,v: A — Cisafunction, <is a
preorder, defined as: c < ¢ <= ~v(c¢) C (), L, € A
suchthat L. C ~(1l,), G: A— Ais a monotone function
such that ' - v C v o G and V Is a widening operator.

Then the upward iteration sequence with widening is
ultimately stationary with limit a, such that Ifp F' C ~(a)
and G(a) < a

As an alternative, Miné suggests a framework based on
partial Galois connections, in which « is a partial
function.

39 /57

Want more abstractions?

There are many more numerical abstractions, see, e.g.,
Miné’s thesis or this link:

http://bugseng.com/products/ppl/abstractions

The Two Variables per Inequality (TVPIl) domain is a
restricted form of polyhedra, only expressing relations
between two variables: ;i X; + bz'ij < Cij

Miné’s Octagon domain is another restricted form of
polyhedra, also expressing relations between two
variables: +x; £x; < ¢;;

Q: what do we get by restricting to one variable per
inequality ? 10157

http://bugseng.com/products/ppl/abstractions

Numerical domains, botanically

ATTRIBUTE INDEPENDENT DOMAINS (NON-RELATIONAL):

Parity, Sign, Constants, Simple Congruences,
Intervals, ...

RELATIONAL DOMAINS:

Polyhedra, Octagons, TVPI, ...

41 /57

A few connections between numerical
abstractions

From intervals to a constant/sign combination

43 /57

[_0?700]
N/
[_272]
) N 4
N N
[_270] [_1 1] [0,2] neq poSs
AN < . / Y /1 I
= 2_1 _ 12] % {2_1\0/ \\ :
_2 —2 1[— 1 —1 %/ \\\‘//
J_
where
a(l)=_1
a(la,a]) =a
fpos if a>0
a(la,b]) =< neg if b<0
T otherwise

From the constant/sign combination to ...

This domain can (naturally) be abstracted to both

constants: T

and signs:

/AN N

%}} L7910 1 2.

44 / 57

From the constant/sign combination to ...

Both can be abstracted into a simple two-point domain:

. / \ . —|—
neg POS ~y
N/ A
0 o
|
L 1

— L

45 /57

Connection summary

To summarize:

Const
/ \
Interval — ConstSign
/

AN
Sign

TopBot — |

A nice lattice of lattices! =

46 / 57

The 3 counter machine analysis, revisited

The 3 counter machine analysis, revisited

We arrived at an abstract transition function T, but the
analysis is the least fixed point lfp of T.

Q: Which fixed point theorem(s) of the three from last
time are we using?

48 / 57

Design choices of the analysis

The resulting analysis associates an abstract memory to
each program point:

o(PC x Ny x Ny x Np) % PC — (Parity x Parity x Parity)

49 / 57

Design choices of the analysis

The resulting analysis associates an abstract memory to
each program point:

o(PC x Ny x Ny x Np) % PC — (Parity x Parity x Parity)

Alternatively we could have abstracted the components
separately as follows:

o(PC x Ny x Ny x Np) % o(PC) x (Parity x Parity x Parity)

49 / 57

Design choices of the analysis

The resulting analysis associates an abstract memory to
each program point:

o(PC x Ny x Ny x Np) % PC — (Parity x Parity x Parity)

Alternatively we could have abstracted the components
separately as follows:

o(PC x Ny x Ny x Ny) % o(PC) x (Parity x Parity x Parity)

Q: how would you characterize the first analysis using
static analysis terminology?

49 / 57

Design choices of the analysis

The resulting analysis associates an abstract memory to
each program point:

o(PC x Ny x Ny x Np) % PC — (Parity x Parity x Parity)

Alternatively we could have abstracted the components
separately as follows:

o(PC x Ny x Ny x Ny) %) o(PC) x (Parity x Parity x Parity)

Q: how would you characterize the first analysis using
static analysis terminology?

Q: how would you characterize the second?

49 / 57

Alternative 3 counter machine analyses?

Q: What changes if we want to switch to a different
numerical abstraction (intervals, congruences, ...)?

or rather,

Q: which assumptions about Parity did we rely on?

50/57

Alternative 3 counter machine analyses?

Q: What changes if we want to switch to a different
numerical abstraction (intervals, congruences, ...)?

or rather,

Q: which assumptions about Parity did we rely on?

0(Ng) & Par 0(Ng) & Par o(Ng) &= Par
©(No x Ng X Ng) &= p(Np) X p(Ng) X ©(Nog) ©(No) X p(Ng) X p(No) & Par X Par X Par
©(Ng X Ng X Ng) &= Par X Par X Par
PC — p(Ng X Ng X Ng) &= PC — Par X Par X Par

50/57

From fixed points to constraints

Recall: a fixed point of T satisfies: T'(S%) = S
and a post-fixed point satisfies: T'(S#) C S#

Any post-fixed point of 7" is a sound approximation of
ltp T

In our case, T' is defined as a big (pointwise) join:
T(S") =X, UX,U...UX,CS5%
which is equivalent to:

X,CS* A XoOST A ... AN X, CS*

51/57

Extracting 3 counter machine constraints (1/4)

T(S#) = (<bot,bot,bot>. [1 -> <top, even, even>])
U.
U. (<bot,bot,bot>. [pc+l —-> [x++]#(S#(pc))])
pc in Dom (S#)
P_pc = inc x

(...and for y and z)

U.
U. (<bot,bot,bot>. [pc+l —> [x——]#(S#(pc))])
pc in Dom (S#)
P_pc = dec x
(...and for y and z)
U.
U. (<bot,bot,bot>. [pc’ —-> [x==0]#(S#(pc))]1)
pc in Dom (S#) U. (<bot,bot,bot>. [pc’’ —> [x<>01#(S#(pc))])
P_pc = zero x pc’ else pc’’

(...and for y and z)

52 /57

Extracting 3 counter machine constraints (2/4)

(<bot,bot,bot>. [1 -> <top, even, even>]) C. S#
/\
U. (<bot,bot,bot>. [pc+l —> [x++]#(S#(pc))]) C. S#
pc in Dom (S#)
P_pc = inc x
(...and for y and z)
/\
U. (<bot,bot,bot>. [pc+l —-> [x——1#(S#(pc))]) C. S#
pc in Dom (S#)
P_pc = dec x
(...and for y and 2z)
/\
U. (<bot,bot,bot>. [pc’ -—> [x==0]1#(S# (pc))]) C. S#
pc in Dom (S#) U. (<bot,bot,bot>. [pc’’ —> [x<>01#(S#(pc))])
P_pc = zero x pc’ else pc’’

(...and for y and z)

53 /57

Extracting 3 counter machine constraints (3/4)

<top, even, even> C S# (1)

8 for all pc in Dom(S#), such that P_pc = inc x :
[x++]# (S# (pc)) C S#(pctl)
(...and for y and z)
/\
for all pc in Dom(S#), such that P_pc = dec x :
[x——]#(S# (pc)) C S# (pct+l)
(...and for y and z)
/\
for all pc in Dom(S#), such that P_pc = zero x pc’ else pc’’
[x==0]#(S# (pc)) C S#(pc’)
/N [x<>01#(S#(pc)) C S#(pc'’)

(...and for y and z)

... not that far from the constraint-based analyses of 'dOvs’ and ’Static Analysis,,, s

Extracting 3 counter machine constraints (4/4)

<top, even, even> C S# (1)

8 for all "inc x" instructions in P with program counter pc :
[x++]# (S# (pc)) C S# (pc+l)
(...and for y and z)
/\
for all "dec x" instructions in P with program counter pc :
[x——]#(S# (pc)) C S# (pct+l)
(...and for y and z)
/\
for all "zero x pc’ else pc’’" instructions in P with program counter pc
[x==0]# (S# (pc)) C S#(pc’)
/N [x<>0]#(S#(pc)) C S#(pc'’)

(...and for y and z)

... not that far from the constraint-based analyses of 'dOvs’ and ’Static Analysis s

Summary

Summary

A catalogue of abstractions
0 Toolbox abstractions
0 Structural abstractions: sums, pairs/tuples, ...

0 Numerical abstractions: constants, intervals,
congruences, polyhedra, ...

0 Concretization-based abstract interpretation, briefly

A retrospective on the 3 counter machine analysis, incl.
constraint extraction

57 /57

	Last time
	Today
	Toolbox abstractions
	Warm up: Collapsing abstractions
	Subset abstraction
	Elementwise abstraction

	Structural abstractions
	Structural?
	Abstracting sums as a product
	Componentwise abstraction
	Abstracting pairs, coarsely
	Abstracting pairs, better
	Abstracting pairs, relationally
	Comparing the three pair abstractions
	Abstracting monotone functions
	Abstracting sequences

	Numerical abstractions
	Numerical abstractions
	What is a numerical abstract domain?
	The parity domain
	A simple sign domain
	Another simple sign domain
	The improved sign domain
	The constant propagation domain (Kildall:73)
	Simple congruences (Granger'89)
	Simple congruences, continued
	Simple congruence operations
	Intervals (Moore'66, Cousot-Cousot'76)
	Intervals, continued (2/3)
	Intervals, continued (3/3)
	Interval widening example

	Convex Polyhedra
	Convex Polyhedra (1/2)
	Representation (implementation)
	Representation example
	Convex Polyhedra (2/2)
	But there is a catch
	Concretization-based abstract interpretation
	Want more abstractions?
	Numerical domains, botanically

	A few connections between numerical abstractions
	From intervals to a constant/sign combination
	From the constant/sign combination to …
	From the constant/sign combination to …
	Connection summary

	The 3 counter machine analysis, revisited
	The 3 counter machine analysis, revisited
	Design choices of the analysis
	Alternative 3 counter machine analyses?
	From fixed points to constraints
	Extracting 3 counter machine constraints (1/4)
	Extracting 3 counter machine constraints (2/4)
	Extracting 3 counter machine constraints (3/4)
	Extracting 3 counter machine constraints (4/4)

	Summary
	Summary

