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Last time
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A first in-depth look at abstract interpretation based on
Cousot-Cousot:JLP92.

! Foundations: Fixed points, Galois connections, . . .

! The Galois approach and friends: closure operators,
Moore families, . . .

! From collecting semantics to analysis (soundness,
optimality, completeness)

! The first step towards analysing Plotkin’s three
counter machine



Today
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More approximation methods for abstract interpretation
(Cousot-Cousot:JLP92):

! Partitioning

! Relational and attribute independent analysis

! Inducing, abstracting, approximating fixed points

! Widening, narrowing

! Forwards/backwards analysis

More fun with Plotkin’s three counter machine



Relational vs. independent attribute
analysis



Relational vs. independent attribute analysis
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Definition. We say an analysis is attribute independent,
if attributes are analysed independently of each other.

For example, the Parity analysis of x, y, and z we will
develop, analyses the possible values of each variable
in isolation.

Definition. We say an analysis is relational, if it can
determine relations between attributes.

For example, imagine an analysis that can determine x

is odd if and only if y is even.



Inducing, abstracting, and approximating
fixed points



Fixed point inducing using Galois connections
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Proposition. If ⟨C;⊑⟩ −−→←−−α
γ
⟨A;≤⟩ is a Galois

connection between posets ⟨C;⊑,(⟩ and ⟨A;≤,∨⟩,
T : C → C is such that lfpT =

⊔
n≥0 T

n(⊥), α(⊥c) = ⊥a,

T# : A→ A is such that α ◦ T = T# ◦ α then
α(lfpT ) =

∨
n≥0 T

#n
(⊥a) and

∨
n≥0 T

#n
(⊥a) is a fixed

point of T#. If T# : A→ A is monotone, it is furthermore
the least fixed point (≥ ⊥a).

Note: this proposition concerns a complete
approximation.



Fixed point abstraction and approx. using Galois conn.
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Proposition. If ⟨C;⊑,⊥c,⊤c,(,⊓⟩ and
⟨A;≤,⊥a,⊤a,∨,∧⟩, are complete lattices,

⟨C;⊑⟩ −−→←−−α
γ
⟨A;≤⟩ and F : C → C is monotone, then

α(lfpF ) ≤ lfp(α ◦ F ◦ γ)

Note: this proposition concerns an optimal
approximation (akin to what you did for today).

Proposition. If ⟨A;≤,⊥a,⊤a,∨,∧⟩ is a complete lattice,

T#, T#′ : A→ A are monotone functions and T# ≤̇T#′,
then lfpT# ≤ lfpT#′.

Read: any monotone, upward judgement of the above
composition will be fine.



Widening/narrowing reloaded



Narrowing motivation
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We are after a (finite) approximation sequence
X̌0 ≥ X̌1 ≥ X̌2 ≥ · · · ≥ X̌n ≥ lfpT# of the least fixed
point (from above).

We could start from, e.g., X̌0 = ⊤.

For the inductive step, not much is available: the
previous iterate X̌k and the function T#. Assuming
lfpT# ≤ X̌k and T# is monotone, we want to ensure
lfpT# ≤ X̌k+1.

The narrowing operator △ simply combines the available
information:

X̌k+1 = X̌k
△T#(X̌k)



Narrowing definition
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Definition. A narrowing operator △ satisfies the
following:

! For all x, y : (x△ y) ≤ x (ensure decr. seq.)

! For all x, y, z : x ≤ y ∧ x ≤ z =⇒ x ≤ (y△ z)
(keep above)

! For any decreasing chain Xi the alternative chain
defined as X̌0 = X0 and X̌k+1 = X̌k △Xk+1

stabilizes after a finite number of steps.

(terminate)



Example: interval narrowing
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Consider the domain of intervals: ⟨℘(Z);⊆⟩ −−→−→←−−−
α

γ

⟨Interval ;⊑⟩
defined as follows:

Interval = {[l, u] | l ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞} ∧ l ≤ u} ∪ ∅

[a, b] ⊑ [c, d] ⇐⇒ c ≤ a ∧ b ≤ d

α(∅) = ∅

α(X) = [minX,maxX] minZ = −∞ maxZ = +∞

Strictly decreasing interval chains can be infinite:

[0,+∞] # [1,+∞] # [2,+∞] # . . .

Hence we need a narrowing operator:

∅△ I = ∅ I △ ∅ = ∅

[a, b]△[c, d] = [if a = −∞ then c else a, if b = +∞ then d else b]



Downward iteration with narrowing
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Proposition. If T# : A→ A is a monotone function, and
△ : A× A→ A is a narrowing operator and
T#(a) = a ≤ a′ then X̌0 = a′, . . . , X̌k+1 = X̌k △T#(X̌k)
converges with limit X̌n, n ∈ N such that a ≤ X̌n ≤ a′.

Intuition: this decreasing chain is finite and may take us
closer to T#’s fixed point from above.

Note: In a complete lattice, if all strictly decreasing
chains are finite, we can use △ = ⊓.



Widening motivation
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We aim for a better initial approximation than ⊤.

We are after a (finite) approximation sequence
X̂0 ≤ X̂1 ≤ X̂2 ≤ · · · ≤ X̂n ≥ lfpT# of the least fixed
point (starting below, ending above).

We could, e.g., try to iterate above a standard fixed
point iteration: X0 = ⊥, Xk+1 = T#(Xk) towards lfpT#.

Hence start from X̂0 = ⊥

and use the widening operator ▽ to combine the
available information:

X̂k+1 = X̂k
▽T#(X̂k)



Widening definition
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Definition. A widening operator satisfies the following:

! For all x, y : x ≤ (x▽ y) ∧ y ≤ (x▽ y)
(keep above)

! For any increasing chain X0 ⊑ X1 ⊑ X2 ⊑ . . . the
alternative chain defined as X̂0 = X0 and
X̂k+1 = X̂k ▽Xk+1 stabilizes after a finite number of
steps.



Example: interval widening
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Consider again the domain of intervals:

⟨℘(Z);⊆⟩ −−→−→←−−−
α

γ
⟨Interval ;⊑⟩

For intervals strictly increasing chains can be infinite:

[0, 0] % [0, 1] % [0, 2] % . . .

Hence we need a widening operator:

∅▽ I = I I ▽ ∅ = I

[a, b]▽[c, d] = [if c < a then −∞ else a, if d > b then +∞ else b]



Upward iteration with widening
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Proposition. If T# : A→ A is a monotone function, and
▽ : A× A→ A is a widening operator then
X̂0 = ⊥, . . . , X̂k+1 = X̂k ▽T#(X̂k) converges with limit
X̂n, n ∈ N such that lfpT# ≤ X̂n.

Note: In a complete lattice, if all strictly increasing
chains are finite, we can use ▽ = (.

We don’t actually need to widen in such a situation.



Forwards/backwards analysis



Transition systems with final states
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All though the transition system definition from week 1
included final states we haven’t used them much:

Definition. A transition system is a quadruple
⟨S , I , F , →⟩, where

! S is a set of states

! I ⊆ S is a set of initial states

! F ⊆ S is a set of final states (∀s ∈ F , s′ ∈ S : s ̸→ s′)

! → ⊆ S × S is a transition relation relating a state to
its (possible) successors



Forwards collecting semantics (1/2)
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Descendants of initial states (aka reachable states):



Forwards collecting semantics (2/2)
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The forwards (top-down) collecting semantics can be
expressed as a fixed point:

lfpT where T (X) = I ∪ {s | ∃s′ ∈ X : s′ → s}

= I ∪ post [→](X)

with
post [r](X) = {s | ∃s′ ∈ X : ⟨s′, s⟩ ∈ r}

Note: here we are using the letter T for the transition
function, as F is reserved for final states. . .



Backwards collecting semantics (1/2)
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Ascendants of final states:



Backwards collecting semantics (2/2)
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The backwards (bottom-up) collecting semantics can
also be expressed as a fixed point:

lfpB where B(X) = F ∪ {s | ∃s′ ∈ X : s→ s′}

= F ∪ pre [→](X)

with
pre [r](X) = {s | ∃s′ ∈ X : ⟨s, s′⟩ ∈ r}



Forwards/backwards collecting semantics (1/2)
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Descendants of initial states which are also ascendants
of final states:



Forwards/backwards collecting semantics (2/2)
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This set of states can be expressed as the intersection
of the two fixed points just defined:

lfpT ∩ lfpB

The above is not computable in general, but the intuition
is:

1. “run program forwards”,

2. “run program backwards”,

3. intersect.



Forwards/backwards collecting semantics in other words
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We can express forwards/backward collecting
semantics in several ways:

Proposition. Given a transition system ⟨S , I , F , →⟩ with X ⊆ S ,
we have

1. pre [→](X) ∩ lfpT ⊆ pre [→](X ∩ lfpT )

2. post [→](X) ∩ lfpB ⊆ post [→](X ∩ lfpB)

lfpT ∩ lfpB

3. = lfp(λX. lfpT ∩B(X))

4. = lfp(λX. lfpB ∩ T (X))

5. = lfp(λX. lfpT ∩ lfpB ∩ B(X))

6. = lfp(λX. lfpT ∩ lfpB ∩ T (X))



Forwards/backwards analysis
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Once we move to an abstract domain, a sequence akin
to the alternative characterizations is more precise:

Proposition. If ⟨C;⊑,⊥c,⊤c,(,⊓⟩ and ⟨A;≤,⊥a,⊤a,∨,∧⟩, are

complete lattices, ⟨C;⊑⟩ −−→←−−α
γ

⟨A;≤⟩, T,B : C → C are monotone

functions satisfying (5) and (6), T#, B# : A→ A are monotone
functions, such that α ◦ T ◦ γ ≤ T# and α ◦ B ◦ γ ≤ B#, then the
sequence

! Ẋ0 = lfpT# (or lfpB#)

! Ẋ2n+1 = lfp(λX. Ẋ2n ∧ B#(X))

! Ẋ2n+2 = lfp(λX. Ẋ2n+1 ∧ T#(X))

satisfies for all k ∈ N : α(lfpF ∩ lfpB) ≤ Ẋk+1 ≤ Ẋk

Hence, we have an ascending sequence.



Forwards/backwards analysis over infinite domains
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We may also need to narrow in order to ensure
termination of the downward iteration (if descending
chains can be infinite):

Ẋ0 > Ẋ1 > Ẋ2 > . . .

Similarly, we may need to widen (and narrow) to ensure
termination of the fixed point computation in each
iterate.

! Ẋ0 = lfp . . .

! Ẋ2n+1 = lfp(. . .)

! Ẋ2n+2 = lfp(. . .)



More fun with the three counter machine



Previously: analysing the 3 counter machine
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Var ::= x | y | z

Inst ::= inc var | dec var | zero var m else n | stop

States = PC x \N_0 x \N_0 x \N_0

Transition relation:

<pc, xv, yv, zv> --> <pc+1, xv+1, yv, zv> if P_pc = inc x

- --> <pc+1, xv, yv+1, zv> if P_pc = inc y

- --> <pc+1, xv, yv, zv+1> if P_pc = inc z

<pc, xv, yv, zv> --> <pc+1, xv-1, yv, zv> if P_pc = dec x /\ xv>0

- --> <pc+1, xv, yv-1, zv> if P_pc = dec y /\ yv>0

- --> <pc+1, xv, yv, zv-1> if P_pc = dec z /\ zv>0

<pc, xv, yv, zv> --> <pc’, xv, yv, zv> if P_pc = zero x pc’ else pc’’

/\ xv=0

- --> <pc’’, xv, yv, zv> if P_pc = zero x pc’ else pc’’

/\ xv<>0

<pc, xv, yv, zv> --> <pc’, xv, yv, zv> if P_pc = zero y pc’ else pc’’

/\ yv=0

- --> <pc’’, xv, yv, zv> if P_pc = zero y pc’ else pc’’

/\ yv<>0

<pc, xv, yv, zv> --> <pc’, xv, yv, zv> if P_pc = zero z pc’ else pc’’

/\ zv=0

- --> <pc’’, xv, yv, zv> if P_pc = zero z pc’ else pc’’

/\ zv<>0



We left off here:
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T#(S#) = Ø. [1 -> { <i,0,0> | i in N_0 }]

U.

U. Ø. [pc+1 -> { <xv+1, yv, zv> }]

{ <xv, yv, zv> } C S#(pc)

P_pc = inc x (...and for y and z)

U.

U. Ø. [pc+1 -> { <xv-1, yv, zv> }]

{ <xv, yv, zv> } C S#(pc)

P_pc = dec x

xv>0 (...and for y and z)

U.

U. Ø. [pc’ -> { <xv, yv, zv> }]

{ <xv, yv, zv> } C S#(pc)

P_pc = zero x pc’ else pc’’

xv=0 (...and for y and z)

U.

U. Ø. [pc’’ -> { <xv, yv, zv> }]

{ <xv, yv, zv> } C S#(pc)

P_pc = zero x pc’ else pc’’

xv<>0 (...and for y and z)



Call-by-need Galois connections :-) (1/3)
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Abstracting a set valued function:

Given a Galois connection between complete lattices,
we can lift it pointwise to function spaces (also complete
lattices):

⟨℘(C);⊆⟩ −−→←−−α
γ
⟨A;⊑⟩

⟨D → ℘(C); ⊆̇⟩ −−→←−−
α̇

γ̇
⟨D → A; ⊑̇⟩

where α̇(F ) = λd.α(F (d))

γ̇(F#) = λd. γ(F#(d))



Call-by-need Galois connections :-) (2/3)
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Abstracting a set of triples by a triple of sets:

⟨℘(A× B × C);⊆⟩ −−→−→←−−−
α

γ
⟨℘(A)× ℘(B)× ℘(C);⊆×⟩

between complete lattices (the latter being reduced)
where

⊆× = ⊆ × ⊆ × ⊆

α(T ) = ⟨π1(T ), π2(T ), π3(T )⟩

γ(⟨X, Y, Z⟩) = X × Y × Z



Call-by-need Galois connections :-) (3/3)
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Abstracting a triple of sets by an abstract triple:

Given three Galois connections between complete
lattices, we can form a new Galois connection (also over
complete lattices):

⟨℘(A);⊆⟩ −−−→←−−−αA

γA
⟨A′;⊑a⟩

⟨℘(B);⊆⟩ −−−→←−−−αB

γB
⟨B′;⊑b⟩ ⟨℘(C);⊆⟩ −−−→←−−−αC

γC
⟨C ′;⊑c⟩

⟨℘(A)× ℘(B)× ℘(C);⊆×⟩ −−→←−−α
γ
⟨A′ × B′ × C ′;⊑×⟩

where ⊆× = ⊆ × ⊆ × ⊆

⊑× = ⊑a × ⊑b × ⊑c

α(⟨X, Y, Z⟩) = ⟨αA(X), αB(Y ), αC(Z)⟩

γ(⟨X ′, Y ′, Z ′⟩) = ⟨γA(X), γB(Y ), γC(Z)⟩



Three counter analysis from 10000 feet1
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The Parity analysis is composed in two.

Last week:

℘(PC × N0 × N0 × N0) −→←− PC → ℘(N0 × N0 × N0)

This week:

℘(N0 × N0 × N0) −→←− ℘(N0)× ℘(N0)× ℘(N0)

℘(N0) −→−→←−− Par ℘(N0) −→−→←−− Par ℘(N0) −→−→←−− Par

℘(N0)× ℘(N0)× ℘(N0) −→←− Par × Par × Par

℘(N0 × N0 × N0) −→←− Par × Par × Par

PC → ℘(N0 × N0 × N0) −→←− PC → Par × Par × Par

Hence by transitivity:

℘(PC × N0 × N0 × N0) −→←− PC → Par × Par × Par

1. and therefore in a very small font



At home: operators/property transformers
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At home you calculated abstract operators:

=0 : Parity -> Parity

<>0 : Parity -> Parity

+1 : Parity -> Parity

-1 : Parity -> Parity

from concrete ones over N0:

=0 : \N_0 -> \N_0

= \S. {s | s in S /\ s=0 }

<>0 : \N_0 -> \N_0

= \S. {s | s in S /\ s<>0 }

+1 : \N_0 -> \N_0

= \S. {s+1 | s in S}

-1 : \N_0 -> \N_0

= \S. {s-1 | s in S /\ s>0 }



Result
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T(S#) = ( <bot,bot,bot>. [1 -> <top, even, even> ] )

U.

U. ( <bot,bot,bot>. [pc+1 -> [x++]#(S#(pc))] )

pc in Dom(S#)

P_pc = inc x

(...and for y and z)

U.

U. ( <bot,bot,bot>. [pc+1 -> [x--]#(S#(pc))] )

pc in Dom(S#)

P_pc = dec x

(...and for y and z)

U.

U. ( <bot,bot,bot>. [pc’ -> [x==0]#(S#(pc))] )

pc in Dom(S#) U. ( <bot,bot,bot>. [pc’’ -> [x<>0]#(S#(pc))] )

P_pc = zero x pc’ else pc’’

(...and for y and z)



Summary



Summary
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More approximation methods for abstract interpretation
(Cousot-Cousot:JLP92):

! Partitioning

! Relational and attribute independent analysis

! Inducing, abstracting, approximating fixed points

! Widening, narrowing

! Forwards/backwards analysis

+ analysis of Plotkin’s three counter machine
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