
Abstract interpretation, reloaded

Jan Midtgaard

Week 3, Abstract Interpretation

Aarhus University, Q4 - 2012

Last time

2 / 45

Semantics overflow:

� The three counter machine

� An abstract machine for CPS terms

� A flow-chart semantics for IMP (non-deterministic!)

� A JVM-like semantics for a bytecode instruction set
(objects,classes,methods,fields,. . .)

Finally we had another look at collecting semantics.

Today

3 / 45

� Approximation methods for AI
(Cousot-Cousot:JLP92)

– Lattice and fixed point theory

⊲ fixed points,

⊲ Galois connections

– The Galois approach (p.11-. . .)

� From collecting semantics to static analysis

� Fun with Plotkin’s three counter machine

Fixed points, reloaded

Tarski’s fixed-point theorem

5 / 45

Theorem. (Tarski:PJM55) Let L be a complete lattice
〈L;⊑,⊥,⊤,⊔,⊓〉, and let f be a monotone function.
Then the set P of all fixed points of f forms a complete
lattice 〈P ;⊑, lfp f, gfp f,⊔,⊓〉 where

� P = {x ∈ L | x = f(x)}

� lfp f =
d
{x ∈ L | f(x) ⊑ x}

� gfp f =
⊔
{x ∈ L | x ⊑ f(x)}

Note: (1) lfp f is greatest lower bound of the set of post
fixed points of f , and (2) gfp f is least upper bound of
the set of pre fixed points of f .

Tarski’s fixed point theorem, graphically

6 / 45⊥

⊤

⊥ = lfp f

f(x) = x

⊤ = gfp f

L :

f(x) ⊑ x

x ⊑ f(x)

Fixed points, intuition

7 / 45

(a)

b

b

b

b

b

...

f

f

f

f

(b)

b

b

b

b

b

b

...

⊥

lfp f = gfp f

⊤

f

f

f

(c)

b

b

b

b

b

...

⊥

lfp f

gfp f

⊤

f

f

(a) On a poset a monotone function is not guaranteed to
have a fixed point, (b) lfp and gfp may coincide, or (c)
the fixed points may form a sub-lattice.

Galois connections, reloaded

Galois connection motivation

9 / 45

Partial orders model precision of properties: a ⊑ a′ if the
properties a and a′ are comparable and a is more
precise than a′.

Example. Recall from the Parity domain:

The property even meaning {n ∈ N | n is even} is more
precise than the property ⊤ meaning N

The meaning of an abstract property is expressed by
the concretization function γ.

Approximation is captured by the abstraction function α:
it maps each concrete property to its best abstract
counterpart.

Galois connection non-example

10 / 45

⊤

6= 0

0

˙pos ˙neg

pos neg

⊥

⊤

⊥

pos neg

γ

γ

γγ

γ assigns meaning to each abstract element.

Galois connection non-example

10 / 45

⊤

6= 0

0

˙pos ˙neg

pos neg

⊥

⊤

⊥

pos neg

α?
α?

γ assigns meaning to each abstract element.

Problem: however there is no best (unique) abstraction
for 0!

Galois connection example, fixed

11 / 45

⊤

6= 0

0

˙pos ˙neg

pos neg

⊥

⊤

0

pos neg

⊥

We fix it by adding an element corresponding to 0.

Galois connection example, fixed

11 / 45

⊤

6= 0

0

˙pos ˙neg

pos neg

⊥

⊤

0

pos neg

⊥

γ

γ

γγ

γ

γ assigns meaning to each abstract element.

Notice how γ is injective (one-to-one).

Galois connection example, fixed

11 / 45

⊤

6= 0

0

˙pos ˙neg

pos neg

⊥

⊤

0

pos neg

⊥

α

α

α

α

α

α maps each element to its best abstraction.

Notice how α is surjective (onto), hence we have a
Galois surjection.

Also notice the information loss.

Two soundness conditions

12 / 45

Condition 1:
If a ≤ a′ for some c where α(c) = a, then a′ is a sound
albeit less precise approximation of c.

Condition 2:
If c′ ⊑ c for some a where γ(a) = c, then a is a sound
albeit less precise approximation of c′.

When the two conditions are equivalent:

α(c) ≤ a′ ⇐⇒ c′ ⊑ γ(a)

we have a Galois connection.

Galois connection properties (1/2)

13 / 45

Observation 1: γ ◦ α is extensive

Intuition: loss of information by α is sound

Observation 2: α ◦ γ is reductive

Intuition: γ loses no information, i.e., α is as precise as
possible

Observation 3: α and γ are monotone

Intuition: α and γ are order, i.e., soundness preserving

Galois connection properties (2/2)

14 / 45

Theorem. The inverse of a Galois connection is itself a
Galois connection (under reverse order):

〈C;⊑〉 −−→←−−
α

γ

〈A;≤〉

〈A;≥〉 −−→←−−
γ

α

〈C;⊒〉

Note how we have typeset the theorem as an inference
rule.

Galois connection properties (2/2)

14 / 45

Theorem. The inverse of a Galois connection is itself a
Galois connection (under reverse order):

〈C;⊑〉 −−→←−−
α

γ

〈A;≤〉

〈A;≥〉 −−→←−−
γ

α

〈C;⊒〉

Note how we have typeset the theorem as an inference
rule.

By the duality principle all results on posets have a dual.

Hence this extends to Galois connections if we replace

� ⊑, ⊏, ⊥, ⊤, ⊓, and ⊔ with

� ⊒, ⊐, ⊤, ⊥, ⊔, and ⊓

Alternative 1: Closure operators (1/2)

15 / 45

Definition. A function ρ : S → S on a poset 〈S;⊑〉 is a(n
upper) closure operator if ρ is monotone, extensive, and
idempotent: ∀s ∈ S : ρ(ρ(s)) = ρ(s)

Similarly ρ is a lower closure operator if it is monotone,
reductive, and idempotent.

Corollary. A Galois connection 〈C;⊑〉 −−→←−−
α

γ

〈A;≤〉

induces
� an upper closure operator γ ◦ α on C and

� a lower closure operator α ◦ γ on A

Alternative 1: Closure operators (2/2)

16 / 45

Theorem. A closure operator ρ : S → S on a poset
〈S;⊑〉 induces a Galois connection

〈S;⊑〉 −−→←−−
ρ

1
〈ρ(S);⊑〉

(1 being the identity function on S).

Hence it is equivalent to stay in the concrete domain
and formulate abstract interpretation in terms of closure
operators!

Alternative 2: Moore families

17 / 45

Definition. Let 〈P ;⊑〉 be a poset with a top element ⊤.
A Moore family is a subset S ⊆ P such that

� ⊤ ∈ S

� If X ⊆ S then ⊓X exists in P and ⊓X ∈ S

Proposition. If 〈C;⊑〉 −−→←−−
α

γ

〈A;≤〉 is a Galois

connection and 〈C;⊑,⊥,⊤,⊔,⊓〉 is a complete lattice,
then γ(A) = {γ(a) | a ∈ A} is a Moore family.

Hence, Moore families can provide a sanity check for an
abstract domain.

Alternative 2: Moore family non-example

18 / 45

⊤

6= 0

0

˙pos ˙neg

pos neg

⊥

The greatest lower bound ˙pos ⊓ ˙neg exists, but not in the
above subset.

Alternative 2: Moore family example

19 / 45

⊤

6= 0

0

˙pos ˙neg

pos neg

⊥

The greatest lower bound ˙pos ⊓ ˙neg exists, and belongs
to the above subset.

More Galois connection properties

20 / 45

Each function uniquely determines the other:

Proposition. If 〈C;⊑〉 −−→←−−
α

γ

〈A;≤〉 and

〈C;⊑〉 −−−→←−−−
α
′

γ
′

〈A;≤〉 then α = α′ if and only if γ = γ′

Each function expresses the other:

Proposition. If 〈C;⊑〉 −−→←−−
α

γ

〈A;≤〉 then

� for all c ∈ C : α(c) =
∧
{a | c ⊑ γ(a)}

� for all a ∈ A : γ(a) =
⊔
{c | α(c) ≤ a}

Galois surjections and injections reloaded

21 / 45

Definition. A Galois surjection (or insertion)

〈C;⊑〉 −−→−→←−−−
α

γ

〈A;≤〉 is a Galois connection where α is

surjective (equivalently γ is injective, or
∀a ∈ A : α ◦ γ(a) = a).

Definition. A Galois injection 〈C;⊑〉 −−−→←←−−−
α

γ

〈A;≤〉 is a

Galois connection in which γ is surjective (or
equivalently α is injective, or ∀c ∈ C : γ ◦ α(c) = c).

Proposition. If 〈C;⊑〉 −−→−→←−−−
α

γ

〈A;≤〉 is a Galois

surjection and C is a complete lattice 〈C;⊑,⊥,⊤,⊔,⊓〉
then A is a complete lattice.

Reduction of an abstract domain

22 / 45

By equating abstract elements with the same
concretization, we obtain a Galois surjection:

Proposition. If 〈C;⊑〉 −−→←−−
α

γ

〈A;≤〉 is a Galois

connection, then

� a ≡ a′ = (γ(a) = γ(a′)) is an equivalence relation,
such that

� 〈C;⊑〉 −−−→−→←−−−−
α≡

γ≡

〈A/≡;≤≡〉 is a Galois surjection,

where X ≤≡ Y if (∃a ∈ X : ∃a′ ∈ Y : a ≤ a′)

α≡(c) = {a | a ≡ α(c)}

γ≡(X) = γ(a) where a ∈ X

Example: intervals

23 / 45

Consider the abstract domain of intervals.

Elements are of the form [a, b] with a, b ∈ Z ∪ {−∞,∞}

Ordering: [a, b] ⊑ [a′, b′] if a′ ≤ a ∧ b ≤ b′

Concretization: γ([a, b]) = {n | a ≤ n ≤ b}

All elements [a, b] for which a > b denote the empty set
∅. Usually this reduction has already (implicitly) taken
place.

For example, ∅ = γ([32, 0]) = γ([5, 4]) = ∅

Compositional design of Galois

connections

Known composition from week 1

25 / 45

Theorem. The composition of two Galois connections

〈C;⊑〉 −−−→←−−−
α1

γ1

〈B;⊆〉 and 〈B;⊆〉 −−−→←−−−
α2

γ2

〈A;≤〉 is itself a

Galois connection:

〈C;⊑〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2

〈A;≤〉

The above theorem typeset as an inference rule:

〈C;⊑〉 −−−→←−−−
α1

γ1

〈B;⊆〉 〈B;⊆〉 −−−→←−−−
α2

γ2

〈A;≤〉

〈C;⊑〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2

〈A;≤〉

The Cartesian product of Galois connections

26 / 45

Theorem. Let 〈C1;⊑1〉 −−−→←−−−
α1

γ1

〈A1;≤1〉 and

〈C2;⊑2〉 −−−→←−−−
α2

γ2

〈A2;≤2〉 be Galois connections. Then we

can form a Galois connection between the Cartesian
product of the concrete and abstract domains:

〈C1 × C2;⊑1 × ⊑2〉 −−→←−−
α

γ

〈A1 × A2;≤1 × ≤2〉

where
α(〈c1, c2〉) = 〈α1(c1), α2(c2)〉

γ(〈a1, a2〉) = 〈γ1(a1), γ2(a2)〉

The Cartesian product of Galois connections

26 / 45

Theorem. (same, now typeset as inference rule)

〈C1;⊑1〉 −−−→←−−−
α1

γ1

〈A1;≤1〉 〈C2;⊑2〉 −−−→←−−−
α2

γ2

〈A2;≤2〉

〈C1 × C2;⊑1 × ⊑2〉 −−→←−−
α

γ

〈A1 × A2;≤1 × ≤2〉

where
α(〈c1, c2〉) = 〈α1(c1), α2(c2)〉

γ(〈a1, a2〉) = 〈γ1(a1), γ2(a2)〉

The Cartesian product of Galois connections

26 / 45

Theorem. (same, now typeset as inference rule)

〈C1;⊑1〉 −−−→←−−−
α1

γ1

〈A1;≤1〉 〈C2;⊑2〉 −−−→←−−−
α2

γ2

〈A2;≤2〉

〈C1 × C2;⊑1 × ⊑2〉 −−→←−−
α

γ

〈A1 × A2;≤1 × ≤2〉

where
α(〈c1, c2〉) = 〈α1(c1), α2(c2)〉

γ(〈a1, a2〉) = 〈γ1(a1), γ2(a2)〉

Example: we can abstract a pair of natural number sets
to a Parity pair:

〈℘(N);⊆〉 −−→−→←−−−
α

γ

〈Par ;⊑〉 〈℘(N);⊆〉 −−→−→←−−−
α

γ

〈Par ;⊑〉

〈℘(N)× ℘(N);⊆ × ⊆〉 −−→←−−
α

γ

〈Par × Par ;⊑ × ⊑〉

Reduced product

27 / 45

A reduced product improves two (or more) abstractions
of the same domain:

Theorem. Let 〈C;⊑〉 −−−→←−−−
α1

γ1

〈A1;≤1〉 and

〈C;⊑〉 −−−→←−−−
α2

γ2

〈A2;≤2〉 be Galois connections between

complete lattices. Then the reduced product is a Galois
surjection:

〈C;⊑〉 −−→−→←−−−
α

γ

〈A1 × A2;≤1 × ≤2〉

where α(c) = 〈α1(c), α2(c)〉

γ(〈a1, a2〉) = γ1(a1) ⊓ γ2(a2)

Note: the paper contains a much more general version

Example: reduced product

28 / 45

Imagine we abstract an integer variable x using both
Sign and Parity abstract domains.

If x = 0 from the Sign domain (γ(0) = {0}) and x is odd

from the Parity domain (γ(odd) = {1, 3, 5, . . . }), we can
gain information by combining them.

A reduction tells us, no integers are 0 and odd , hence
we reduce to γ(0) ∩ γ(odd) = ∅.

Note: Not transferring information from one domain to
the other corresponds to running the analyses
separately.

From concrete to abstract semantics

Correctness, optimality, and completeness

30 / 45

Definition. If α ◦ F ≤̇F# ◦ α we say F# is a (locally)
correct (or sound) approximation of F

Definition. If F# = α ◦ F ◦ γ we say F# is an optimal
approximation of F

Intuitively we can’t do better with the available abstract
information.

Definition. If α ◦ F = F# ◦ α we say F# is a complete
approximation of F (no loss of information)

Intuitively we can’t do better with the available concrete
information.

These definitions generalize to n-ary functions F and
F#.

Example

31 / 45

Consider addition over the abstract Sign domain.

Addition is not complete, e.g.:

0 = α(42 + (−42))

⊑ α(42) + α(−42) = pos + neg = ⊤

However addition is an optimal approximation, e.g.:

α(γ(pos) + γ(neg))

= α({n | n ≥ 0}+ {n | n ≤ 0})

= α({n+ n′ | n ≥ 0 ∧ n′ ≤ 0})

= α(Z) = ⊤

From concrete to abstract operator, constructively

32 / 45

These definitions lead us to the following two “recipes”
for approximating a concrete operator F :

1. Push α’s under the function definition:

α ◦ F (c) = · · · = F#(α(c))

(geared towards complete approximation, however it
is still correct/sound if we upward judge underway)

2. Compose F with α and γ:

α ◦ F ◦ γ(a) = · · · = F#(a)

(geared towards optimal approximation, however it
is still correct/sound if we upward judge underway)

Fun with the three counter machine

Recall Plotkin’s three counter machine (1/2)

34 / 45

There are 3 variables (or registers):

var ∈ Var = {x, y, z} (variables)

Inst ::= inc var (instructions)

| dec var

| zero var m else n

| stop

P = Inst
∗ (programs)

pc ∈ PC = N (program counter)

States = PC × N0 × N0 × N0 (states)

Initial states: {〈1, i, 0, 0〉 | i ∈ N0} (for program P with input i)

Final states: {〈pc, 0, yv, 0〉 | pc ∈ PC ∧ yv ∈ N0 ∧ Ppc = stop}
(with yv being the result)

Recall Plotkin’s three counter machine (2/2)

35 / 45

Transition relation:

〈pc, xv, yv, zv〉 −→ 〈pc+ 1, xv + 1, yv, zv〉 if Ppc = inc x

− −→ 〈pc+ 1, xv, yv + 1, zv〉 if Ppc = inc y

− −→ 〈pc+ 1, xv, yv, zv + 1〉 if Ppc = inc z

〈pc, xv, yv, zv〉 −→ 〈pc+ 1, xv − 1, yv, zv〉 if Ppc = dec x ∧ xv > 0

− −→ 〈pc+ 1, xv, yv − 1, zv〉 if Ppc = dec y ∧ yv > 0

− −→ 〈pc+ 1, xv, yv, zv − 1〉 if Ppc = dec z ∧ zv > 0

〈pc, xv, yv, zv〉 −→ 〈pc′, xv, yv, zv〉 if Ppc = zero x pc′ else pc′′ ∧ xv = 0

− −→ 〈pc′′, xv, yv, zv〉 if Ppc = zero x pc′ else pc′′ ∧ xv 6= 0

〈pc, xv, yv, zv〉 −→ 〈pc′, xv, yv, zv〉 if Ppc = zero y pc′ else pc′′ ∧ yv = 0

− −→ 〈pc′′, xv, yv, zv〉 if Ppc = zero y pc′ else pc′′ ∧ yv 6= 0

〈pc, xv, yv, zv〉 −→ 〈pc′, xv, yv, zv〉 if Ppc = zero z pc′ else pc′′ ∧ zv = 0

− −→ 〈pc′′, xv, yv, zv〉 if Ppc = zero z pc′ else pc′′ ∧ zv 6= 0

Plotkin’s three counter machine in ASCII. . .

36 / 45

Transition relation:

<pc, xv, yv, zv> --> <pc+1, xv+1, yv, zv> if P_pc = inc x

- --> <pc+1, xv, yv+1, zv> if P_pc = inc y

- --> <pc+1, xv, yv, zv+1> if P_pc = inc z

<pc, xv, yv, zv> --> <pc+1, xv-1, yv, zv> if P_pc = dec x /\ xv>0

- --> <pc+1, xv, yv-1, zv> if P_pc = dec y /\ yv>0

- --> <pc+1, xv, yv, zv-1> if P_pc = dec z /\ zv>0

<pc, xv, yv, zv> --> <pc’, xv, yv, zv> if P_pc = zero x pc’ else pc’’

/\ xv=0

- --> <pc’’, xv, yv, zv> if P_pc = zero x pc’ else pc’’

/\ xv<>0

<pc, xv, yv, zv> --> <pc’, xv, yv, zv> if P_pc = zero y pc’ else pc’’

/\ yv=0

- --> <pc’’, xv, yv, zv> if P_pc = zero y pc’ else pc’’

/\ yv<>0

<pc, xv, yv, zv> --> <pc’, xv, yv, zv> if P_pc = zero z pc’ else pc’’

/\ zv=0

- --> <pc’’, xv, yv, zv> if P_pc = zero z pc’ else pc’’

/\ zv<>0

Implementation of the three counter machine

37 / 45

Quick tour of implementation:

� AST

� Lexer

� Parser

� Wellformedness (checks out of bounds)

� Interpreter

Each of the above reside in their own module (and file).

To build from scratch run:
make depend and make

An epigram from Perlis

38 / 45

Beware of the Turing tar-pit in which everything is
possible but nothing of interest is easy.

— Alan Perlis

Formulating the collecting semantics

39 / 45

Recall the reachable states collecting semantics:

T (Σ) = I ∪ {σ | ∃σ′ ∈ Σ : σ′ → σ}

Let’s write the specialized version. . .

Abstracting the collecting semantics

40 / 45

We abstract the collecting semantics to a set valued
function using the well-known Galois connection:

〈℘(A× B);⊆, ∅, A× B,∪,∩〉 −−→−→←←−−−
α

γ

〈A→ ℘(B); ⊆̇, λx.∅, λx.B, ∪̇, ∩̇〉

where α(R) = λa.{b | (a, b) ∈ R}

γ(F) = {(a, b) | b ∈ F (a)}

Note: in our case A = PC and B = N0 × N0 × N0.

We will use the first recipe of “pushing alphas”. . .

Result

41 / 45

T#(S#) = Ø. [1 -> { <i,0,0> | i in N_0 }]

U.

U. Ø. [pc+1 -> { <xv+1, yv, zv> }]

{ <xv, yv, zv> } C S#(pc)

P_pc = inc x (...and for y and z)

U.

U. Ø. [pc+1 -> { <xv-1, yv, zv> }]

{ <xv, yv, zv> } C S#(pc)

P_pc = dec x

xv>0 (...and for y and z)

U.

U. Ø. [pc’ -> { <xv, yv, zv> }]

{ <xv, yv, zv> } C S#(pc)

P_pc = zero x pc’ else pc’’

xv=0 (...and for y and z)

U.

U. Ø. [pc’’ -> { <xv, yv, zv> }]

{ <xv, yv, zv> } C S#(pc)

P_pc = zero x pc’ else pc’’

xv<>0 (...and for y and z)

What happened?

42 / 45

We systematically massaged the transition function of
the collecting semantics

T : ℘(PC × N0 × N0 × N0)→ ℘(PC × N0 × N0 × N0)

into a transition function over a related domain

T# : (PC → ℘(N0 × N0 × N0))→ (PC → ℘(N0 × N0 × N0))

by surfing on the Galois connections.

Note: a least fixed point of the resulting function is still
not computable (in general), so we are not quite there
yet. . .

Cliffhanger. . .

43 / 45

To be continued. . .

Summary

Summary

45 / 45

We’ve taken a more in depth look at AI based on
Cousot-Cousot:JLP92.

� Foundations: Fixed points, Galois connections, . . .

� The Galois approach and friends: closure operators,
Moore families, . . .

� From collecting semantics to analysis

� The first step towards analysing Plotkin’s 3 counter
machine

	Last time
	Today
	Fixed points, reloaded
	Tarski's fixed-point theorem
	Tarski's fixed point theorem, graphically
	Fixed points, intuition

	Galois connections, reloaded
	Galois connection motivation
	Galois connection non-example
	Galois connection example, fixed
	Two soundness conditions
	Galois connection properties (1/2)
	Galois connection properties (2/2)
	Alternative 1: Closure operators (1/2)
	Alternative 1: Closure operators (2/2)
	Alternative 2: Moore families
	Alternative 2: Moore family non-example
	Alternative 2: Moore family example
	More Galois connection properties
	Galois surjections and injections reloaded
	Reduction of an abstract domain
	Example: intervals

	Compositional design of Galois connections
	Known composition from week 1
	The Cartesian product of Galois connections
	Reduced product
	Example: reduced product

	From concrete to abstract semantics
	Correctness, optimality, and completeness
	Example
	From concrete to abstract operator, constructively

	Fun with the three counter machine
	Recall Plotkin's three counter machine (1/2)
	Recall Plotkin's three counter machine (2/2)
	Plotkin's three counter machine in ASCII…
	Implementation of the three counter machine
	An epigram from Perlis
	Formulating the collecting semantics
	Abstracting the collecting semantics
	Result
	What happened?
	Cliffhanger…

	Summary
	Summary

