Abstract interpretation, reloaded

Jan Midtgaard

Week 3, Abstract Interpretation

Aarhus University, Q4 - 2012

Last time

Semantics overflow:
0 The three counter machine
0 An abstract machine for CPS terms
0 A flow-chart semantics for IMP (non-deterministic!)

0 A JVM-like semantics for a bytecode instruction set
(objects,classes,methods,fields,. . .)

Finally we had another look at collecting semantics.

2/45

Today

0 Approximation methods for Al
(Cousot-Cousot:JLP92)

— Lattice and fixed point theory

- fixed points,
- Galois connections

— The Galois approach (p.11-...)

0 From collecting semantics to static analysis

0 Fun with Plotkin’s three counter machine

3/45

Fixed points, reloaded

Tarski’'s fixed-point theorem

Theorem. (Tarski:PJM55) Let L be a complete lattice
(L; €, 1L, T,U,r), and let f be a monotone function.
Then the set P of all fixed points of f forms a complete
lattice (P; C, lfp f, gfp f, U, 1) where

o P={xelL|x=f(x)}
olfp f =[xz e L] flz) E z}
ngipf=[Herel|zE flz)}
Note: (1) lfp f Is greatest lower bound of the set of post

fixed points of f, and (2) gfp f is least upper bound of
the set of pre fixed points of f.

5/45

Tarski’s fixed point theorem, graphically

Fixed points, intuition

(a) (b) (C) ¢

bf

~~
7\ /N/_\./_\
~~
VR
o—
@ — nnnx
=
—

(a) On a poset a monotone function is not guaranteed to
have a fixed point, (b) lfp and gfp may coincide, or (c)
the fixed points may form a sub-lattice.

7 /45

Galois connections, reloaded

Galois connection motivation

Partial orders model precision of properties: a C o' if the
properties a and a’ are comparable and a is more
precise than d'.

Example. Recall from the Parity domain:

The property even meaning {n € N | n is even} is more
precise than the property T meaning N

The meaning of an abstract property is expressed by
the concretization function ~.

Approximation is captured by the abstraction function «:
It maps each concrete property to its best abstract
counterpart.

9/45

Galois connection non-example

o \T
A AN

pos~ #0 neg POS neg

JRX KL NS
NZ

~v assigns meaning to each abstract element.

10/45

Galois connection non-example

/ \ /\

POS neq pos neg

Nz

~ assigns meaning to each abstract element.

Problem: however there is no best (unique) abstraction
for 0!

10/45

Galois connection example, fixed

7

POS

AN

N

neq

><X

/7

N

neq

N

We fix it by adding an element corresponding to O.

11/45

Galois connection example, fixed

~
—/ \T
"/

YANEEEE DN

POS pos neq
>< X(L S\

\/ T

~ assigns meaning to each abstract element.
Notice how ~ is injective (one-to-one).

11/45

Galois connection example, fixed

@

—/Ck \T

/\ / \
pOS %/‘<‘/3/ = TNeq
pos /

neg

@

/ \

a maps each element to its best abstraction.

Notice how « Is surjective (onto), hence we have a
Galois surjection.

Also notice the information loss. 11745

Two soundness conditions

Condition 1:
If a < o for some ¢ where a(c) = a, then o' is a sound
albeit less precise approximation of c.

Condition 2:
If ¢ C ¢ for some a where ~(a) = ¢, then a is a sound
albeit less precise approximation of ¢'.

When the two conditions are equivalent:
alc) <d < d CH(a)

we have a Galois connection.

12/45

Galois connection properties (1/2)

Observation 1: v o « is extensive
Intuition: loss of information by « is sound

Observation 2: « - v is reductive

Intuition: ~ loses no information, i.e., « is as precise as
possible

Observation 3: « and v are monotone
Intuition: o and ~ are order, i.e., soundness preserving

13/45

Galois connection properties (2/2)

Theorem. The inverse of a Galois connection is itself a
Galois connection (under reverse order):

=2

(C;E) == (A4; <)
(4;>) == (C;3)

QT@Q

Note how we have typeset the theorem as an inference
rule.

14/ 45

Galois connection properties (2/2)

Theorem. The inverse of a Galois connection is itself a
Galois connection (under reverse order):

=2

(C50) == (4 5)

(4;>) == (C;3)

Q}g@

Note how we have typeset the theorem as an inference
rule.

By the duality principle all results on posets have a dual.
Hence this extends to Galois connections if we replace

o, C, L, T,r, and U with

[] ;, :‘, —|_, J_, |_|, and |_| 14/ 45

Alternative 1: Closure operators (1/2)

Definition. A function p: S — S on a poset (S;C) is a(n
upper) closure operator if p is monotone, extensive, and
idempotent: Vs € S : p(p(s)) = p(s)

Similarly p is a lower closure operator if it is monotone,
reductive, and idempotent.

: : 8
Corollary. A Galois connection (C;) &= (4; <)
induces
0 an upper closure operator v - o on C' and

0 a lower closure operator aoyon A

15/45

Alternative 1: Closure operators (2/2)

Theorem. A closure operator p : S — S on a poset
(S; C) induces a Galois connection

(S:5) £ {p(S); C)

(1 being the identity function on S).

Hence it is equivalent to stay in the concrete domain
and formulate abstract interpretation in terms of closure

operators!

16 /45

Alternative 2: Moore families

Definition. Let (P; C) be a poset with a top element T.

A Moore family is a subset .S C P such that
ol es
o lf X C SthennX existsin Pandrnx € .5
Proposition. If (C';C) % (A; <) is a Galois
(C

L
connection and (C;C, 1, T,L,M) is a complete lattice,
then v(A) ={~(a) | a € A} is a Moore family.

Hence, Moore families can provide a sanity check for an

abstract domain.

17 /45

Alternative 2: Moore family non-example

/ 6\

) 72 ()

XX

POS 0 neq

\Q/

The greatest lower bound pos ' neg exists, but not in the
above subset.

18/45

Alternative 2: Moore family example

/ 6\

BT

DOS neqg

\Q/

The greatest lower bound pos ' neg exists, and belongs
to the above subset.

19/45

More Galois connection properties

Each function uniquely determines the other:

Proposition. If (C’;C) % (A; <) and

/

(CHE) ——= — (A; <) then a = o' ifand only if v = +/

CX

Each function expresses the other:
Proposition. If (C;C) <= (A; <) then
nforallce C: alc) = /\{a\cEfy()}

oforallae A:~v(a) = {c| alc) <a}

20/ 45

Galois surjections and injections reloaded

Definitiog. A Galois surjection (or insertion)
(C;E) == (A; <) is a Galois connection where « is

surjective (equivalently ~ is injective, or
Va e A:aovy(a) =a).

Definition. A Galois injection (C: C) $— (A: <) is a

87

Galois connection in which ~ is surjective (or
equivalently « is injective, or Ve € C' : v o a(c) = ¢).

Proposition. If (C’;C) #» (A; <) is a Galois
surjection and C'is a complete lattice (C;C, 1, T, U, M)
then A is a complete lattice.

21/45

Reduction of an abstract domain

By equating abstract elements with the same
concretization, we obtain a Galois surjection:

Proposition. If (C’;C) % (A; <) is a Galois
connection, then

0a=d = (v(a) =~(d")) is an equivalence relation,
such that
V=

0 (CE) S 5 (A/=; <=) is a Galois surjection,

O=

where X <_ Y if (Jae X :3d €Y :a<d)

a=(c) =1{a | a = a(c)}
v=(X) =~v(a) where a € X

22 / 45

Example: intervals

Consider the abstract domain of intervals.

Elements are of the form |a, b| with a,b € Z U {—00, 00}
Ordering: [a,b] C [d/, 0] ifd <a A bV
Concretization: v(|a,b]) = {n | a <n < b}

All elements |a, b] for which a > b denote the empty set
(. Usually this reduction has already (implicitly) taken
place.

For example, 0 = ([32,0]) = v([5,4]) =0

23 /45

Compositional design of Galois
connections

Known composition from week

Theorem The composition of tw%) Galois connections
(C,) &= % (B;C) and (B; C) &—= (A; <) is itself a

03] Q2

Galois connection:

(C;C) &= (A; <)

00

The above theorem typeset as an inference rule:

(C;C) &= (B;C) (B;C) £ (4; <)

Q1 85

(C;C) &= (A; <)

200

25/ 45

The Cartesian product of Galois connections

Theorem. Let (C1; Eq) % (A1;<q) and

(Cy; Eg) &= (As; <5) be Galois connections. Then we

can form a Galms connection between the Cartesian
product of the concrete and abstract domains:
(C1 x C9; 51 X Cy) ﬁz (A1 X Ag; <1 X <9)

where

26 / 45

The Cartesian product of Galois connections

Theorem. (same, now typeset as inference rule)

71 Y2
(C1; Cq) %al (A1; <q) (Cq; Eo) ﬁm (Ag; <o)

(C) % Oy Ty X D) €95 (A x Ag; <1 x <o)

87

where

26 / 45

The Cartesian product of Galois connections

Theorem. (same, now typeset as inference rule)

71 Y2
(C1; Cq) %al (A1; <q) (Cq; Eo) ﬁm (Ag; <o)

(C) % Oy Ty X D) €95 (A x Ag; <1 x <o)

87

where
af{ct, e2)) = (a1(c1), aa(ez))

v({a1, a2)) = (11(a1), 12(az))

Example: we can abstract a pair of natural number sets
to a Parity pair:

(p(N); C) &= (Par;T) (p(N); C) <= (Par; C)
(p(N) x p(N); C x C) % (Par x Par;E x C) -

«

Reduced product

A reduced product improves two (or more) abstractions
of the same domain:

Theorem Let (C; C) ﬁ (A7;<q) and

a1

(C E) —= (As; <) be Galois connections between

Complete lattices. Then the reduced product is a Galois
surjection:

(C;) —»Z (A1 X Ag; <4 X <9)

where a(c) = (ai(c), as(c))
v({ar, az)) = m(ar) My2(az)

Note: the paper contains a much more general version:

Example: reduced product

Imagine we abstract an integer variable x using both
Sign and Parity abstract domains.

If x = 0 from the Sign domain (v(0) = {0}) and x is odd
from the Parity domain (v(odd) = {1,3,5,... }), we can
gain information by combining them.

A reduction tells us, no integers are 0 and odd, hence
we reduce to v(0) Ny (odd) = 0.

Note: Not transferring information from one domain to
the other corresponds to running the analyses
separately.

28 /45

From concrete to abstract semantics

Correctness, optimality, and completeness

Definition. If o © F < F7# o o we say F7 is a (locally)
correct (or sound) approximation of F

Definition. If F#* = o o F o v we say F'* is an optimal
approximation of F

Intuitively we can’t do better with the available abstract
information.

Definition. If « ©« ' = F'% o o we say F7 is a complete
approximation of F' (no loss of information)

Intuitively we can't do better with the available concrete
information.

These definitions generalize to n-ary functions F' and
F7.

30/45

Example

Consider addition over the abstract Sign domain.
Addition is not complete, e.g.:

0= (42 + (—42))
C a(42) + a(—42) = pos + neg = T

However addition is an optimal approximation, e.g.:

a(y(pos) +v(neg))

=a({n|[n=0}+{n n<0})
=a({n+n"|n>0 A n <0}
a(Z) =T

31/45

From concrete to abstract operator, constructively

These definitions lead us to the following two “recipes”
for approximating a concrete operator F':

1. Push «o’s under the function definition:
aoF(c)=--=F"(ac))

(geared towards complete approximation, however it
IS still correct/sound if we upward judge underway)

2. Compose F' with oo and ~:
ao Fey(a)=--=F"(a)

(geared towards optimal approximation, however it
IS still correct/sound if we upward judge underway).,, ..

Fun with the three counter machine

Recall Plotkin’'s three counter machine (1/2)

There are 3 variables (or registers):

var € Var = {x,y,z} (variables)
Inst ::= inc var (instructions)
dec var

zero var m elsen

stop
P = Inst” (programs)
pc e PC =N (program counter)
States = PC x Ny x Ny x Ny (states)

Initial states: {(1, 4, 0, 0) | i € Ny} (for program P with input 7)

Final states: {(pc, 0, yv, 0) | pc € PC' N yv € Ny A P,. = stop}
(with yv being the result)s; s

Recall Plotkin's three counter machine (2/2)

Transition relation:

(pc,

(pc,

v, yuv,

rv, Yyv,

rv, Yyv,

v, yuv,

Irv, Yyv,

zv) — (pc+ 1, zv + 1, yv, 2zv)
— (pc+ 1, xv, yv + 1, zv)
— (pc+ 1, zv, yv, zv + 1)

zv) — (pc+ 1, zv — 1, yv, 2v)
— (pc+ 1, zv, yv — 1, zv)
— (pc+ 1, xzv, yv, zv — 1)

2v) — (pc’, zv, yv, 2v)

— (pc”, TV, Yv, ZU)

2v) — (pc’, zv, yv, 2v)

— (pc”’, zv, yv, zv)

z2v) — (pc, zv, yv, 2v)

— (pc”, TV, Yu, ZU)

if Ppc
if Ppe

= inc X

= incy

if Ppe = inc z

if Ppe =decx A
if Ppe =decy A
if Ppe =decz A

if P, = zero x pc’ else pc”’ A

if Ppe = zero x pc’ else pc’/ A

if P, = zeroy pc else pc’’ A

if P, = zeroy pc else pc’’ A

if Ppc = zero z pc’ else pc’’ A

if P,c = zero z pc’ else pc’’ A

v >0
yv > 0
zv >0

xv =0

xv #0

yv =0
yv # 0

zv =20

zv #£ 0

35/45

Plotkin’s three counter machine in ASCII. ..

Transition relation:

<pc,

<pc,

<pc,

<pc,

<pc,

XV, YV,

XV’ yvl

XV/ yv/

XV,

YV,

XV, YV,

zv>

zZv>

zv>

zZv>

zZVv>

<pc+l,
<pc+1l,
<pc+l,
<pc+l,
<pc+l,
<pc+l,

<pc’,

<pcl 14 ,

<pc’,

<pcl 14 ,

<pc’,

<pc’’,

XV,

XV,

XV,

xv+1, zZ\>

YVy
yv+l, zv>

yv, zv+1l>

XV,
XV,
xv-1, yv, zv>
yv—-1, zv>
yv, zv-1>

XV,
XV,

yv, zv>

XV, zZv>

YV,

yv, zZVv>

XV, zZVv>

YV,

yv, zZV>

XV, zZv>

YV,

if

if

if

if

if

if

if P_pc

if P_pc =

if P_pc
P_pc = zero
/\ xv=0
P_pc = zero
/\ xv<>0
P_pc = zero
/\ yv=0
P_pc = zero
/\ yv<>0
P_pc = zero
/\ zv=0
P_pc = zero
/\ zv<>0

if P_pc =
if P_pc =
if P_pc =

= dec
dec
= dec

/\

<

else

else

else

else

else

else

inc x
inc y
inc z
xv>0

yv>0
zv>0

pcl ’

pcl ’

pcl ’

pcl ’

pcl ’

pcl 4

36 /45

Implementation of the three counter machine

Quick tour of implementation:
0 AST
0 Lexer
0 Parser
0 Wellformedness (checks out of bounds)
0 Interpreter
Each of the above reside in their own module (and file).

To build from scratch run:
make depend and make

37 /45

An epigram from Perlis

Beware of the Turing tar-pit in which everything iIs
possible but nothing of interest Is easy.

— Alan Perlis

38/45

Formulating the collecting semantics

Recall the reachable states collecting semantics:
TX)=1U{c|3do' €¥:0 — o}

Let’s write the specialized version. ..

39/45

Abstracting the collecting semantics

We abstract the collecting semantics to a set valued
function using the well-known Galois connection:

Ax B);:C.0,Ax B,U,N «L_» A — o(B): C, \z.0, \z.B, U, N
p «

where «a(R) = Xa.{b|(a,b) € R}
V(F) ={(a,b) [be F(a);

Note: in our case A = PC and B = Ny x Ny x Np.

We will use the first recipe of “pushing alphas”...

40/ 45

Result

T#(S#) = @. [1 —> { <1,0,0> | i in N_0 }]
U.
U. g. [pctl —> { <xv+1, yv, zv> }]
{ <xv, yv, zv> } C S# (pc)
P_pc = inc X (...and for y and z)
U.
U. g. [pctl —> { <xv-1, yv, zv> }]

{ <xv, yv, zv> }
P_pc = dec x
xv>0

U.
{ <xv, yv, zv> }
P_pc = zero x pc’
xv=0
U.
U.
{ <xv, yv, zv> }
P_pc = zero x pc’
xv<>0

C S# (pc)
(...and for y and z)

g. [pc’' —> { <xv, yv, zv> }]
C S# (pc)
else pc’’
(...and for y and z)

g. [pc'’ —> { <xv, yv, zv> }]
C S# (pc)
else pc’’
(...and for y and z)

41/ 45

What happened?

We systematically massaged the transition function of
the collecting semantics

T : o(PC x Ny x Ny x Ny) = p(PC x Ny x Ny x Np)
into a transition function over a related domain
T# : (PC — p(Ng x Ng x Ny)) = (PC — 9(Ny x Ny x Np))
by surfing on the Galois connections.

Note: a least fixed point of the resulting function is still
not computable (in general), so we are not quite there
yet. ..

42 /45

Clifthanger. . .

To be continued. ..

43/ 45

Summary

Summary

We've taken a more in depth look at Al based on
Cousot-Cousot:JLP92.

0 Foundations: Fixed points, Galois connections, ...

0 The Galois approach and friends: closure operators,
Moore families, ...

0 From collecting semantics to analysis

0 The first step towards analysing Plotkin’s 3 counter
machine

45/ 45

	Last time
	Today
	Fixed points, reloaded
	Tarski's fixed-point theorem
	Tarski's fixed point theorem, graphically
	Fixed points, intuition

	Galois connections, reloaded
	Galois connection motivation
	Galois connection non-example
	Galois connection example, fixed
	Two soundness conditions
	Galois connection properties (1/2)
	Galois connection properties (2/2)
	Alternative 1: Closure operators (1/2)
	Alternative 1: Closure operators (2/2)
	Alternative 2: Moore families
	Alternative 2: Moore family non-example
	Alternative 2: Moore family example
	More Galois connection properties
	Galois surjections and injections reloaded
	Reduction of an abstract domain
	Example: intervals

	Compositional design of Galois connections
	Known composition from week 1
	The Cartesian product of Galois connections
	Reduced product
	Example: reduced product

	From concrete to abstract semantics
	Correctness, optimality, and completeness
	Example
	From concrete to abstract operator, constructively

	Fun with the three counter machine
	Recall Plotkin's three counter machine (1/2)
	Recall Plotkin's three counter machine (2/2)
	Plotkin's three counter machine in ASCII…
	Implementation of the three counter machine
	An epigram from Perlis
	Formulating the collecting semantics
	Abstracting the collecting semantics
	Result
	What happened?
	Cliffhanger…

	Summary
	Summary

