
Semantics

Jan Midtgaard

Week 2, Abstract Interpretation

Aarhus University, Q4 - 2012

Last time

2 / 45

� Mathematical basis:

– Transition systems

– Partially ordered sets (posets), Complete partial
orders (CPOs), Complete lattices

– Galois connections

– Fixed points

� Abstract interpretation basics:

– Reachable states collecting semantics

– Galois-connection based abstract interpretation

– The alternative widening/narrowing framework

� OCaml intro

Semantics

Semantics according to Merriam-Webster

4 / 45

Main Entry: se·man·tics
Pronunciation: si-’man-tiks
Function: noun plural but singular or plural in construction
Date: 1893

1. the study of meanings: a : the historical and psychological
study and the classification of changes in the signification of
words or forms viewed as factors in linguistic development b
(1) : semiotic (2) : a branch of semiotic dealing with the
relations between signs and what they refer to and including
theories of denotation, extension, naming, and truth

2. general semantics

3. a : the meaning or relationship of meanings of a sign or set of
signs; especially : connotative meaning b : the language used
(as in advertising or political propaganda) to achieve a desired
effect on an audience especially through the use of words with
novel or dual meanings

Semantics in Computer Science

5 / 45

Semantics is concerned with constructing formal models
or specifications of systems. Examples of such systems
include: Java, ML, JavaScript, . . . , JVM, x86, . . .

A model in itself is useful

� to understand features (scope, exceptions,
continuations,...)

� to prove equivalence of programs

� to prove program transformations correct

� to prove properties (e.g., type safety)

In this course semantics will be the starting point for
abstraction/approximation.

Many forms of semantics

6 / 45

� Denotational semantics

� Operational semantics

– abstract machines/transition systems

– structured operational semantics

– big-step/natural/relational semantics

� Reduction semantics

� Axiomatic semantics/Hoare logic

� Game semantics

Hence enough for a separate course.

Semantics in this course

7 / 45

In this course we will focus on abstract machines, i.e.,
transition systems. These models are operational in that
they describe the inner workings of an idealized
machine.

Today we’ll study semantics of four different languages:

� of three counter machine programs

� of CPS programs

� of IMP programs

� of bytecode programs

Throughout we take the AST view: We assume that all
ambiguities have been resolved, and we will work with
(and reason about) programs as abstract syntax trees.

Warm-up: The three counter machine

Plotkin’s three counter machine (1/2)

9 / 45

There are 3 variables (or registers):

var ∈ Var = {x, y, z} (variables)

Inst ::= inc var (instructions)

| dec var

| zero var m else n

| stop

P = Inst∗ (programs)

pc ∈ PC = N (program counter)

States = PC × N0 × N0 × N0 (states)

Initial state: 〈1, i, 0, 0〉 (for program P with input i)

Final state: 〈pc, 0, yv, 0〉
(with yv being the result and where Ppc = stop)

Plotkin’s three counter machine (1/2)

9 / 45

There are 3 variables (or registers):

var ∈ Var = {x, y, z} (variables)

Inst ::= inc var (instructions)

| dec var

| zero var m else n

| stop

P = Inst∗ (programs)

pc ∈ PC = N (program counter)

States = PC × N0 × N0 × N0 (states)

Initial states: {〈1, i, 0, 0〉 | i ∈ N0} (for program P with input i)

Final states: {〈pc, 0, yv, 0〉 | pc ∈ PC ∧ yv ∈ N0 ∧ Ppc = stop}
(with yv being the result)

Plotkin’s three counter machine (2/2)

10 / 45

Transition relation:

〈pc, xv, yv, zv〉 −→ 〈pc+ 1, xv + 1, yv, zv〉 if Ppc = inc x

− −→ 〈pc+ 1, xv, yv + 1, zv〉 if Ppc = inc y

− −→ 〈pc+ 1, xv, yv, zv + 1〉 if Ppc = inc z

〈pc, xv, yv, zv〉 −→ 〈pc+ 1, xv − 1, yv, zv〉 if Ppc = dec x ∧ xv > 0

− −→ 〈pc+ 1, xv, yv − 1, zv〉 if Ppc = dec y ∧ yv > 0

− −→ 〈pc+ 1, xv, yv, zv − 1〉 if Ppc = dec z ∧ zv > 0

〈pc, xv, yv, zv〉 −→ 〈pc′, xv, yv, zv〉 if Ppc = zero x pc′ else pc′′ ∧ xv = 0

− −→ 〈pc′′, xv, yv, zv〉 if Ppc = zero x pc′ else pc′′ ∧ xv 6= 0

〈pc, xv, yv, zv〉 −→ 〈pc′, xv, yv, zv〉 if Ppc = zero y pc′ else pc′′ ∧ yv = 0

− −→ 〈pc′′, xv, yv, zv〉 if Ppc = zero y pc′ else pc′′ ∧ yv 6= 0

〈pc, xv, yv, zv〉 −→ 〈pc′, xv, yv, zv〉 if Ppc = zero z pc′ else pc′′ ∧ zv = 0

− −→ 〈pc′′, xv, yv, zv〉 if Ppc = zero z pc′ else pc′′ ∧ zv 6= 0

Note: there is no case for the stop instruction.

Also note: this version differs slightly from Plotkin’s.

Exercise

11 / 45

Compute the first five execution steps of the following
program for input 1:

1 zero x 6 else 2

2 dec x

3 inc y

4 inc y

5 zero x 6 else 2

6 stop

Exercise

11 / 45

Compute the first five execution steps of the following
program for input 1:

1 zero x 6 else 2

2 dec x

3 inc y

4 inc y

5 zero x 6 else 2

6 stop

Bonus question: how can we encode unconditional
jumps?

CPS semantics

Representing functional values

13 / 45

In languages like JavaScript, Scheme, and ML functions
are first class values. That means the result of
evaluating:

((λ (x) (λ (y) (+ x y))) 3)

is a functional value (λ (y) (+ x y)) in which x is
bound to 3.

To represent such a value we could substitute all free
occurrences of x with 3. Alternatively we can record
substitutions in an environment and represent functional
values as lambda × env - pairs:

〈(λ (y) (+ x y)), •[x 7→ 3]〉

Such a representation is called a closure. It is also the
representation used by most Scheme and ML
interpreters and compilers.

From λ-calculus to ANF

14 / 45

e ::= x | (λ (x) e) | (e0 e1) (lambda calculus)

To make things easier for ourselves, we will bind the
result of each intermediate computation to a name v.

P ∋ p ::= s (programs)

T ∋ t ::= x | v | (λ (x) s) (trivial expressions)

C ∋ s ::= t (serious expressions)

| (let ((v t)) s)

| (t0 t1)

| (let ((v (t0 t1))) s)

The grammar distinguishes serious expressions,
(whose evaluation may diverge), from trivial expressions
(whose evaluation will terminate).

Encoding control stacks as continuations

15 / 45

As a second step we will pass around our own control
stack, encoded as a lambda term.

Hence every function will accept an additional
parameter, the continuation.

Just as a plain control-stack tells us what to do next, our
encoded stack (the continuation), tells us what to do
next.

Actually, we don’t need to adhere to a stack-discipline,
when we are implementing it ourselves (in the term).

Hence you can do funny stuff, like returning to the stack
twice, not returning (i.e., jumping out of context), etc.

Example: continuation passing style

16 / 45

Consider an example:

(let ((f (λ (x) x)))

((f f) (λ (y) y)))

Example: continuation passing style

16 / 45

Consider an example:

(let ((f (λ (x) x)))

((f f) (λ (y) y)))

Sequentialized and with all intermediate computations
named:

(let ((f (λ (x) x)))

(let ((v (f f)))

(v (λ (y) y))))

Example: continuation passing style

16 / 45

Consider an example:

(let ((f (λ (x) x)))

((f f) (λ (y) y)))

Sequentialized and with all intermediate computations
named:

(let ((f (λ (x) x)))

(let ((v (f f)))

(v (λ (y) y))))

In continuation-passing style:

(λ (k0) (let ((f (λ (x k) (k x))))

(f f (λ (v)

(v (λ (y k2) (k2 y)) k0)))))

Example: continuation passing style

16 / 45

Consider an example:

(let ((f (λ (x) x)))

((f f) (λ (y) y)))

Sequentialized and with all intermediate computations
named:

(let ((f (λ (x) x)))

(let ((v (f f)))

(v (λ (y) y))))

In continuation-passing style:

(λ (k0) ((λ (f k1)

(f f (λ (v)

(v (λ (y k2) (k2 y)) k1))))

(λ (x k) (k x)) k0))

CPS syntax

17 / 45

Formally, our grammar of CPS expressions is:

p ::= (λ (k) e) (CPS programs)

SExp ∋ e ::= (t0 t1 c) | (c t) (serious expr)

TExp ∋ t ::= x | v | (λ (x k) e) (trivial expr)

CExp ∋ c ::= (λ (v) e) | k (continuation expr)

here expressed in Scheme syntax

Expressiveness

18 / 45

The language is Turing-complete, in that it is sufficient to
express a CPS-version of the Ω-combinator
((λ (x) (x x))(λ (y) (y y))):

(λ (k0) ((λ (x k1) (x x k1))(λ (y k2) (y y k2))k0))

The CPS language represents the Church-side of the
Church-Turing thesis.

One can thus Church-encode numbers:

c0 = λs.λz.z →(λ (s k0) (k0 (λ (z k1) (k1 z))))

c1 = λs.λz.s z →(λ (s k0) (k0 (λ (z k1) (s z (λ (v) (k1 v))))))

c2 = λs.λz.s(s z) → . . .

CPS transforming ANF programs

19 / 45

Once programs are sequentialized and name all
intermediate results, transforming into CPS is
straightforward.

We formulate one transformation function for programs
C, for trivial terms V, and for serious terms F :

C : P → CProg

C[p] = (λ (kp) Fkp [p])

where kp is fresh

V : T → TExp

V [x] = x

V [(λ (x) s)] = (λ (x ks) Fks [s])

where ks is fresh

F : K → C → SExp

Fk [t] = (k V [t])

Fk [(let ((x t)) s)] = ((λ (x) Fk [s])V [t])

Fk [(t0 t1)] = (V [t0]V [t1]k)

Fk [(let ((x (t0 t1))) s)] = (V [t0]V [t1](λ (x) Fk [s]))

The CE abstract machine

20 / 45

Values and environments:

Val ∋ w ::= [(λ (x k) e), r] | [(λ (v) e), r] | stop

Env ∋ r ::= • | r [x 7→ w]

The CE abstract machine

20 / 45

Values and environments:

Val ∋ w ::= [(λ (x k) e), r] | [(λ (v) e), r] | stop

Env ∋ r ::= • | r [x 7→ w]

Two helper functions:

µt : TExp × Env ⇀ Val

µt(x, r) = r(x)

µt(v, r) = r(v)

µt((λ (x k) e), r) = [(λ (x k) e), r]

µc : CExp × Env ⇀ Val

µc(k, r) = r(k)

µc((λ (v) e), r) = [(λ (v) e), r]

The CE abstract machine

20 / 45

Values and environments:

Val ∋ w ::= [(λ (x k) e), r] | [(λ (v) e), r] | stop

Env ∋ r ::= • | r [x 7→ w]

Two helper functions:

µt : TExp × Env ⇀ Val

µt(x, r) = r(x)

µt(v, r) = r(v)

µt((λ (x k) e), r) = [(λ (x k) e), r]

µc : CExp × Env ⇀ Val

µc(k, r) = r(k)

µc((λ (v) e), r) = [(λ (v) e), r]

Transition relation (over SExp × Env):

〈(t0 t1 c), r〉 −→ 〈e, r ′[x 7→ w][k 7→ wc]〉

if [(λ (x k) e), r ′] = µt(t0, r)

w = µt(t1, r)

wc = µc(c, r)

〈(c t), r〉 −→ 〈e, r ′[v 7→ w]〉
if [(λ (v) e), r ′] = µc(c, r)

w = µt(t, r)

Initial state:
〈e, •[k 7→ [(λ (vr) (kr vr)), •[kr 7→ stop]]]〉 for program (λ (k) e)

Exercise

21 / 45

Trace the first four steps of the CE-machine on the
Ω-combinator in CPS:

(λ (k0) ((λ (x k1) (x x k1))(λ (y k2) (y y k2))k0))

To CPS transform or not to CPS transform

22 / 45

Note: we don’t need to CPS transform terms to give an
abstract machine semantics.

Flanagan-al:PLDI93 (optional reading) provides
alternative abstract machines for non-CPS-transformed
terms.

From Olivier’s TFP course some of you know how to
construct even more by yourselves.

IMP semantics

IMP programs

24 / 45

We’ll study a simple imperative language IMP,
composed of statements, arithmetic expressions, and
boolean expressions:

s ∋ Stmt ::= x = e

| skip

| if test then s else s

| while test do s

| s ; s

e ∋ AExp ::= n

| ?

| x

| e op e

where op ∈ {+,−, ∗, . . . }

test ∋ BExp ::= e comp e where comp ∈ {= , <> , < , . . . }

| test and test

| test or test

Note: because of ?, programs are non-deterministic.

Imperative programs as flow graphs

25 / 45

Rather than giving a direct semantics, we will represent
simple imperative programs using their flow graph (or
flow chart).

We associate program actions (tests, assignments, etc.)
to the edges of the graph (instead of associating them to
the nodes of the graph).

Example:

while x<=100 {

x = x + 1;

}

1

2

3

4

x ≤ 100
x > 100

x = x+ 1

x > 100

x ≤ 100

Flow graphs, formally

26 / 45

Formally, a program graph is a quadruple
〈V, ventry , vexit , E〉, where

� V is a finite set of vertices

� E ⊆ V × V is a finite set of edges

� ventry ∈ V is a distinct entry vertex (in-degree 0)

� vexit ∈ V is a distinct exit vertex (out-degree 0)

Every vertex lies on a path from ventry to vexit .

Imperative programs as flow graphs, formally

27 / 45

Instructions are divided into assignments and tests:

I ::= x = e

| assert test

A program is a triple 〈G, U, L〉, where

� the program graph G

� the universe U of variables, (x, y ∈ U)

� the labelling function L ∈ (E → I) associating an
instruction to each edge

Semantics of arithmetic expressions and tests

28 / 45

A store remembers the program state: ρ ∋ Store = U → Z

A : AExp → Store → ℘(Z)

A [[n]] ρ = {n}

A [[?]] ρ = Z

A [[x]] ρ = {ρ(x)}

A [[e op e′]] ρ = {n op n′ | n ∈ A [[e]] ρ, n′ ∈ A [[e′]] ρ} where op ∈ {+,−, ∗, . . . }

Note: by computing over Z we are ignoring overflow.

Semantics of arithmetic expressions and tests

28 / 45

A store remembers the program state: ρ ∋ Store = U → Z

A : AExp → Store → ℘(Z)

A [[n]] ρ = {n}

A [[?]] ρ = Z

A [[x]] ρ = {ρ(x)}

A [[e op e′]] ρ = {n op n′ | n ∈ A [[e]] ρ, n′ ∈ A [[e′]] ρ} where op ∈ {+,−, ∗, . . . }

Note: by computing over Z we are ignoring overflow.

B : BExp → Store → ℘(B) where B = {true, false}

B [[e comp e′]] ρ =
{true | n ∈ A [[e]] ρ ∧ n′ ∈ A [[e]] ρ ∧ n comp n′}
⋃

{false | n ∈ A [[e]] ρ ∧ n′ ∈ A [[e]] ρ ∧ ¬(n comp n′)}

B [[test and test′]] ρ = {b ∧ b′ | b ∈ B [[test]] ρ ∧ b′ ∈ B [[test′]] ρ}

B [[test or test′]] ρ = {b ∨ b′ | b ∈ B [[test]] ρ ∧ b′ ∈ B [[test′]] ρ}

IMP program execution as a transition system

29 / 45

States are pairs:

State = V × Store

There is one case per instruction:

〈v, ρ〉 → 〈v′, ρ[x 7→ n]〉 if

〈v, v′〉 ∈ E ∧

L(〈v, v′〉) = (x = e) ∧

n ∈ A [[e]] ρ

〈v, ρ〉 → 〈v′, ρ〉 if

〈v, v′〉 ∈ E ∧

L(〈v, v′〉) = (assert test) ∧

true ∈ B [[test]] ρ

Initial state: 〈ventry , ρ〉 (for initial store ρ)

IMP program execution as a transition system

29 / 45

States are pairs:

State = V × Store

There is one case per instruction:

〈v, ρ〉 → 〈v′, ρ[x 7→ n]〉 if

〈v, v′〉 ∈ E ∧

L(〈v, v′〉) = (x = e) ∧

n ∈ A [[e]] ρ

〈v, ρ〉 → 〈v′, ρ〉 if

〈v, v′〉 ∈ E ∧

L(〈v, v′〉) = (assert test) ∧

true ∈ B [[test]] ρ

Initial states: {〈ventry , ρ〉 | ρ ∈ Store} (for initial store ρ)

Bytecode semantics

Scope, mutation, and semantics

31 / 45

The CPS semantics tells us how to model binding and
lexical scope, namely with environments.

The flow-graph semantics tells us how to model
mutation, namely with a global store.

The bytecode semantics can express both — in addition
to heap-allocated objects. It is hence a bit more
complex.

A JVM-like instruction set

32 / 45

Inst ::= nop

| push c

| pop

| dup

| swap

| numop op

| load i

| store i

| ifeq pc

| goto pc

| new cl

| putfield f

| getfield f

| invokevirtual M

| return

where op ∈ {add, sub, mul, div, rem, and, or, . . . }

Numeric operations are collected in one bytecode.

pc ∋ Address = N

m ∋ Method = MethodId × (Address → Inst)

Field = FieldName

c ∋ Class = ClassName × Class⊥ × ℘(Field)× ℘(Method)

P ∋ Program = ℘(Class)

Virtual machine domains

33 / 45

loc ∋ Locations (some countable number of locations)

v ∋ Value = n | loc | null

s ∋ OperandStack = Value∗

l ∋ LocalVar = [Value⊥]

Frame = Method × Address × LocalVar ×OperandStack

sf ∋ CallStack = Frame∗

o ∋ Object = Class × (FieldName ⇀ Value)

h ∋ Heap = Locations → Object
⊥

State = Heap × CallStack

We now define a number of shorthands and helper functions:

className(c) = π1(c)

methods(c) = π4(c)

methodName(m) = π1(m)

class(o) = π1(o)

instAtP (m, pc) = π2(m)(pc)

fieldValue(o, f) = π2(o)(f)

newObject(h, c) = 〈h[loc 7→ 〈c, •〉], loc〉 where loc /∈ Dom(h)

lookup(M , c) =

{

m if m ∈ methods(c) ∧ methodName(m) = M

lookup(M , π2(c)) if π2(c) 6= ⊥ ∧ 〈M , π2(c)〉 ∈ Dom(lookup)

Byte code execution (1/3)

34 / 45

instAtP (m, pc) = nop

〈h, (m, pc, l, s) : : sf 〉 → 〈h, (m, pc + 1, l, s) : : sf 〉

instAtP (m, pc) = push c

〈h, (m, pc, l, s) : : sf 〉 → 〈h, (m, pc + 1, l, c : : s) : : sf 〉

instAtP (m, pc) = pop

〈h, (m, pc, l, v : : s) : : sf 〉 → 〈h, (m, pc + 1, l, s) : : sf 〉

instAtP (m, pc) = dup

〈h, (m, pc, l, v : : s) : : sf 〉 → 〈h, (m, pc + 1, l, v : : v : : s) : : sf 〉

instAtP (m, pc) = swap

〈h, (m, pc, l, v1 : : v2 : : s) : : sf 〉 → 〈h, (m, pc + 1, l, v2 : : v1 : : s) : : sf 〉

instAtP (m, pc) = numop op

〈h, (m, pc, l, n1 : : n2 : : s) : : sf 〉 → 〈h, (m, pc + 1, l, [[op]](n1, n2) : : s) : : sf 〉

Byte code execution (2/3)

35 / 45

instAtP (m, pc) = load i

〈h, (m, pc, l, s) : : sf 〉 → 〈h, (m, pc + 1, l, l(i) : : s) : : sf 〉

instAtP (m, pc) = store i

〈h, (m, pc, l, v : : s) : : sf 〉 → 〈h, (m, pc + 1, l[i 7→ v], s) : : sf 〉

instAtP (m, pc) = ifeq pc′ n = 0

〈h, (m, pc, l, n : : s) : : sf 〉 → 〈h, (m, pc′, l, s) : : sf 〉

instAtP (m, pc) = ifeq pc′ n 6= 0

〈h, (m, pc, l, n : : s) : : sf 〉 → 〈h, (m, pc + 1, l, s) : : sf 〉

instAtP (m, pc) = goto pc′

〈h, (m, pc, l, s) : : sf 〉 → 〈h, (m, pc′, l, s) : : sf 〉

instAtP (m, pc) = new cl

∃c ∈ classes(P) : className(c) = cl 〈h′, loc〉 = newObject(h, c)

〈h, (m, pc, l, s) : : sf 〉 → 〈h′, (m, pc + 1, l, loc : : s) : : sf 〉

Byte code execution (3/3)

36 / 45

instAtP (m, pc) = putfield f h(loc) = o o′ = 〈class(o), π2(o)[f 7→ v]〉

〈h, (m, pc, l, v : : loc : : s) : : sf 〉 → 〈h[loc 7→ o′], (m, pc + 1, l, s) : : sf 〉

instAtP (m, pc) = getfield f h(loc) = o

〈h, (m, pc, l, loc : : s) : : sf 〉 → 〈h, (m, pc + 1, l, fieldValue(o, f) : : s) : : sf 〉

instAtP (m, pc) = invokevirtual M

h(loc) = o m′ = lookup(M , class(o))

〈h, (m, pc, l, loc : : −→v : : s) : : sf 〉 → 〈h, (m′, 1, loc · −→v , ǫ) : : (m, pc, l, s) : : sf 〉

instAtP (m, pc) = return

〈h, (m, pc, l, v : : s) : : (m′, pc′, l′, s′) : : sf 〉 → 〈h, (m′, pc′ + 1, l′, v : : s′) : : sf 〉

Initial state:

〈•, (lookup(main, c), 1, ǫ, ǫ) : : ǫ〉

for program P and class c.

Collecting semantics, revisited

Collecting semantics, revisited (1/3)

38 / 45

We formulate the collecting semantics in terms of sets
because they describe properties, e.g.,

� the set {1, 3, 5, . . . } describes the property odd

� the set {2, 4, 6, . . . } describes the property even

� the singleton set {42} describes a constant property

� the set {4, 5, 6, 7, 8, 9, 10} describes an interval
property [4; 10]

� . . .

In this sense, the collecting semantics is the strongest
property expressed as a (generally uncomputable) fixed
point.

Collecting semantics, revisited (2/3)

39 / 45

The collecting semantics forms a logic.

In our case the reachable states collecting semantics
over 〈℘(S);⊆, ∅, S,∪,∩〉 can be understood as follows.

� ⊆ is implication

� ∅ is false

� S is true

� ∪ is disjunction

� ∩ is conjunction

Collecting semantics, revisited (3/3)

40 / 45

A post-fixed point Σ′ of T (Σ) = I ∪ {s′ | ∃s ∈ Σ : s → s′}
satisfies:

� I ⊆ Σ′ ∼ “The initial state satisfies Σ′”

� {s′ | ∃s ∈ Σ′ : s → s′} ⊆ Σ′

∼ “Σ′ is preserved across transitions”

Thus Σ′ is an invariant.

A fixed point computation describes the iterative search
for an invariant in this logic.

Note: any post-fixed point of T is a valid invariant (but
some are more interesting that others. . .)

Stronger properties, stronger collecting semantics

41 / 45

There is a hierarchy of increasingly powerful collecting
semantics:

℘(S∗)

α∗

��

Partial traces

℘(S × S)

γ∗

OO

α•

��

Reflexive, transitive closure

℘(S)

γ•

OO

Reachable states

Stronger properties, stronger collecting semantics

41 / 45

There is a hierarchy of increasingly powerful collecting
semantics:

℘(S∗)

α∗

��

λX. {s | s ∈ S} ∪ {σss′ | σs ∈ X ∧ s → s′}

℘(S × S)

γ∗

OO

α•

��

λY. {〈s, s〉 | s ∈ S} ∪ {〈s, s′′〉 | ∃s′ : 〈s, s′〉 ∈ Y ∧ s′ → s′′}

℘(S)

γ•

OO

λZ. I ∪ {s′ | ∃s ∈ Z : s → s′}

Each can be expressed as a least fixed point

Example: collecting semantics for the CE

42 / 45

Reachable states: T (Σ) = I ∪ {s′ | ∃s ∈ Σ : s → s′}

Recall transitions:

〈(t0 t1 c), r〉 −→ 〈e, r ′[x 7→ w][k 7→ wc]〉

if [(λ (x k) e), r ′] = µt(t0, r)

w = µt(t1, r)

wc = µc(c, r)

〈(c t), r〉 −→ 〈e, r ′[v 7→ w]〉
if [(λ (v) e), r ′] = µc(c, r)

w = µt(t, r)

Example: collecting semantics for the CE

42 / 45

Reachable states: T (Σ) = I ∪ {s′ | ∃s ∈ Σ : s → s′}

Recall transitions:

〈(t0 t1 c), r〉 −→ 〈e, r ′[x 7→ w][k 7→ wc]〉

if [(λ (x k) e), r ′] = µt(t0, r)

w = µt(t1, r)

wc = µc(c, r)

〈(c t), r〉 −→ 〈e, r ′[v 7→ w]〉
if [(λ (v) e), r ′] = µc(c, r)

w = µt(t, r)

Direct definition (for a given program (λ (k) e)):

T (S) = I(λ (k) e)

∪{〈e′, r ′[x 7→ w][k′ 7→ wc]〉 | ∃〈(t0 t1 c), r〉 ∈ S :

[(λ (x k
′
) e

′
), r ′] ∈ µ℘

t
(t0, {r})

∧ w ∈ µ℘
t
(t1, {r})

∧ wc ∈ µ℘
c
(c, {r})}

∪ {〈e′, r ′[v 7→ w]〉 | ∃〈(c t), r〉 ∈ S :

[(λ (v) e′
), r ′] ∈ µ℘

c
(c, {r})

∧ w ∈ µ℘
t
(t, {r})}

Example cont.: properties of helper functions

43 / 45

Recall helper functions:

µt : TExp × Env ⇀ Val

µt(x, r) = r(x)

µt(v, r) = r(v)

µt((λ (x k) e), r) = [(λ (x k) e), r]

µc : CExp × Env ⇀ Val

µc(k, r) = r(k)

µc((λ (v) e), r) = [(λ (v) e), r]

Collecting helper functions:

µ℘
t
: TExp × ℘(Env) → ℘(Val)

µ℘
t
(x,E) = {r(x) | r ∈ E}

µ℘
t
(v,E) = {r(v) | r ∈ E}

µ℘
t
((λ (x k) e),E) = {[(λ (x k) e), r] | r ∈ E}

µ℘
c
: CExp × ℘(Env) → ℘(Val)

µ℘
c
(k,E) = {r(k) | r ∈ E}

µ℘
c
((λ (v) e),E) = {[(λ (v) e), r] | r ∈ E}

Summary

Summary

45 / 45

We’ve seen four different abstract machine semantics:

� Plotkin’s three counter machine

� the CE machine for CPS programs

� a flow-chart semantics for IMP programs

� a JVM-like semantics for bytecodes

Finally we took another look at collecting semantics.

	Last time
	Semantics
	Semantics according to Merriam-Webster
	Semantics in Computer Science
	Many forms of semantics
	Semantics in this course

	Warm-up: The three counter machine
	Plotkin's three counter machine (1/2)
	Plotkin's three counter machine (2/2)
	Exercise

	CPS semantics
	Representing functional values
	From -calculus to ANF
	Encoding control stacks as continuations
	Example: continuation passing style
	CPS syntax
	Expressiveness
	CPS transforming ANF programs
	The CE abstract machine
	Exercise
	To CPS transform or not to CPS transform

	IMP semantics
	IMP programs
	Imperative programs as flow graphs
	Flow graphs, formally
	Imperative programs as flow graphs, formally
	Semantics of arithmetic expressions and tests
	IMP program execution as a transition system

	Bytecode semantics
	Scope, mutation, and semantics
	A JVM-like instruction set
	Virtual machine domains
	Byte code execution (1/3)
	Byte code execution (2/3)
	Byte code execution (3/3)

	Collecting semantics, revisited
	Collecting semantics, revisited (1/3)
	Collecting semantics, revisited (2/3)
	Collecting semantics, revisited (3/3)
	Stronger properties, stronger collecting semantics
	Example: collecting semantics for the CE
	Example cont.: properties of helper functions

	Summary
	Summary

