Abstract Interpretation

Jan Midtgaard

Week 1

http://ww.cs. au. dk/ ~ m / Absl nt/

Aarhus University, Q4 - 2012

http://www.cs.au.dk/~jmi/AbsInt/

What is this course about?

Crudely simplified the history of program analysis (or
static analysis) can be split in two:

0 an American school of program analysis

0 a French school of program analysis

| highly recommend the Static Analysis course, which
gives a nice introduction mainly to the American

approach.

This course iIs concerned with the alternative, French
approach.

2/55

Which Is the right approach?

None of them is right or wrong — it iIs simply an
alternative view — an eye opener to a new world.

It can be used to explain existing approaches and
extend or strengthen them

In 7 weeks, you will be in a position to make an informed
opinion

It IS not just an academic theory: it has been used to
check/verify flight control software for both Airbus and
Mars missions. By the end of this course, we will read
papers about those.

t will get bloody — there will be mathematics — there
will be semantics /55

You take the red pill. . .

4 /55

You take the red pill. . .

... you stay in Wonderland and | show you how deep the
rabbit-hole goes. ..

4 /55

What Is abstract interpretation?

0 It 1s a theory of semantics-based program analysis

0 It was initially conceived in the late 1970’s by Patrick
and Radhia Cousot

0 It has been refined over the last 40 years

— to new applications
— to new kinds of semantics

— to new programming paradigms
— by new abstract domains

5/55

Learning outcomes and competences

The participants must at the end of the course be able
to:

0 describe and explain basic analyses in terms of
classical abstract interpretation.

0 apply and reason about Galois connections.

0 Implement abstract interpreters on the basis of the
derived program analyses.

6 /55

Pedagogical choices / Contract

Lectures - sometimes including a few exercises in class
Reading - read research papers and slides

Assignments - both mathematics and programming.
They are mandatory

Project - a chance for you to apply your newly acquired
skills to a topic of your choice (both mathematics
and programming, preferably)

Exam - explain to us how you applied your newly
acquired skills, and
we’ll have an informed discussion of the outcome

7155

Your background

I’m assuming you all have followed Programming
Languages (dProgSprog) and Compilation (dOvs).

How many of you have followed
0 the Static Analysis course?
0 Olivier’'s IFP / TFP courses?

0 a semantics course?
— by Claus Brabrand or Jakob Andersen?
— by Klaus Ostermann?

0 Glynn Winskel’s set theory course?

8 /55

Outline

0 What and how of the course
0 Transition systems

0 Math: Posets, CPOs, complete lattices, Galois
connections, fixed points

0 Abstract interpretation basics

0 OCaml intro

9/55

Transition systems

Transition systems - quick recap

You already know transition systems from dADS 1.

Definition. A transition system is a triple (quadruple)
(S, I, F', —) where

0 S IS a set of states
0 I C S Is a set of initial states

O F C S i1s an optional set of final states
Vse F,sfe S :sAs)

0 — C § x S Is atransition relation relating a state to
Its (possible) successors

11/55

Example 1: Euclid’s algorithm

Given two numbers z,y € N we can describe Euclid’s
GCD algorithm as a transition system:

S=NxN

I = {(,)}

F={{n,n)|neN}

—:(n, m) = (n—m, m) if n>m
(n, m) — (n, m—mn) if n<m

where we have written the transition relation using infix

notation.
We can write it even more formally as:

—={({n, m),{(n—m, m)) | n > m}
U{({n, m),(n, m —n)) | n <m}

12 /55

Example 2: Modeling a program

Modeling the program

X = 0;
while (x < 100) {
X 1= X + 1;
} ..
as a transition system:
S =7
I = {0}

— ={(z,2") | <100 A ' =2+ 1}

How to get from a program to a transition system is the
topic of next week’s lecture.

For now we assume that we can model the semantics
(the meaning) of a program as a transition system.

13/55

Mathematical foundations

Partially ordered sets

Definition. A partially ordered set (poset) (S;C) is a set
S equipped with a binary relation = C S x S with the

following properties:
0 Reflexive: Va € S : a C a
0 Antisymmetric: Va,be S:aCb AN bCa = a=0D

0 Transitive: Va,b,ce S:aCb N bCc — alc

Example 1: (N; <) is a poset

Example 2: (p(.5); C) is a poset
Note: p(S) is sometimes written 2°

15/55

Upper and lower bounds

Let (P; C) be a partially ordered set.

Definition. « € P Is an upper bound of S C P Iff
Vse §:s5sC u

Definition. [€ P is an lower bound of § C P Iff
Vse §:[C s

Definition. u € P Is a least upper bound (lub) of S C P
Iff It Is an upper bound of S and it is less than all other
upper bounds: Vu' € P: (Vs € S:sCu') = uLC

Definition. [€ P Is a greatest lower bound (glb) of

S C P iffitis an lower bound of S and it is greater than

all other lower bounds:

Vile P:(VseS:I'Cs) = I'C e

Complete Partial Orders (CPOs)

Definition. A complete partial order is a poset such that
all increasing chains ¢;,7 € N (Vi € N : ¢; C ¢;41) have a
least upper bound:

C;

1eN
Non-example: (N; <) is not a CPO. Why?
Example: (©(5); C) is a CPO.

17 /55

Complete lattices

Definition. A complete lattice Is a poset
(C;C, L, T,L, M) such that

0 the least upper bound LS and

0 the greatest lower bound 1S exists for every subset
S of C.

0 1 = Md denotes the infimum of C' and

0 T = UC denotes the supremum of C.

Example 1: (p(S); C,0,S,U,N) is a complete lattice.

Example 2: The integers (extended with —oo and +oc)
IS a complete lattice
(7. U {—00,+0}; <, —00, 00, max, min).

18 /55

Example: A complete lattice of functions

Theorem. The set of total functions D — C', whose
codomain is a complete lattice (C;C, L, T,U, M), is itself
a complete lattice (D — C;C, L, T, |_| |_|> under the
pointwise ordering f C f' <= Va:.f() C f'(x), and with

0l =Xz 1
0T =X\e. T
0 fUg= Az f(z)Ug(x)
0 fMg =Xz f(z) Ng(x)

Here \x....Is a mathematical function with argument x.

19/55

A quick comparison

Complete Lattice

|

Complete Partial Order

|

Partially Ordered Set

20 /55

Galols connections

Galois connections

Definition. A Galois connection is a pair of functions «,
~ between two partially ordered sets:

/]]
concretizat

straction

(¢; E) (4; <)

22 /55

Galois connections

Definition. A Galois connection is a pair of functions «,
~ between two partially ordered sets:

(5 E) (4; <)
such that: Va € A,ce C:a(c) <a <= cC vy(a)

22 /55

A familiar example

You already know the pattern of moving from one side of

an inequation to another from high school:
Ve,y,z€ 4 . x+z2<y < x <y—=z
which we can write with « and ~ as:

Ve,y,z €Z @ a(x) <y <= z <7(y)
where a(n) =

23 /55

An equivalent definition

Definition. A Galois connection Is a pair of functions «
and ~ satisfying

(a) o and ~ are monotone
(forallc, e C:cCd = alc) < a(d)and
foralla,a’ € A:a<ad = ~v(a) C y(a')),

(b) o o v is reductive (foralla € A: a - vy(a) < a),

() v o ais extensive (forallc € C': ¢ C v o a(c)).
: : i
Galois connections are typeset as (C; C) — (A; <),

24 | 55

Galois connection properties (1/3)

Theorem. For a Galois connection between two
complete lattices (C;C, L., T, L, M) and

(A; <, L,, Ty, V,A), acis @ complete join-morphism
(CIM):

forall S. C C : a(LS,) = Va(S.) = V{a(c) | c € S.}
and v Is a complete meet morphism (CMM):

forall S, C A:~v(AS,) =T (S,) =T{~v(a) | a € S,}

25/55

Galois connection properties (2/3)

Theorem The composition of twg) Galois connections
(ChE) ——= _> (B;C) and (B; C) &= (A; <) is itself a

a1 2

Galois connection:

(C;C) &= (A; <)

lg0(¢q

We can typeset this theorem as an inference rule:

(C;E) =S (BiC) (BiC) &= (4;<)
(C;E) === (4; <)

Olg00¢q

Hence Galois connections stack up like Lego bricks!

26 /55

Galois connection properties (3/3)

Galois connections in which « Is surjective / onto (or
equivalently ~ Is injective) are typeset as:

(C;C) &= (A; <)

0%

and sometimes called Galois surjections (or insertions)

Galois connections in which « IS injective / one-to-one
(or equivalently ~ Is surjective) are typeset as:

(C;C) = (A; <)

8}

and sometimes called Galois injections

When both « and ~ are surjective, the two domains are
iIsomorphic. 21155

Example: The Parity abstract domain

Consider the abstraction into the Parity domain:

Par: T

. 7N\
(9(Np);) ?» (Par; E) Odd\ even

L

The above Hasse diagram defines the Parity ordering.

The abstraction and concretization functions are:

() if P=_1 (1 if N =10
n € Ng | nis odd If P = odd odd If Yne N :nisodd
y(p) = § € Ronisodd} a(N) = . .
{n €Ny | niseven} if P = even even if Vn € N :niseven
| No f P=T LT otherwise

28 /55

Example: an isomorphism

We can represent a set of pairs as a function from a first
component to second components:

(9(A x B): C) == (A — o(B); <)

84

where «(R) = Xa.{b|(a,b) € R}
V(F) = {(a,b) | b€ F(a)}

29 /55

Fixed points

Fixed points, briefly

Definition. a fixed point of a function f, is a point x
such that f(z) =«

Assume f : P — P operates over a poset (P;C)

Definition. a pre-fixed point is a point x such that

z C f(x)

Definition. a post-fixed point is a point x such that

flz) Ea

Definition. a least fixed point (Ifp) Is a fixed point [such
that for all other fixed points I' : (f(I') =1') = [Tl

Definition. a greatest fixed point (gfp) Is a fixed point [
such that for all other fixed points
UV (fH=1) = I'C1

31/55

Tarski’s fixed point theorem

Theorem. If L is a complete latticeand f: L — L is a

monotone function, f’s fixed points themselves form a
complete lattice.

Hence Tarski tells us that there exists a least fixed point.

32/55

Abstract interpretation basics

Abstract interpretation basics

Canonical abstract interpretation approximates the
collecting semantics of a transition system.

A standard example of a collecting semantics is the
reachable states from a given set of initial states /.
Given a transition function 7' defined as:

TX)=IU{c|3doc'eX:0 — 0o}

we can express the reachable states of 7" as the least
fixed point lfp T' of T'.
For a fixed point T'(3) = X of T

ICY ANVoeX:od 50 = oceX

which expresses the transitive closure of the states
reachable from |I.

34 /55

Abstract interpretation basics

Canonical abstract interpretation approximates the
collecting semantics of a transition system.

A standard example of a collecting semantics is the
reachable states from a given set of initial states /.
Given a transition function 7' defined as:

TX)=IU{c|3doc'eX:0 — 0o}

we can express the reachable states of 7" as the least
fixed point lfp T' of T'.

We can compute 1fp T by Kleene iteration?:

L, T(L), T*(L), T3 (L), ...

lin general we can only compute lfp f if f is contiguous f(LUS) = Lf(S)

34 /55

The strength of the collecting semantics

0 The collecting semantics is ideal, i.e., it Is the most
precise analysis.

0 Unfortunately it is in general uncomputable: it is as
hard as interpreting (i.e., running) a program

0 We therefore approximate the collecting semantics
by computing a fixed point over an alternative and
perhaps simpler domain: an abstract interpretation

35/55

Abstraction and analysis using Galois connections

Abstractions are represented as Galois connections
which connect complete lattices through « and ~.

We can derive an analysis systematically by composing
the transition function with these functions: oo T o ~
and gradually refine the collecting semantics into a
computable analysis function by mere calculation.

Hence instead of inventing a static analysis, we arrive at
one by a structured abstraction of the set of states (5.

36 /55

Galois connection-based analysis

By the fixed point transfer theorem we can compute a
sound approximation of the collecting semantics:

Theorem. Let (C;E) % (A; <) be a Galois

connection between complete lattices. If 7" and T* are
monotone and av o T o v < T* then a(lfpT) < lifpT* /=

Variations

An alternative approach

Rather than simplifying the abstract domains into finite
ones, widening and narrowing permits infinite ones.

A first widening iteration overshoots the least fixed point
but still ensures termination.

A second narrowing iteration improves the results of the
widening iteration.

39/55

Widening

We compute instead the limit of the sequence:
Xo=1
X1 =X, VT(X;)

where Vv denotes the widening operator:. an operator
with the following properties:

oForalz,y:2C (xVy) AN yE (xzVy)

0 For any increasingchain Yo C Y; C Y5, C ... the
alternative chain defined as Y, = Y, and
Y/, =Y/'vY,, stabilizes after a finite amount of
steps.

40/ 55

Narrowing

We can compute the limit of the sequence:
Xo = limY;
Xz'—i—l — Xz A T(XZ)

where A denotes the narrowing operator:. an operator
with the following properties:

oForalz,y: (zAy) Cx
oForalz,y,z: (e Ey A xCz2) = zC (yAz2)

0 For any chain Y; the alternative chain defined as
Yo =Yyand Y, =Y AY,, stabilizes after a finite
amount of steps.

41 /55

Some words on OCaml|

Why OCaml?

In this course we will use the OCaml programming
language

43 /55

Why OCaml?

In this course we will use the OCaml programming
language

Why?

43 /55

Why OCaml?

In this course we will use the OCaml programming
language

Why?

— It's a good opportunity to learn a new language and
add it to your CV

0 The core of Microsoft's F# Is based on OCaml

— It's a good fit for the job

0 Microsoft's static device driver verifier Is written
In OCaml

0 ASTREE is written in OCaml

43 /55

OCaml is an ML dialect

Hence it
0 IS expression-based, hence everything has a value
0 IS strongly typed
0 IS statically scoped

0 has algebraic datatypes, lists, tuples, and pattern
matching

0 has higher-order functions
...

In addition it includes some object-oriented extensions
(hence the O in OCaml). .

Compilers and IDEs

There Is both

0 a bytecode compiler (ocam c¢) and

0 an optimizing native code compiler (ocam opt)
freely available for many platforms.

0 For emacs | recommend tuareg-mode

0 For Eclipse people recommend: OCalDE

http://ww. al go- prog. i nfo/ocai de/
http://ww.cs. | hu. edu/ ~scott/pl/canl /ocail de. shtni

0 For VIM: OMLet

0 For _: please let me know of your findings 45155

http://www.algo-prog.info/ocaide/
http://www.cs.jhu.edu/~scott/pl/caml/ocaide.shtml

SML/Scheme vs OCaml (1/2)

You all know SML or Scheme from ProgSprog, so we
will focus on the differences.

Instead of fun foo x = ...

or (define (foo x) ...)

wewrite |let foo x = ...

Catch O: function application binds stronger than
addition: Hence f x+1 means (f x) +1

Catch 1: recursive functions must be marked 'r ec’:

let rec fac n = match n wth
| 0 ->1
| n->n =+ fac (n - 1)

46 / 55

SML/Scheme vs OCaml (2/2)

Like In SML and Scheme | et Is also used for local
declarations ([| isnil, : : Is cons):
| et concat xs ys =

let rec walk xs = match xs wth
| [] ->ys
| x::xs’ -> x::(walk xs’)

| N

wal k xs
however without an end to end the block.

Note also that OCamlusesnatch ... wth instead
of SMLs case ... of.

Exercise: write In OCaml a function sumnl 1 st of type
sumlist : int list ->1Int

47155

Catches and Gotchas

Catch 2: Semicolon ’; ' separates list elements (rather
than comma ’, ’). For example, compare the types of
[1,2,3] and [1; 2; 3]

Tuples (and pairs) can be written without parens!

Catch 3: datatype constructors must be capitalized

type 'a tree = Leaf of ’'a
| Node of "a tree = "a tree

anything else Is a parse error!

Catch 4. The evaluation order Is unspecified —
however the compiler uses right-to-left in practice(!)

48 / 55

OCaml modules

OCaml has a powerful module system with
0 signatures (think interface) and
0 functors (think nodul e - > nodul e function)

Example:

nmodul e I ntset =
Set . Make (struct
type t = ... (» el enent type =)
| et conpare = ...
(» el ement conparison x)

end)

49 /55

OCaml modules

OCaml has a powerful module system with
0 signatures (think interface) and
0 functors (think nodul e - > nodul e function)

Example:

nodul e | ntset =
Set . Make (struct

type t = int
| et conpare nl n2 =
If n1l == n2 then 0 el se

I1f n1 > n2 then 1 else -1
end)

50 /55

OCaml modules

OCaml has a powerful module system with
0 signatures (think interface) and
0 functors (think nodul e - > nodul e function)

Example:

nodul e | ntset =
Set . Make (struct

type t = int
| et conpare nl n2 =
If n1l == n2 then 0 el se

I1f n1 > n2 then 1 else -1
end)

Builtin maps are similar:
nodul e Mymap = Map. Make(struct ... end)

50 /55

OCaml modules and separate compilation

We can separate the implementation and the interface
of a module into two separate files x. m and x. n | .

This Is equivalent to

nmodule X sig (* contents of file x.m1 *) end
= struct (* contents of file x.m *) end

Catch 5: Files are lower-case, but their modules are
capitalized. Hence, the module in file set . nl Is
referred to as Set .

If we write

module S = struct let f = ... end
in a file f oo. M then we (need to) referto f as
Foo. S. f

51/55

Relevant links

0 SML/OCaml comparisons by Rossberg and Chlipala
http://ww. mpi - sws. or g/ ~rossberg/sm -vs-ocam . ht m
http://adam chli pal a. net/ n conp/

0 OCaml reference manual
http://cam .inria.fr/pub/docs/ manual - ocant /

0 Standard library documentation
http://cam .inria.fr/pub/docs/ manual - ocam /1i bref/

0 Jason Hickey’s online book
http://files.metaprl.org/doc/ocanl - book. pdf

0 Two mailing lists (beginner + main list)

...

52 /55

http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html
http://adam.chlipala.net/mlcomp/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/libref/
http://files.metaprl.org/doc/ocaml-book.pdf

Let's code something!

Let’s implement
0 a transition system interface,
0 an instantiation thereof, and

0 the transition function from the reachable states
collecting semantics

53 /55

Summary

Summary

We have covered
0 The what and the how of the course

— Remember the measure of success: an
application of Al

— So start thinking of a transition system for your
project (Turing machine, Traveling Salesman,...)

0 The basics of abstract interpretation (transition
systems, reachable states collecting semantics,
Galois connections, .. .)

0 A crash course in OCaml

55/55

	What is this course about?
	Which is the right approach?
	You take the redred pill…
	What is abstract interpretation?
	Learning outcomes and competences
	Pedagogical choices / Contract
	Your background
	Outline
	Transition systems
	Transition systems - quick recap
	Example 1: Euclid's algorithm
	Example 2: Modeling a program

	Mathematical foundations
	Partially ordered sets
	Upper and lower bounds
	Complete Partial Orders (CPOs)
	Complete lattices
	Example: A complete lattice of functions
	A quick comparison

	Galois connections
	Galois connections
	A familiar example
	An equivalent definition
	Galois connection properties (1/3)
	Galois connection properties (2/3)
	Galois connection properties (3/3)
	Example: The Parity abstract domain
	Example: an isomorphism

	Fixed points
	Fixed points, briefly
	Tarski's fixed point theorem

	Abstract interpretation basics
	Abstract interpretation basics
	The strength of the collecting semantics
	Abstraction and analysis using Galois connections
	Galois connection-based analysis

	Variations
	An alternative approach
	Widening
	Narrowing

	Some words on OCaml
	Why OCaml?
	OCaml is an ML dialect
	Compilers and IDEs
	SML/Scheme vs OCaml (1/2)
	SML/Scheme vs OCaml (2/2)
	Catches and Gotchas
	OCaml modules
	OCaml modules
	OCaml modules and separate compilation
	Relevant links
	Let's code something!

	Summary
	Summary

