
Abstract Interpretation

Jan Midtgaard

Week 1

http://www.cs.au.dk/~jmi/AbsInt/

Aarhus University, Q4 - 2012

http://www.cs.au.dk/~jmi/AbsInt/

What is this course about?

2 / 55

Crudely simplified the history of program analysis (or
static analysis) can be split in two:

� an American school of program analysis

� a French school of program analysis

I highly recommend the Static Analysis course, which
gives a nice introduction mainly to the American
approach.

This course is concerned with the alternative, French
approach.

Which is the right approach?

3 / 55

None of them is right or wrong — it is simply an
alternative view — an eye opener to a new world.

It can be used to explain existing approaches and
extend or strengthen them

In 7 weeks, you will be in a position to make an informed
opinion

It is not just an academic theory: it has been used to
check/verify flight control software for both Airbus and
Mars missions. By the end of this course, we will read
papers about those.

It will get bloody — there will be mathematics — there
will be semantics

You take the red pill. . .

4 / 55

You take the red pill. . .

4 / 55

. . . you stay in Wonderland and I show you how deep the
rabbit-hole goes. . .

What is abstract interpretation?

5 / 55

� It is a theory of semantics-based program analysis

� It was initially conceived in the late 1970’s by Patrick
and Radhia Cousot

� It has been refined over the last 40 years

– to new applications

– to new kinds of semantics

– to new programming paradigms

– by new abstract domains

– . . .

Learning outcomes and competences

6 / 55

The participants must at the end of the course be able
to:

� describe and explain basic analyses in terms of
classical abstract interpretation.

� apply and reason about Galois connections.

� implement abstract interpreters on the basis of the
derived program analyses.

Pedagogical choices / Contract

7 / 55

Lectures - sometimes including a few exercises in class

Reading - read research papers and slides

Assignments - both mathematics and programming.
They are mandatory

Project - a chance for you to apply your newly acquired
skills to a topic of your choice (both mathematics
and programming, preferably)

Exam - explain to us how you applied your newly
acquired skills, and
we’ll have an informed discussion of the outcome

Your background

8 / 55

I’m assuming you all have followed Programming
Languages (dProgSprog) and Compilation (dOvs).

How many of you have followed

� the Static Analysis course?

� Olivier’s IFP / TFP courses?

� a semantics course?

– by Claus Brabrand or Jakob Andersen?

– by Klaus Ostermann?

� Glynn Winskel’s set theory course?

Outline

9 / 55

� What and how of the course

� Transition systems

� Math: Posets, CPOs, complete lattices, Galois
connections, fixed points

� Abstract interpretation basics

� OCaml intro

Transition systems

Transition systems - quick recap

11 / 55

You already know transition systems from dADS 1.

Definition. A transition system is a triple (quadruple)
〈S , I , F , →〉 where

� S is a set of states

� I ⊆ S is a set of initial states

� F ⊆ S is an optional set of final states
(∀s ∈ F , s′ ∈ S : s 6→ s′)

� → ⊆ S × S is a transition relation relating a state to
its (possible) successors

Example 1: Euclid’s algorithm

12 / 55

Given two numbers x, y ∈ N we can describe Euclid’s
GCD algorithm as a transition system:

S = N× N

I = {〈x, y〉}

F = {〈n, n〉 | n ∈ N}

→ : 〈n, m〉 → 〈n−m, m〉 if n > m

〈n, m〉 → 〈n, m− n〉 if n < m

where we have written the transition relation using infix
notation.
We can write it even more formally as:

→ = {(〈n, m〉, 〈n−m, m〉) | n > m}

∪ {(〈n, m〉, 〈n, m− n〉) | n < m}

Example 2: Modeling a program

13 / 55

Modeling the program
x := 0;
while (x < 100) {

x := x + 1;
}

as a transition system:
S = Z

I = {0}

→ = {(x, x′) | x < 100 ∧ x′ = x+ 1}

How to get from a program to a transition system is the
topic of next week’s lecture.

For now we assume that we can model the semantics
(the meaning) of a program as a transition system.

Mathematical foundations

Partially ordered sets

15 / 55

Definition. A partially ordered set (poset) 〈S;⊑〉 is a set
S equipped with a binary relation ⊑ ⊆ S × S with the
following properties:

� Reflexive: ∀a ∈ S : a ⊑ a

� Antisymmetric: ∀a, b ∈ S : a ⊑ b ∧ b ⊑ a =⇒ a = b

� Transitive: ∀a, b, c ∈ S : a ⊑ b ∧ b ⊑ c =⇒ a ⊑ c

Example 1: 〈N;≤〉 is a poset

Example 2: 〈℘(S);⊆〉 is a poset

Note: ℘(S) is sometimes written 2S

Upper and lower bounds

16 / 55

Let 〈P ;⊑〉 be a partially ordered set.

Definition. u ∈ P is an upper bound of S ⊆ P iff
∀s ∈ S : s ⊑ u

Definition. l ∈ P is an lower bound of S ⊆ P iff
∀s ∈ S : l ⊑ s

Definition. u ∈ P is a least upper bound (lub) of S ⊆ P

iff it is an upper bound of S and it is less than all other
upper bounds: ∀u′ ∈ P : (∀s ∈ S : s ⊑ u′) =⇒ u ⊑ u′

Definition. l ∈ P is a greatest lower bound (glb) of
S ⊆ P iff it is an lower bound of S and it is greater than
all other lower bounds:
∀l′ ∈ P : (∀s ∈ S : l′ ⊑ s) =⇒ l′ ⊑ l

Complete Partial Orders (CPOs)

17 / 55

Definition. A complete partial order is a poset such that
all increasing chains ci, i ∈ N (∀i ∈ N : ci ⊑ ci+1) have a
least upper bound:

⊔

i∈N

ci

Non-example: 〈N;≤〉 is not a CPO. Why?

Example: 〈℘(S);⊆〉 is a CPO.

Complete lattices

18 / 55

Definition. A complete lattice is a poset
〈C;⊑,⊥,⊤,⊔,⊓〉 such that

� the least upper bound ⊔S and

� the greatest lower bound ⊓S exists for every subset
S of C.

� ⊥ = ⊓C denotes the infimum of C and

� ⊤ = ⊔C denotes the supremum of C.

Example 1: 〈℘(S);⊆, ∅, S,∪,∩〉 is a complete lattice.

Example 2: The integers (extended with −∞ and +∞)
is a complete lattice
〈Z ∪ {−∞,+∞};≤,−∞,+∞,max,min〉.

Example: A complete lattice of functions

19 / 55

Theorem. The set of total functions D → C, whose
codomain is a complete lattice 〈C;⊑,⊥,⊤,⊔,⊓〉, is itself
a complete lattice 〈D → C; ⊑̇, ⊥̇, ⊤̇, ⊔̇, ⊓̇〉 under the
pointwise ordering f ⊑̇ f ′ ⇐⇒ ∀x.f(x) ⊑ f ′(x), and with

� ⊥̇ = λx.⊥

� ⊤̇ = λx.⊤

� f ⊔̇ g = λx. f(x) ⊔ g(x)

� f ⊓̇ g = λx. f(x) ⊓ g(x)

Here λx. . . . is a mathematical function with argument x.

A quick comparison

20 / 55

Complete Lattice

Complete Partial Order

Partially Ordered Set

Galois connections

Galois connections

22 / 55

Definition. A Galois connection is a pair of functions α,
γ between two partially ordered sets:

〈C;⊑〉 〈A;≤〉

α

abstraction

γ

concretization

Galois connections

22 / 55

Definition. A Galois connection is a pair of functions α,
γ between two partially ordered sets:

γ(a)

c

a

α(c)

〈C;⊑〉 〈A;≤〉

such that: ∀a ∈ A, c ∈ C : α(c) ≤ a ⇐⇒ c ⊑ γ(a)

A familiar example

23 / 55

You already know the pattern of moving from one side of
an inequation to another from high school:

∀x, y, z ∈ Z : x+z ≤ y ⇐⇒ x ≤ y−z

which we can write with α and γ as:

∀x, y, z ∈ Z : α(x) ≤ y ⇐⇒ x ≤ γ(y)

where α(n) = n+ z

γ(n) = n− z

An equivalent definition

24 / 55

Definition. A Galois connection is a pair of functions α

and γ satisfying

(a) α and γ are monotone
(for all c, c′ ∈ C : c ⊑ c′ =⇒ α(c) ≤ α(c′) and
for all a, a′ ∈ A : a ≤ a′ =⇒ γ(a) ⊑ γ(a′)),

(b) α ◦ γ is reductive (for all a ∈ A : α ◦ γ(a) ≤ a),

(c) γ ◦ α is extensive (for all c ∈ C : c ⊑ γ ◦ α(c)).

Galois connections are typeset as 〈C;⊑〉 −−→←−−α

γ

〈A;≤〉.

Galois connection properties (1/3)

25 / 55

Theorem. For a Galois connection between two
complete lattices 〈C;⊑,⊥c,⊤c,⊔,⊓〉 and
〈A;≤,⊥a,⊤a,∨,∧〉, α is a complete join-morphism
(CJM):

for all Sc ⊆ C : α(⊔Sc) = ∨α(Sc) = ∨{α(c) | c ∈ Sc}

and γ is a complete meet morphism (CMM):

for all Sa ⊆ A : γ(∧Sa) = ⊓γ(Sa) = ⊓{γ(a) | a ∈ Sa}

Galois connection properties (2/3)

26 / 55

Theorem. The composition of two Galois connections
〈C;⊑〉 −−−→←−−−

α1

γ1
〈B;⊆〉 and 〈B;⊆〉 −−−→←−−−

α2

γ2
〈A;≤〉 is itself a

Galois connection:

〈C;⊑〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2
〈A;≤〉

We can typeset this theorem as an inference rule:

〈C;⊑〉 −−−→←−−−
α1

γ1
〈B;⊆〉 〈B;⊆〉 −−−→←−−−

α2

γ2
〈A;≤〉

〈C;⊑〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2
〈A;≤〉

Hence Galois connections stack up like Lego bricks!

Galois connection properties (3/3)

27 / 55

Galois connections in which α is surjective / onto (or
equivalently γ is injective) are typeset as:

〈C;⊑〉 −−→−→←−−−
α

γ

〈A;≤〉

and sometimes called Galois surjections (or insertions)

Galois connections in which α is injective / one-to-one
(or equivalently γ is surjective) are typeset as:

〈C;⊑〉 −−−→←←−−−α

γ

〈A;≤〉

and sometimes called Galois injections

When both α and γ are surjective, the two domains are
isomorphic.

Example: The Parity abstract domain

28 / 55

Consider the abstraction into the Parity domain:

〈℘(N0);⊆〉 −−→−→←−−−
α

γ

〈Par ;⊑〉

Par : ⊤

⊥

odd even

The above Hasse diagram defines the Parity ordering.

The abstraction and concretization functions are:

γ(P) =



















∅ if P = ⊥

{n ∈ N0 | n is odd} if P = odd

{n ∈ N0 | n is even} if P = even

N0 if P = ⊤

α(N) =



















⊥ if N = ∅

odd if ∀n ∈ N : n is odd
even if ∀n ∈ N : n is even
⊤ otherwise

Example: an isomorphism

29 / 55

We can represent a set of pairs as a function from a first
component to second components:

〈℘(A×B);⊆〉 −−→−→←←−−−
α

γ

〈A→ ℘(B); ⊆̇〉

where α(R) = λa.{b | (a, b) ∈ R}

γ(F) = {(a, b) | b ∈ F (a)}

Fixed points

Fixed points, briefly

31 / 55

Definition. a fixed point of a function f , is a point x
such that f(x) = x

Assume f : P → P operates over a poset 〈P ;⊑〉

Definition. a pre-fixed point is a point x such that
x ⊑ f(x)

Definition. a post-fixed point is a point x such that
f(x) ⊑ x

Definition. a least fixed point (lfp) is a fixed point l such
that for all other fixed points l′ : (f(l′) = l′) =⇒ l ⊑ l′

Definition. a greatest fixed point (gfp) is a fixed point l
such that for all other fixed points
l′ : (f(l′) = l′) =⇒ l′ ⊑ l

Tarski’s fixed point theorem

32 / 55

Theorem. If L is a complete lattice and f : L→ L is a
monotone function, f ’s fixed points themselves form a
complete lattice.

Hence Tarski tells us that there exists a least fixed point.

Abstract interpretation basics

Abstract interpretation basics

34 / 55

Canonical abstract interpretation approximates the
collecting semantics of a transition system.

A standard example of a collecting semantics is the
reachable states from a given set of initial states I.
Given a transition function T defined as:

T (Σ) = I ∪ {σ | ∃σ′ ∈ Σ : σ′ → σ}

we can express the reachable states of T as the least
fixed point lfpT of T .
For a fixed point T (Σ) = Σ of T :

I ⊆ Σ ∧ ∀σ′ ∈ Σ : σ′ → σ =⇒ σ ∈ Σ

which expresses the transitive closure of the states
reachable from I.

Abstract interpretation basics

34 / 55

Canonical abstract interpretation approximates the
collecting semantics of a transition system.

A standard example of a collecting semantics is the
reachable states from a given set of initial states I.
Given a transition function T defined as:

T (Σ) = I ∪ {σ | ∃σ′ ∈ Σ : σ′ → σ}

we can express the reachable states of T as the least
fixed point lfpT of T .
We can compute lfpT by Kleene iteration1:

⊥, T (⊥), T 2(⊥), T 3(⊥), . . .

1In general we can only compute lfp f if f is contiguous f(⊔S) = ⊔f(S)

The strength of the collecting semantics

35 / 55

� The collecting semantics is ideal, i.e., it is the most
precise analysis.

� Unfortunately it is in general uncomputable: it is as
hard as interpreting (i.e., running) a program

� We therefore approximate the collecting semantics,
by computing a fixed point over an alternative and
perhaps simpler domain: an abstract interpretation

Abstraction and analysis using Galois connections

36 / 55

Abstractions are represented as Galois connections
which connect complete lattices through α and γ.

We can derive an analysis systematically by composing
the transition function with these functions: α ◦ T ◦ γ
and gradually refine the collecting semantics into a
computable analysis function by mere calculation.

Hence instead of inventing a static analysis, we arrive at
one by a structured abstraction of the set of states ℘(S).

Galois connection-based analysis

37 / 55

By the fixed point transfer theorem we can compute a
sound approximation of the collecting semantics:

⊥

⊤

⊥

⊤

lfpT
lfpT ♯

α

Theorem. Let 〈C;⊑〉 −−→←−−
α

γ

〈A;≤〉 be a Galois
connection between complete lattices. If T and T ♯ are
monotone and α ◦ T ◦ γ ≤̇T ♯ then α(lfpT) ≤ lfpT ♯

Variations

An alternative approach

39 / 55

Rather than simplifying the abstract domains into finite
ones, widening and narrowing permits infinite ones.

A first widening iteration overshoots the least fixed point
but still ensures termination.

A second narrowing iteration improves the results of the
widening iteration.

Widening

40 / 55

We compute instead the limit of the sequence:

X0 = ⊥

Xi+1 = Xi▽T (Xi)

where ▽ denotes the widening operator : an operator
with the following properties:

� For all x, y : x ⊑ (x▽ y) ∧ y ⊑ (x▽ y)

� For any increasing chain Y0 ⊑ Y1 ⊑ Y2 ⊑ . . . the
alternative chain defined as Y ′0 = Y0 and
Y ′i+1 = Y ′i ▽Yi+1 stabilizes after a finite amount of
steps.

Narrowing

41 / 55

We can compute the limit of the sequence:

X0 = lim
i
Yi

Xi+1 = Xi△T (Xi)

where △ denotes the narrowing operator : an operator
with the following properties:

� For all x, y : (x△ y) ⊑ x

� For all x, y, z : (x ⊑ y ∧ x ⊑ z) =⇒ x ⊑ (y△ z)

� For any chain Yi the alternative chain defined as
Y ′0 = Y0 and Y ′i+1 = Y ′i △Yi+1 stabilizes after a finite
amount of steps.

Some words on OCaml

Why OCaml?

43 / 55

In this course we will use the OCaml programming
language

Why OCaml?

43 / 55

In this course we will use the OCaml programming
language

Why?

Why OCaml?

43 / 55

In this course we will use the OCaml programming
language

Why?

→ It’s a good opportunity to learn a new language and
add it to your CV

� The core of Microsoft’s F# is based on OCaml

→ It’s a good fit for the job

� Microsoft’s static device driver verifier is written
in OCaml

� ASTREÉ is written in OCaml

OCaml is an ML dialect

44 / 55

Hence it

� is expression-based, hence everything has a value

� is strongly typed

� is statically scoped

� has algebraic datatypes, lists, tuples, and pattern
matching

� has higher-order functions

� . . .

In addition it includes some object-oriented extensions
(hence the O in OCaml).

Compilers and IDEs

45 / 55

There is both

� a bytecode compiler (ocamlc) and

� an optimizing native code compiler (ocamlopt)

freely available for many platforms.

� For emacs I recommend tuareg-mode

� For Eclipse people recommend: OCaIDE

http://www.algo-prog.info/ocaide/

http://www.cs.jhu.edu/~scott/pl/caml/ocaide.shtml

� For VIM: OMLet

� For _: please let me know of your findings

http://www.algo-prog.info/ocaide/
http://www.cs.jhu.edu/~scott/pl/caml/ocaide.shtml

SML/Scheme vs OCaml (1/2)

46 / 55

You all know SML or Scheme from ProgSprog, so we
will focus on the differences.

Instead of fun foo x = ...

or (define (foo x) ...)

we write let foo x = ...

Catch 0 : function application binds stronger than
addition: Hence f x+1 means (f x)+1

Catch 1 : recursive functions must be marked ’rec’:

let rec fac n = match n with
| 0 -> 1
| n -> n * fac (n - 1)

SML/Scheme vs OCaml (2/2)

47 / 55

Like in SML and Scheme let is also used for local
declarations ([] is nil, :: is cons):

let concat xs ys =
let rec walk xs = match xs with

| [] -> ys
| x::xs’ -> x::(walk xs’)

in
walk xs

however without an end to end the block.

Note also that OCaml uses match ... with instead
of SML’s case ... of.

Exercise: write in OCaml a function sumlist of type

sumlist : int list -> int

Catches and Gotchas

48 / 55

Catch 2 : Semicolon ’;’ separates list elements (rather
than comma ’,’). For example, compare the types of
[1,2,3] and [1;2;3]

Tuples (and pairs) can be written without parens!

Catch 3 : datatype constructors must be capitalized

type ’a tree = Leaf of ’a
| Node of ’a tree * ’a tree

anything else is a parse error!

Catch 4 : The evaluation order is unspecified —
however the compiler uses right-to-left in practice(!)

OCaml modules

49 / 55

OCaml has a powerful module system with

� signatures (think interface) and

� functors (think module -> module function)

Example:
module Intset =
Set.Make (struct

type t = ... (* element type *)
let compare = ...

(* element comparison *)

end)

OCaml modules

50 / 55

OCaml has a powerful module system with

� signatures (think interface) and

� functors (think module -> module function)

Example:
module Intset =
Set.Make (struct

type t = int
let compare n1 n2 =
if n1 == n2 then 0 else
if n1 > n2 then 1 else -1

end)

OCaml modules

50 / 55

OCaml has a powerful module system with

� signatures (think interface) and

� functors (think module -> module function)

Example:
module Intset =
Set.Make (struct

type t = int
let compare n1 n2 =
if n1 == n2 then 0 else
if n1 > n2 then 1 else -1

end)

Builtin maps are similar:

module Mymap = Map.Make(struct ... end)

OCaml modules and separate compilation

51 / 55

We can separate the implementation and the interface
of a module into two separate files x.ml and x.mli.
This is equivalent to

module X: sig (* contents of file x.mli *) end
= struct (* contents of file x.ml *) end

Catch 5 : Files are lower-case, but their modules are
capitalized. Hence, the module in file set.ml is
referred to as Set.

If we write
module S = struct let f = ... end

in a file foo.ml then we (need to) refer to f as
Foo.S.f

Relevant links

52 / 55

� SML/OCaml comparisons by Rossberg and Chlipala
http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html

http://adam.chlipala.net/mlcomp/

� OCaml reference manual
http://caml.inria.fr/pub/docs/manual-ocaml/

� Standard library documentation
http://caml.inria.fr/pub/docs/manual-ocaml/libref/

� Jason Hickey’s online book
http://files.metaprl.org/doc/ocaml-book.pdf

� Two mailing lists (beginner + main list)

� . . .

http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html
http://adam.chlipala.net/mlcomp/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/libref/
http://files.metaprl.org/doc/ocaml-book.pdf

Let’s code something!

53 / 55

Let’s implement

� a transition system interface,

� an instantiation thereof, and

� the transition function from the reachable states
collecting semantics

Summary

Summary

55 / 55

We have covered

� The what and the how of the course

– Remember the measure of success: an
application of AI

– So start thinking of a transition system for your
project (Turing machine, Traveling Salesman,. . .)

� The basics of abstract interpretation (transition
systems, reachable states collecting semantics,
Galois connections, . . .)

� A crash course in OCaml

	What is this course about?
	Which is the right approach?
	You take the redred pill…
	What is abstract interpretation?
	Learning outcomes and competences
	Pedagogical choices / Contract
	Your background
	Outline
	Transition systems
	Transition systems - quick recap
	Example 1: Euclid's algorithm
	Example 2: Modeling a program

	Mathematical foundations
	Partially ordered sets
	Upper and lower bounds
	Complete Partial Orders (CPOs)
	Complete lattices
	Example: A complete lattice of functions
	A quick comparison

	Galois connections
	Galois connections
	A familiar example
	An equivalent definition
	Galois connection properties (1/3)
	Galois connection properties (2/3)
	Galois connection properties (3/3)
	Example: The Parity abstract domain
	Example: an isomorphism

	Fixed points
	Fixed points, briefly
	Tarski's fixed point theorem

	Abstract interpretation basics
	Abstract interpretation basics
	The strength of the collecting semantics
	Abstraction and analysis using Galois connections
	Galois connection-based analysis

	Variations
	An alternative approach
	Widening
	Narrowing

	Some words on OCaml
	Why OCaml?
	OCaml is an ML dialect
	Compilers and IDEs
	SML/Scheme vs OCaml (1/2)
	SML/Scheme vs OCaml (2/2)
	Catches and Gotchas
	OCaml modules
	OCaml modules
	OCaml modules and separate compilation
	Relevant links
	Let's code something!

	Summary
	Summary

