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What is this course about?

Crudely simplified the history of program analysis (or
static analysis) can be split in two:

0 an American school of program analysis

0 a French school of program analysis

| highly recommend the Static Analysis course, which
gives a nice introduction mainly to the American

approach.

This course iIs concerned with the alternative, French
approach.

2/55



Which Is the right approach?

None of them is right or wrong — it iIs simply an
alternative view — an eye opener to a new world.

It can be used to explain existing approaches and
extend or strengthen them

In 7 weeks, you will be in a position to make an informed
opinion

It IS not just an academic theory: it has been used to
check/verify flight control software for both Airbus and
Mars missions. By the end of this course, we will read
papers about those.

t will get bloody — there will be mathematics — there
will be semantics /55



You take the red pill. . .
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You take the red pill. . .

... you stay in Wonderland and | show you how deep the
rabbit-hole goes. ..
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What Is abstract interpretation?

0 It 1s a theory of semantics-based program analysis

0 It was initially conceived in the late 1970’s by Patrick
and Radhia Cousot

0 It has been refined over the last 40 years

— to new applications
— to new kinds of semantics

— to new programming paradigms
— by new abstract domains

5/55



Learning outcomes and competences

The participants must at the end of the course be able
to:

0 describe and explain basic analyses in terms of
classical abstract interpretation.

0 apply and reason about Galois connections.

0 Implement abstract interpreters on the basis of the
derived program analyses.
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Pedagogical choices / Contract

Lectures - sometimes including a few exercises in class
Reading - read research papers and slides

Assignments - both mathematics and programming.
They are mandatory

Project - a chance for you to apply your newly acquired
skills to a topic of your choice (both mathematics
and programming, preferably)

Exam - explain to us how you applied your newly
acquired skills, and
we’ll have an informed discussion of the outcome
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Your background

I’m assuming you all have followed Programming
Languages (dProgSprog) and Compilation (dOvs).

How many of you have followed
0 the Static Analysis course?
0 Olivier’'s IFP / TFP courses?

0 a semantics course?
— by Claus Brabrand or Jakob Andersen?
— by Klaus Ostermann?

0 Glynn Winskel’s set theory course?
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Outline

0 What and how of the course
0 Transition systems

0 Math: Posets, CPOs, complete lattices, Galois
connections, fixed points

0 Abstract interpretation basics

0 OCaml intro
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Transition systems - quick recap

You already know transition systems from dADS 1.

Definition. A transition system is a triple (quadruple)
(S, I, F', —) where

0 S IS a set of states
0 I C S Is a set of initial states

O F C S i1s an optional set of final states
Vse F,sfe S :sAs)

0 — C § x S Is atransition relation relating a state to
Its (possible) successors
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Example 1: Euclid’s algorithm

Given two numbers z,y € N we can describe Euclid’s
GCD algorithm as a transition system:

S=NxN

I = {(, )}

F={{n,n)|neN}

—:(n, m) = (n—m, m) if n>m
(n, m) — (n, m—mn) if n<m

where we have written the transition relation using infix

notation.
We can write it even more formally as:

—={({n, m),{(n—m, m)) | n > m}
U{({n, m),(n, m —n)) | n <m}
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Example 2: Modeling a program

Modeling the program

X = 0;
while (x < 100) {
X 1= X + 1;
} ..
as a transition system:
S =7
I = {0}

— ={(z,2") | <100 A ' =2+ 1}

How to get from a program to a transition system is the
topic of next week’s lecture.

For now we assume that we can model the semantics
(the meaning) of a program as a transition system.

13/55



Mathematical foundations



Partially ordered sets

Definition. A partially ordered set (poset) (S;C) is a set
S equipped with a binary relation = C S x S with the

following properties:
0 Reflexive: Va € S : a C a
0 Antisymmetric: Va,be S:aCb AN bCa = a=0D

0 Transitive: Va,b,ce S:aCb N bCc — alc

Example 1: (N; <) is a poset

Example 2: (p(.5); C) is a poset
Note: p(S) is sometimes written 2°
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Upper and lower bounds

Let (P; C) be a partially ordered set.

Definition. « € P Is an upper bound of S C P Iff
Vse §:s5sC u

Definition. [ € P is an lower bound of § C P Iff
Vse §:[C s

Definition. u € P Is a least upper bound (lub) of S C P
Iff It Is an upper bound of S and it is less than all other
upper bounds: Vu' € P: (Vs € S:sCu') = uLC

Definition. [ € P Is a greatest lower bound (glb) of

S C P iffitis an lower bound of S and it is greater than

all other lower bounds:

Vile P:(VseS:I'Cs) = I'C e



Complete Partial Orders (CPOs)

Definition. A complete partial order is a poset such that
all increasing chains ¢;,7 € N (Vi € N : ¢; C ¢;41) have a
least upper bound:

C;

1eN
Non-example: (N; <) is not a CPO. Why?
Example: (©(5); C) is a CPO.
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Complete lattices

Definition. A complete lattice Is a poset
(C;C, L, T,L, M) such that

0 the least upper bound LS and

0 the greatest lower bound 1S exists for every subset
S of C.

0 1 = Md denotes the infimum of C' and

0 T = UC denotes the supremum of C.

Example 1: (p(S); C,0,S,U,N) is a complete lattice.

Example 2: The integers (extended with —oo and +oc)
IS a complete lattice
(7. U {—00,+0}; <, —00, 00, max, min).
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Example: A complete lattice of functions

Theorem. The set of total functions D — C', whose
codomain is a complete lattice (C;C, L, T,U, M), is itself
a complete lattice (D — C;C, L, T, |_| |_|> under the
pointwise ordering f C f' <= Va:.f( ) C f'(x), and with

0l =Xz 1
0T =X\e. T
0 fUg= Az f(z)Ug(x)
0 fMg =Xz f(z) Ng(x)

Here \x....Is a mathematical function with argument x.
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A quick comparison

Complete Lattice

|

Complete Partial Order

|

Partially Ordered Set
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Galois connections

Definition. A Galois connection is a pair of functions «,
~ between two partially ordered sets:

/ ] ]
concretizat

straction

(¢; E) (4; <)
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Galois connections

Definition. A Galois connection is a pair of functions «,
~ between two partially ordered sets:

(5 E) (4; <)
such that: Va € A,ce C:a(c) <a <= cC vy(a)
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A familiar example

You already know the pattern of moving from one side of

an inequation to another from high school:
Ve,y,z€ 4 . x+z2<y < x <y—=z
which we can write with « and ~ as:

Ve,y,z €Z @ a(x) <y <= z <7(y)
where a(n) =
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An equivalent definition

Definition. A Galois connection Is a pair of functions «
and ~ satisfying

(a) o and ~ are monotone
(forallc, e C:cCd = alc) < a(d)and
foralla,a’ € A:a<ad = ~v(a) C y(a')),

(b) o o v is reductive (foralla € A: a - vy(a) < a),

() v o ais extensive (forallc € C': ¢ C v o a(c)).
: : i
Galois connections are typeset as (C; C) — (A; <),
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Galois connection properties (1/3)

Theorem. For a Galois connection between two
complete lattices (C;C, L., T, L, M) and

(A; <, L,, Ty, V,A), acis @ complete join-morphism
(CIM):

forall S. C C : a(LS,) = Va(S.) = V{a(c) | c € S.}
and v Is a complete meet morphism (CMM):

forall S, C A:~v(AS,) =T (S,) =T{~v(a) | a € S,}

25/55



Galois connection properties (2/3)

Theorem The composition of twg) Galois connections
(ChE) ——= _> (B;C) and (B; C) &= (A; <) is itself a

a1 2

Galois connection:

(C;C) &= (A; <)

lg0(¢q

We can typeset this theorem as an inference rule:

(C;E) =S (BiC)  (BiC) &= (4;<)
(C;E) === (4; <)

Olg00¢q

Hence Galois connections stack up like Lego bricks!
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Galois connection properties (3/3)

Galois connections in which « Is surjective / onto (or
equivalently ~ Is injective) are typeset as:

(C;C) &= (A; <)

0%

and sometimes called Galois surjections (or insertions)

Galois connections in which « IS injective / one-to-one
(or equivalently ~ Is surjective) are typeset as:

(C;C) = (A; <)

8}

and sometimes called Galois injections

When both « and ~ are surjective, the two domains are
iIsomorphic. 21155



Example: The Parity abstract domain

Consider the abstraction into the Parity domain:

Par: T

. 7N\
(9(Np); ) ?» (Par; E) Odd\ even

L

The above Hasse diagram defines the Parity ordering.

The abstraction and concretization functions are:

() if P=_1 (1 if N =10
n € Ng | nis odd If P = odd odd If Yne N :nisodd
y(p) = § € Ronisodd} a(N) = . .
{n €Ny | niseven} if P = even even if Vn € N :niseven
| No f P=T LT otherwise
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Example: an isomorphism

We can represent a set of pairs as a function from a first
component to second components:

(9(A x B): C) == (A — o(B); <)

84

where «(R) = Xa.{b|(a,b) € R}
V(F) = {(a,b) | b€ F(a)}
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Fixed points, briefly

Definition. a fixed point of a function f, is a point x
such that f(z) =«

Assume f : P — P operates over a poset (P;C)

Definition. a pre-fixed point is a point x such that

z C f(x)

Definition. a post-fixed point is a point x such that

flz) Ea

Definition. a least fixed point (Ifp) Is a fixed point [ such
that for all other fixed points I' : (f(I') =1') = [Tl

Definition. a greatest fixed point (gfp) Is a fixed point [
such that for all other fixed points
UV (fH=1) = I'C1
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Tarski’s fixed point theorem

Theorem. If L is a complete latticeand f: L — L is a

monotone function, f’s fixed points themselves form a
complete lattice.

Hence Tarski tells us that there exists a least fixed point.
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Abstract interpretation basics

Canonical abstract interpretation approximates the
collecting semantics of a transition system.

A standard example of a collecting semantics is the
reachable states from a given set of initial states /.
Given a transition function 7' defined as:

TX)=IU{c|3doc'eX:0 — 0o}

we can express the reachable states of 7" as the least
fixed point lfp T' of T'.
For a fixed point T'(3) = X of T

ICY ANVoeX:od 50 = oceX

which expresses the transitive closure of the states
reachable from |I.
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Abstract interpretation basics

Canonical abstract interpretation approximates the
collecting semantics of a transition system.

A standard example of a collecting semantics is the
reachable states from a given set of initial states /.
Given a transition function 7' defined as:

TX)=IU{c|3doc'eX:0 — 0o}

we can express the reachable states of 7" as the least
fixed point lfp T' of T'.

We can compute 1fp T by Kleene iteration?:

L, T(L), T*(L), T3 (L), ...

lin general we can only compute lfp f if f is contiguous f(LUS) = Lf(S)
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The strength of the collecting semantics

0 The collecting semantics is ideal, i.e., it Is the most
precise analysis.

0 Unfortunately it is in general uncomputable: it is as
hard as interpreting (i.e., running) a program

0 We therefore approximate the collecting semantics
by computing a fixed point over an alternative and
perhaps simpler domain: an abstract interpretation
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Abstraction and analysis using Galois connections

Abstractions are represented as Galois connections
which connect complete lattices through « and ~.

We can derive an analysis systematically by composing
the transition function with these functions: oo T o ~
and gradually refine the collecting semantics into a
computable analysis function by mere calculation.

Hence instead of inventing a static analysis, we arrive at
one by a structured abstraction of the set of states (5.

36 /55



Galois connection-based analysis

By the fixed point transfer theorem we can compute a
sound approximation of the collecting semantics:

Theorem. Let (C;E) % (A; <) be a Galois

connection between complete lattices. If 7" and T* are
monotone and av o T o v < T* then a(lfpT) < lifpT* /=



Variations



An alternative approach

Rather than simplifying the abstract domains into finite
ones, widening and narrowing permits infinite ones.

A first widening iteration overshoots the least fixed point
but still ensures termination.

A second narrowing iteration improves the results of the
widening iteration.

39/55



Widening

We compute instead the limit of the sequence:
Xo=1
X1 =X, VT(X;)

where Vv denotes the widening operator:. an operator
with the following properties:

oForalz,y:2C (xVy) AN yE (xzVy)

0 For any increasingchain Yo C Y; C Y5, C ... the
alternative chain defined as Y, = Y, and
Y/, =Y/'vY,, stabilizes after a finite amount of
steps.
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Narrowing

We can compute the limit of the sequence:
Xo = limY;
Xz'—i—l — Xz A T(XZ)

where A denotes the narrowing operator:. an operator
with the following properties:

oForalz,y: (zAy) Cx
oForalz,y,z: (e Ey A xCz2) = zC (yAz2)

0 For any chain Y; the alternative chain defined as
Yo =Yyand Y, =Y AY,, stabilizes after a finite
amount of steps.
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Some words on OCaml|



Why OCaml?

In this course we will use the OCaml programming
language
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Why OCaml?

In this course we will use the OCaml programming
language

Why?
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Why OCaml?

In this course we will use the OCaml programming
language

Why?

— It's a good opportunity to learn a new language and
add it to your CV

0 The core of Microsoft's F# Is based on OCaml

— It's a good fit for the job

0 Microsoft's static device driver verifier Is written
In OCaml

0 ASTREE is written in OCaml
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OCaml is an ML dialect

Hence it
0 IS expression-based, hence everything has a value
0 IS strongly typed
0 IS statically scoped

0 has algebraic datatypes, lists, tuples, and pattern
matching

0 has higher-order functions
...

In addition it includes some object-oriented extensions
(hence the O in OCaml). .



Compilers and IDEs

There Is both

0 a bytecode compiler (ocam c¢) and

0 an optimizing native code compiler (ocam opt )
freely available for many platforms.

0 For emacs | recommend tuareg-mode

0 For Eclipse people recommend: OCalDE

http://ww. al go- prog. i nfo/ocai de/
http://ww.cs. | hu. edu/ ~scott/pl/canl /ocail de. shtni

0 For VIM: OMLet

0 For _: please let me know of your findings 45155


http://www.algo-prog.info/ocaide/
http://www.cs.jhu.edu/~scott/pl/caml/ocaide.shtml

SML/Scheme vs OCaml (1/2)

You all know SML or Scheme from ProgSprog, so we
will focus on the differences.

Instead of fun foo x = ...

or (define (foo x) ...)

wewrite |let foo x = ...

Catch O: function application binds stronger than
addition: Hence f x+1 means (f x) +1

Catch 1: recursive functions must be marked 'r ec’:

let rec fac n = match n wth
| 0 ->1
| n->n =+ fac (n - 1)
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SML/Scheme vs OCaml (2/2)

Like In SML and Scheme | et Is also used for local
declarations ([ | isnil, : : Is cons):
| et concat xs ys =

let rec walk xs = match xs wth
| [] ->ys
| x::xs’ -> x::(walk xs’)

| N

wal k xs
however without an end to end the block.

Note also that OCamlusesnatch ... wth instead
of SMLs case ... of.

Exercise: write In OCaml a function sumnl 1 st of type
sumlist : int list ->1Int
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Catches and Gotchas

Catch 2: Semicolon ’; ' separates list elements (rather
than comma ’, ’). For example, compare the types of
[1,2,3] and [ 1; 2; 3]

Tuples (and pairs) can be written without parens!

Catch 3: datatype constructors must be capitalized

type 'a tree = Leaf of ’'a
| Node of "a tree = "a tree

anything else Is a parse error!

Catch 4. The evaluation order Is unspecified —
however the compiler uses right-to-left in practice(!)

48 / 55



OCaml modules

OCaml has a powerful module system with
0 signatures (think interface) and
0 functors (think nodul e - > nodul e function)

Example:

nmodul e I ntset =
Set . Make (struct
type t = ... (» el enent type =)
| et conpare = ...
(» el ement conparison x)

end)
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OCaml modules

OCaml has a powerful module system with
0 signatures (think interface) and
0 functors (think nodul e - > nodul e function)

Example:

nodul e | ntset =
Set . Make (struct

type t = int
| et conpare nl n2 =
If n1l == n2 then 0 el se

I1f n1 > n2 then 1 else -1
end)
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OCaml modules

OCaml has a powerful module system with
0 signatures (think interface) and
0 functors (think nodul e - > nodul e function)

Example:

nodul e | ntset =
Set . Make (struct

type t = int
| et conpare nl n2 =
If n1l == n2 then 0 el se

I1f n1 > n2 then 1 else -1
end)

Builtin maps are similar:
nodul e Mymap = Map. Make(struct ... end)
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OCaml modules and separate compilation

We can separate the implementation and the interface
of a module into two separate files x. m and x. n | .

This Is equivalent to

nmodule X sig (* contents of file x.m1 *) end
= struct (* contents of file x.m *) end

Catch 5: Files are lower-case, but their modules are
capitalized. Hence, the module in file set . nl Is
referred to as Set .

If we write

module S = struct let f = ... end
in a file f oo. M then we (need to) referto f as
Foo. S. f
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Relevant links

0 SML/OCaml comparisons by Rossberg and Chlipala
http://ww. mpi - sws. or g/ ~rossberg/sm -vs-ocam . ht m
http://adam chli pal a. net/ n conp/

0 OCaml reference manual
http://cam .inria.fr/pub/docs/ manual - ocant /

0 Standard library documentation
http://cam .inria.fr/pub/docs/ manual - ocam /1i bref/

0 Jason Hickey’s online book
http://files.metaprl.org/doc/ocanl - book. pdf

0 Two mailing lists (beginner + main list)

...
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http://adam.chlipala.net/mlcomp/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/libref/
http://files.metaprl.org/doc/ocaml-book.pdf

Let's code something!

Let’s implement
0 a transition system interface,
0 an instantiation thereof, and

0 the transition function from the reachable states
collecting semantics
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Summary



Summary

We have covered
0 The what and the how of the course

— Remember the measure of success: an
application of Al

— So start thinking of a transition system for your
project (Turing machine, Traveling Salesman,...)

0 The basics of abstract interpretation (transition
systems, reachable states collecting semantics,
Galois connections, .. .)

0 A crash course in OCaml
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