
Abstract Interpretation

Jan Midtgaard

Week 1

http://www.cs.au.dk/~jmi/AbsInt/

Aarhus University, Q4 - 2012

http://www.cs.au.dk/~jmi/AbsInt/

What is this course about?

2 / 55

Crudely simplified the history of program analysis (or
static analysis) can be split in two:

! an American school of program analysis

! a French school of program analysis

I highly recommend the Static Analysis course, which
gives a nice introduction mainly to the American
approach.

This course is concerned with the alternative, French
approach.

Which is the right approach?

3 / 55

None of them is right or wrong — it is simply an
alternative view — an eye opener to a new world.

It can be used to explain existing approaches and
extend or strengthen them

In 7 weeks, you will be in a position to make an informed
opinion

It is not just an academic theory: it has been used to
check/verify flight control software for both Airbus and
Mars missions. By the end of this course, we will read
papers about those.

It will get bloody — there will be mathematics — there
will be semantics

What is abstract interpretation?

5 / 55

! It is a theory of semantics-based program analysis

! It was initially conceived in the late 1970’s by Patrick
and Radhia Cousot

! It has been refined over the last 40 years

– to new applications
– to new kinds of semantics
– to new programming paradigms
– by new abstract domains
– . . .

Learning outcomes and competences

6 / 55

The participants must at the end of the course be able
to:

! describe and explain basic analyses in terms of
classical abstract interpretation.

! apply and reason about Galois connections.

! implement abstract interpreters on the basis of the
derived program analyses.

Outline

9 / 55

! What and how of the course

! Transition systems

! Math: Posets, CPOs, complete lattices, Galois
connections, fixed points

! Abstract interpretation basics

! OCaml intro

Transition systems

Transition systems - quick recap

11 / 55

You already know transition systems from dADS 1.

Definition. A transition system is a triple (quadruple)
〈S , I , F , →〉 where

! S is a set of states

! I ⊆ S is a set of initial states

! F ⊆ S is an optional set of final states
(∀s ∈ F , s′ ∈ S : s (→ s′)

! → ⊆ S × S is a transition relation relating a state to
its (possible) successors

Example 1: Euclid’s algorithm

12 / 55

Given two numbers x, y ∈ N we can describe Euclid’s
GCD algorithm as a transition system:

S = N× N

I = {〈x, y〉}

F = {〈n, n〉 | n ∈ N}

→ : 〈n, m〉 → 〈n−m, m〉 if n > m

〈n, m〉 → 〈n, m− n〉 if n < m

where we have written the transition relation using infix
notation.
We can write it even more formally as:

→ = {(〈n, m〉, 〈n−m, m〉) | n > m}

∪ {(〈n, m〉, 〈n, m− n〉) | n < m}

Example 2: Modeling a program

13 / 55

Modeling the program
x := 0;
while (x < 100) {

x := x + 1;
}

as a transition system:
S = Z

I = {0}

→ = {(x, x′) | x < 100 ∧ x′ = x+ 1}

How to get from a program to a transition system is the
topic of next week’s lecture.
For now we assume that we can model the semantics
(the meaning) of a program as a transition system.

Mathematical foundations

Partially ordered sets

15 / 55

Definition. A partially ordered set (poset) 〈S;-〉 is a set
S equipped with a binary relation - ⊆ S × S with the
following properties:

! Reflexive: ∀a ∈ S : a - a

! Antisymmetric: ∀a, b ∈ S : a - b ∧ b - a =⇒ a = b

! Transitive: ∀a, b, c ∈ S : a - b ∧ b - c =⇒ a - c

Example 1: 〈N;≤〉 is a poset

Example 2: 〈℘(S);⊆〉 is a poset
Note: ℘(S) is sometimes written 2S

Upper and lower bounds

16 / 55

Let 〈P ;-〉 be a partially ordered set.

Definition. u ∈ P is an upper bound of S ⊆ P iff
∀s ∈ S : s - u

Definition. l ∈ P is an lower bound of S ⊆ P iff
∀s ∈ S : l - s

Definition. u ∈ P is a least upper bound (lub) of S ⊆ P
iff it is an upper bound of S and it is less than all other
upper bounds: ∀u′ ∈ P : (∀s ∈ S : s - u′) =⇒ u - u′

Definition. l ∈ P is a greatest lower bound (glb) of
S ⊆ P iff it is an lower bound of S and it is greater than
all other lower bounds:
∀l′ ∈ P : (∀s ∈ S : l′ - s) =⇒ l′ - l

Complete Partial Orders (CPOs)

17 / 55

Definition. A complete partial order is a poset such that
all increasing chains ci, i ∈ N (∀i ∈ N : ci - ci+1) have a
least upper bound:

⊔

i∈N

ci

Non-example: 〈N;≤〉 is not a CPO. Why?

Example: 〈℘(S);⊆〉 is a CPO.

Complete lattices

18 / 55

Definition. A complete lattice is a poset
〈C;-,⊥,1,2,3〉 such that

! the least upper bound 2S and

! the greatest lower bound 3S exists for every subset
S of C.

! ⊥ = 3C denotes the infimum of C and

! 1 = 2C denotes the supremum of C.

Example 1: 〈℘(S);⊆, ∅, S,∪,∩〉 is a complete lattice.

Example 2: The integers (extended with −∞ and +∞)
is a complete lattice
〈Z ∪ {−∞,+∞};≤,−∞,+∞,max,min〉.

Example: A complete lattice of functions

19 / 55

Theorem. The set of total functions D → C, whose
codomain is a complete lattice 〈C;-,⊥,1,2,3〉, is itself
a complete lattice 〈D → C; -̇, ⊥̇, 1̇, 2̇, 3̇〉 under the
pointwise ordering f -̇ f ′ ⇐⇒ ∀x.f(x) - f ′(x), and with

! ⊥̇ = λx.⊥

! 1̇ = λx.1

! f 2̇ g = λx. f(x) 2 g(x)

! f 3̇ g = λx. f(x) 3 g(x)

Here λx. . . . is a mathematical function with argument x.

A quick comparison

20 / 55

Complete Lattice

Complete Partial Order

Partially Ordered Set

Galois connections

Galois connections

22 / 55

Definition. A Galois connection is a pair of functions α,
γ between two partially ordered sets:

〈C;-〉 〈A;≤〉

α

abstraction

γ

concretization

Galois connections

22 / 55

Definition. A Galois connection is a pair of functions α,
γ between two partially ordered sets:

γ(a)

c

a

α(c)

〈C;-〉 〈A;≤〉

such that: ∀a ∈ A, c ∈ C : α(c) ≤ a ⇐⇒ c - γ(a)

An equivalent definition

24 / 55

Definition. A Galois connection is a pair of functions α
and γ satisfying

(a) α and γ are monotone
(for all c, c′ ∈ C : c - c′ =⇒ α(c) ≤ α(c′) and
for all a, a′ ∈ A : a ≤ a′ =⇒ γ(a) - γ(a′)),

(b) α ◦ γ is reductive (for all a ∈ A : α ◦ γ(a) ≤ a),

(c) γ ◦ α is extensive (for all c ∈ C : c - γ ◦ α(c)).

Galois connections are typeset as 〈C;-〉 −−→←−−α
γ
〈A;≤〉.

Galois connection properties (1/3)

25 / 55

Theorem. For a Galois connection between two
complete lattices 〈C;-,⊥c,1c,2,3〉 and
〈A;≤,⊥a,1a,∨,∧〉, α is a complete join-morphism
(CJM):

for all Sc ⊆ C : α(2Sc) = ∨α(Sc) = ∨{α(c) | c ∈ Sc}

and γ is a complete meet morphism (CMM):

for all Sa ⊆ A : γ(∧Sa) = 3γ(Sa) = 3{γ(a) | a ∈ Sa}

Galois connection properties (2/3)

26 / 55

Theorem. The composition of two Galois connections
〈C;-〉 −−−→←−−−α1

γ1
〈B;⊆〉 and 〈B;⊆〉 −−−→←−−−α2

γ2
〈A;≤〉 is itself a

Galois connection:

〈C;-〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2
〈A;≤〉

We can typeset this theorem as an inference rule:

〈C;-〉 −−−→←−−−α1

γ1
〈B;⊆〉 〈B;⊆〉 −−−→←−−−α2

γ2
〈A;≤〉

〈C;-〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2
〈A;≤〉

Hence Galois connections stack up like Lego bricks!

Galois connection properties (3/3)

27 / 55

Galois connections in which α is surjective / onto (or
equivalently γ is injective) are typeset as:

〈C;-〉 −−→−→←−−−
α

γ
〈A;≤〉

and sometimes called Galois surjections (or insertions)

Galois connections in which α is injective / one-to-one
(or equivalently γ is surjective) are typeset as:

〈C;-〉 −−−→←←−−−α

γ
〈A;≤〉

and sometimes called Galois injections

When both α and γ are surjective, the two domains are
isomorphic.

Example: The Parity abstract domain

28 / 55

Consider the abstraction into the Parity domain:

〈℘(N0);⊆〉 −−→−→←−−−
α

γ
〈Par ;-〉

Par : 1

⊥

odd even

The above Hasse diagram defines the Parity ordering.

The abstraction and concretization functions are:

γ(P) =



















∅ if P = ⊥

{n ∈ N0 | n is odd} if P = odd

{n ∈ N0 | n is even} if P = even

N0 if P = 1

α(N) =



















⊥ if N = ∅

odd if ∀n ∈ N : n is odd
even if ∀n ∈ N : n is even
1 otherwise

Example: an isomorphism

29 / 55

We can represent a set of pairs as a function from a first
component to second components:

〈℘(A×B);⊆〉 −−→−→←←−−−α

γ
〈A→ ℘(B); ⊆̇〉

where α(R) = λa.{b | (a, b) ∈ R}

γ(F) = {(a, b) | b ∈ F (a)}

Fixed points

Fixed points, briefly

31 / 55

Definition. a fixed point of a function f , is a point x
such that f(x) = x

Assume f : P → P operates over a poset 〈P ;-〉

Definition. a pre-fixed point is a point x such that
x - f(x)

Definition. a post-fixed point is a point x such that
f(x) - x

Definition. a least fixed point (lfp) is a fixed point l such
that for all other fixed points l′ : (f(l′) = l′) =⇒ l - l′

Definition. a greatest fixed point (gfp) is a fixed point l
such that for all other fixed points
l′ : (f(l′) = l′) =⇒ l′ - l

Tarski’s fixed point theorem

32 / 55

Theorem. If L is a complete lattice and f : L→ L is a
monotone function, f ’s fixed points themselves form a
complete lattice.

Hence Tarski tells us that there exists a least fixed point.

Abstract interpretation basics

Abstract interpretation basics

34 / 55

Canonical abstract interpretation approximates the
collecting semantics of a transition system.
A standard example of a collecting semantics is the
reachable states from a given set of initial states I.
Given a transition function T defined as:

T (Σ) = I ∪ {σ | ∃σ′ ∈ Σ : σ′ → σ}

we can express the reachable states of T as the least
fixed point lfpT of T .
For a fixed point T (Σ) = Σ of T :

I ⊆ Σ ∧ ∀σ′ ∈ Σ : σ′ → σ =⇒ σ ∈ Σ

which expresses the transitive closure of the states
reachable from I.

Abstract interpretation basics

34 / 55

Canonical abstract interpretation approximates the
collecting semantics of a transition system.
A standard example of a collecting semantics is the
reachable states from a given set of initial states I.
Given a transition function T defined as:

T (Σ) = I ∪ {σ | ∃σ′ ∈ Σ : σ′ → σ}

we can express the reachable states of T as the least
fixed point lfpT of T .
We can compute lfpT by Kleene iteration1:

⊥, T (⊥), T 2(⊥), T 3(⊥), . . .

1In general we can only compute lfp f if f is contiguous f(2S) = 2f(S)

The strength of the collecting semantics

35 / 55

! The collecting semantics is ideal, i.e., it is the most
precise analysis.

! Unfortunately it is in general uncomputable: it is as
hard as interpreting (i.e., running) a program

! We therefore approximate the collecting semantics,
by computing a fixed point over an alternative and
perhaps simpler domain: an abstract interpretation

Abstraction and analysis using Galois connections

36 / 55

Abstractions are represented as Galois connections
which connect complete lattices through α and γ.

We can derive an analysis systematically by composing
the transition function with these functions: α ◦ T ◦ γ
and gradually refine the collecting semantics into a
computable analysis function by mere calculation.

Hence instead of inventing a static analysis, we arrive at
one by a structured abstraction of the set of states ℘(S).

Galois connection-based analysis

37 / 55

By the fixed point transfer theorem we can compute a
sound approximation of the collecting semantics:

⊥

1

⊥

1

lfpT
lfpT #

α

Theorem. Let 〈C;-〉 −−→←−−α
γ
〈A;≤〉 be a Galois

connection between complete lattices. If T and T # are
monotone and α ◦ T ◦ γ ≤̇T # then α(lfpT) ≤ lfpT #

Variations

An alternative approach

39 / 55

Rather than simplifying the abstract domains into finite
ones, widening and narrowing permits infinite ones.

A first widening iteration overshoots the least fixed point
but still ensures termination.

A second narrowing iteration improves the results of the
widening iteration.

Widening

40 / 55

We compute instead the limit of the sequence:
X0 = ⊥

Xi+1 = Xi"T (Xi)

where " denotes the widening operator : an operator
with the following properties:

! For all x, y : x - (x" y) ∧ y - (x" y)

! For any increasing chain Y0 - Y1 - Y2 - . . . the
alternative chain defined as Y ′0 = Y0 and
Y ′i+1 = Y ′i "Yi+1 stabilizes after a finite amount of
steps.

Narrowing

41 / 55

We can compute the limit of the sequence:
X0 = lim

i
Yi

Xi+1 = Xi#T (Xi)

where # denotes the narrowing operator : an operator
with the following properties:

! For all x, y : (x# y) - x

! For all x, y, z : (x - y ∧ x - z) =⇒ x - (y# z)

! For any chain Yi the alternative chain defined as
Y ′0 = Y0 and Y ′i+1 = Y ′i #Yi+1 stabilizes after a finite
amount of steps.

	What is this course about?
	Which is the right approach?
	You take the redred pill…
	What is abstract interpretation?
	Learning outcomes and competences
	Pedagogical choices / Contract
	Your background
	Outline
	Transition systems
	Transition systems - quick recap
	Example 1: Euclid's algorithm
	Example 2: Modeling a program

	Mathematical foundations
	Partially ordered sets
	Upper and lower bounds
	Complete Partial Orders (CPOs)
	Complete lattices
	Example: A complete lattice of functions
	A quick comparison

	Galois connections
	Galois connections
	A familiar example
	An equivalent definition
	Galois connection properties (1/3)
	Galois connection properties (2/3)
	Galois connection properties (3/3)
	Example: The Parity abstract domain
	Example: an isomorphism

	Fixed points
	Fixed points, briefly
	Tarski's fixed point theorem

	Abstract interpretation basics
	Abstract interpretation basics
	The strength of the collecting semantics
	Abstraction and analysis using Galois connections
	Galois connection-based analysis

	Variations
	An alternative approach
	Widening
	Narrowing

	Some words on OCaml
	Why OCaml?
	OCaml is an ML dialect
	Compilers and IDEs
	SML/Scheme vs OCaml (1/2)
	SML/Scheme vs OCaml (2/2)
	Catches and Gotchas
	OCaml modules
	OCaml modules
	OCaml modules and separate compilation
	Relevant links
	Let's code something!

	Summary
	Summary

