Context-Sensitive Analysis of Obfuscated x86

Executables

Arun Lakhotia(1), Davidson Boccardo(2), Anshuman
Singh(1), and Aleardo Manacero Jr.(2)

(1)University of Louisiana at Lafayette, USA
(2)Paulista State University (UNESP), Brazil

PEPM 2010 (01/19/10)
Madrid, Spain

1/29

Disassembled binary with procedures: An example

Main: Max:

Ll: PUSH 4 L9: MOV eax, [esp+4]
L2: PUSH 2 L10: MOV ebx, [esp+8]
L3: CALL Max L1l: CMP eax, ebx

L4: PUSH 6 L12: JG L14

L5: PUSH 4 L13: MOV eax, ebx

L6: CALL Max L14: RET 8

L7: PUSH O
L8: CALL ExitProcess

2/29

Context-sensitive interprocedural data-flow analysis -

Classical methods

@ Call-string

e Sharir and Pnueli’s k-call string method that maps a call
string to its k-length suffix.

e Emami et al.’s method of reducing recursive paths in a call
string by a single node.

@ Procedure summary

@ Inlining

3/29

Assumptions of call string based approaches

@ The program uses special instructions like call and ret that
can be identified and paired statically.

@ Valid/invalid paths in ICFG can be described in terms of
appropriate pairing of call-ret edges.

4/29

Call and Ret are atomic

Call and Ret are atomic in the sense that they:

@ Transfer control; and

@ Change context

5/29

Call obfuscation

Call and Ret can be obfuscated using instructions that transfer
control and change context separately. Call obfuscation can be
employed by:

@ Malware writers = to hide malicious behavior and to evade
detection.

@ Software developers = to protect intellectual property and
to increase security.

Call obfuscation using push/ret instructions

Main: Max:

Ll: PUSH 4 L13: MOV eax, [esp+d]
L2: PUSH 2 L14: MOV ebx, [esp+8]
L3: PUSH offset [L6] L15: CMP eax, ebx

L4: PUSH offset [L13] L16: JG L18

L5 RET L17: MOV eax, ebx

L6: PUSH 6 L18: RET 8

L7: PUSH {4

L8: PUSH offset [L11]
LO9: PUSH offset [L13]
L10: RET

Lll: PUSH O

L12: CALL ExitProcess

7/29

Call obfuscation using push/jmp instructions

Main: Max
Llz PUSH 4 L1l: MOV eax, [esp+4]
L2: PUSH 2 Ll12: MOV ebx, [esp+8]
L3 PUSH offset [L5] L13: CMP eax, ebx

4: JMP Max L14: JG Llé

5z PUSH e L15: MOV eax, ebx
Lé: PUSH 4 Ll6: RET g

L7 PUSH offset [L9]
L8 : JMP Max

L9: PUSH 0

L10: CALL ExitProcess

8/29

Classical call string based analyses are not directly applicable
for context-sensitive analysis of binaries that have obfuscated
calls. This is because:

@ They are tied to semantics of procedure call and return

statements of high-level languages, and therefore, call and
ret instructions of assembly language.

9/29

Proposed method

Objective: Design of a context-sensitive analysis based on
program semantics and abstract interpretation resilient from
call and ret obfuscation attacks.

10/29

@ Context abstractions (generic versions independent of
ICFG based definitions)

© Context-trace semantics (can not rely on ICFG based
soundness results)

© Language (a simple assembly language without call and
ret)

© Stack context (to model change of context)
© Transfer of control (is modeled using value-set analysis)

© Derive the context sensitive analyzer from
context-insensitive one

@ Prove soundness of our analysis

11/29

Generalized notion of contexts

@ Opening and closing instructions are defined by:

e (C [-the set of instructions that open contexts.

e) C [-the set of instructions that close contexts.

@ For example, in the conventional interprocedural analysis,
the set (contains the call instructions and) contains the
ret instructions.

@ A context-string is a sequence of instructions that open
contexts, represented by (* C /*.

12/29

@ Let (¥ represent the set of sequences of opening contexts
of length < k and k + 1 length sequences created by
appending T = | |(to k-length sequences of opening
contexts.

@ An element of (¥ is called a k-context. We can establish a
map o : (*— (¥ as:

A |V if [v] <k
Qe UV = .
vk. T otherwise, where 3" : v = vy A | = k.

@ (* and (¥ form a Galois insertion with the abstraction map
g

13/29

o (‘ represent the set of sequence that open contexts with
size < |(| and have cyclic sequence represented by +.

@ For example, the term c™ represents all cyclic context
strings from c to c.

@ Amap ay : (*— (° can be defined such that (* and (¢ form
a Galois insertion with the abstraction map ay.

14/29

Examples of context abstractions

Context 2-Context | /-Context
CoCq Co Cq CoCq
CrC3C2C4 e T Cy Ci
CpC4CoC coCaT Cy Ci
C2C4CrC3CoC1 | CoCsT C5 Ci
C2C3CC4CoC1 | CoC3T C5 Ci
C3C»C4CoCy C3Co T C3C; Ci
C»C4CoC CoCa T Cy C
C5C»C4CoCy Cs5Co T C5C; Ci
C3C5C2C4CoC1 | C3C5T C3C5C, C
C5C5C2C4CoC1 | C5C5 T loxgoaglen
CoC4 CoCq CoC1

€ € €

15/29

Context-trace semantics

@ A contexi-trace is a pair of a context string and a trace
(v,0) € (("xX*).

@ The set of all context-traces of a program, denoted by
p((*xX*) = (*— p(X*), gives its contexi-trace semantics.

16/29

Syntactic Categories:

beB

e, ¢ cE
iel
ILIeLCZ
zZ€eZ
peP
reR

(boolean expressions)
(integer expressions)
(instructions)

(labels)

(integers)

(programs)
(references)

Syntax:

ex=l|z|r|xr|e opex
(Ope {+7 — % /a})
b::=true | false | ey < € |-b|
bl && b2
esp =espt+e.ep=¢€|
esp=e.ep=¢€]|
cxesp =€ . epp=¢€"|
cr=e.ep=¢|
xr=e.ep=¢€]
: if (b)eip=¢e; eip="1
p = seq(i)

~— — — — — —

17/29

Mapping Call and Ret in our language

@ An instruction “Call I’ may be mapped to the following
sequence of instructions in our language:

lh:-esp=esp—1.eip=1
li :xesp=h.eip=1

where b is the address of the instruction after the call
instruction. It is not necessary that these two instructions
appear contiguously in code.

@ A Ret instruction may be mapped to the following
instruction in our language:

Iy esp=-esp+1.eip=xesp

18/29

Stack Context

@ |dea: To have the information about instructions that
manipulate the stack pointer as a part of the context.

@ The stack context can be described as the set of opening
contexts and closing contexts represented by domains
(asm € I x Nand)asm € I x N resp. that are defined as:

(asm= {(i,n) | 36,0" : ' € (T i &) A (&' esp) = (5 esp) — n}
Dasm = {(i,n)| 36,8' : &' € (T i) A (& esp) = (6 esp) + n}

@ A context string is a sequence belonging to (sm-
Abstractions k-context and I-context can be applied to (%,
to reduce the complexity of the analysis.

19/29

Transfer of control

@ Upon execution of each instruction the instruction pointer
register, eip, is updated with the label (a numerical value)
of the next instruction to be executed.

@ The value of the label may be computed from an
expression involving values of registers and memory
locations.

@ We use Balakrishnan and Reps’ Value-Set Analysis (VSA)
to recover information about the contents of memory
locations and registers. VSA uses the domain
RIC = N x Z x Z to abstract p(Z).

20/29

Derivation of a static analyzer

The analysis is derived from a chain of Galois connections
linking the concrete domain p((/ x Store)*) to the analysis
domain | — AbStore. The steps of the derivation are:

@ The set p((/ x Store)*), called set of traces, is
approximated to trace of sets, represented by
(p(I x Store))*.

@ The trace of sets is equivalent to (/ — @(Store))*. This
sequence of mapping of instructions to set of stores can be
approximated to | — p(Store).

@ Finally, a Galois connection between o(Store) and AbStore
completes the analysis.

21/29

Deriving the context-sensitive analyzer

Starting from concrete domain (];smM p(X*) and the domain
for Venable et al’s context insensitive analyzer

I — R+ L — ASG x RIC, we obtain our context sensitive
analyzer analyzer ﬂg — | — R+ L — RIC using the following

results:
A0
Q@ (5smC asm

Q o(z)C RIC

asm

Q (1 (%) = p(z%)

22/29

Soundness

@ The concrete context-trace semantics is given by the least
fixpoint of the function
3 nasm * 3 nasm *
Fe i (zsm— 9(X) — (asm— o(X"),where
Y=IxR+L—Z.

@ The context-trace semantics of the context-sensitive
analyzer is given by the least fixpoint of the function F# :

—~ 11— R+L— RIC) — — 11— R+L— RIC).

((]asm ((]asm

23/29

Soundness

Lemma

>
[

Com 2™ (=) C (& — 1 — R+ L — RIC.

asm

It follows from the lemma and the fixpoint transfer theorem that
F7* is a sound approximation of F.

24/29

DOC (Detector of Obfuscated Calls)

@ We implemented our derived analysis in a tool called DOC.

@ We studied the improvements in analysis of obfuscated
code resulting from the use of our ¢-context-sensitive
version of Venable et al.’s analysis against its
context-insensitive version.

@ We performed the analysis using two sets of programs:

e Programs in the first set were hand-crafted with a certain
known obfuscated calling structure.

e The second set contains W32.Evol.a, a metamorphic virus
that employs call obfuscation.

25/29

Time evaluation

12000

10000

8000

6000

4000

Time (ms)

2000

10

™~

&

20

30

v

40

>

30

60

70

80

g0

100

= Context-sensitive

16

31

a7

94

109

188

250

374

530

655

Context-insensitive

54

140

327

671

1217

2043

3448

5288

7378

8537

Number of "call” sites

26/29

Size of sets evaluation

200000
180000 —
160000
140000
120000
100000
80000
60000 .
40000
20000

Size of the sets

Py . - * " - " -
0 - v * * >

d hd hd i *
10 20 30 40 50 60 70 &80 Q0 100

== Context-sensitive 193 373 553 733 913 | 1093 | 1273 | 1453 | 1633 | 1813

Context-insensitive | 1947 | 7497 | 16557 | 29397 | 45747 |65697 89247 116397|147147|181497

MNumber of "call” sites

27/29

Histogram of evaluations for Win32.Evol.a

Number of Instructions

L I e A L L - I B - -]

Win32.Evol.a

1-5

6-10 21-25 26-30 31-35 36-40 41-45 46-50 51-55

Sin(i) - Ssen(i}

28/29

Conclusions

@ Developed a method for performing context sensitive
analysis of binaries in which calling contexts cannot be
discerned.

@ Systematically derived generic versions of Sharir and
Pnueli’s k-suffix call-strings abstractions and Emami et al.’s
strategy of abstracting calling-contexts (referred to as
I-context in our work).

@ Introduced the concept of stack-context, used in lieu of
calling context, to perform context sensitive analysis of
binaries that use call obfuscation.

@ Proposed a general method for deriving sound
context-sensitive analysis from context-insensitive one.

29/29

