
Context-Sensitive Analysis of Obfuscated x86
Executables

Arun Lakhotia(1), Davidson Boccardo(2), Anshuman
Singh(1), and Aleardo Manacero Jr.(2)

(1)University of Louisiana at Lafayette, USA
(2)Paulista State University (UNESP), Brazil

PEPM 2010 (01/19/10)
Madrid, Spain

1 / 29

Disassembled binary with procedures: An example

Main: Max:

L1: PUSH 4 L9: MOV eax, [esp+4]
L2: PUSH 2 L10: MOV ebx, [esp+8]
L3: CALL Max L11: CMP eax, ebx
L4: PUSH 6 L12: JG L14
L5: PUSH 4 L13: MOV eax, ebx
L6: CALL Max L14: RET 8
L7: PUSH 0
L8: CALL ExitProcess

2 / 29

Context-sensitive interprocedural data-flow analysis -
Classical methods

Call-string
Sharir and Pnueli’s k-call string method that maps a call
string to its k -length suffix.
Emami et al.’s method of reducing recursive paths in a call
string by a single node.

Procedure summary

Inlining

3 / 29

Assumptions of call string based approaches

The program uses special instructions like call and ret that
can be identified and paired statically.

Valid/invalid paths in ICFG can be described in terms of
appropriate pairing of call-ret edges.

4 / 29

Call and Ret are atomic

Call and Ret are atomic in the sense that they:

Transfer control; and

Change context

5 / 29

Call obfuscation

Call and Ret can be obfuscated using instructions that transfer
control and change context separately. Call obfuscation can be
employed by:

Malware writers⇒ to hide malicious behavior and to evade
detection.

Software developers⇒ to protect intellectual property and
to increase security.

6 / 29

Call obfuscation using push/ret instructions

7 / 29

Call obfuscation using push/jmp instructions

8 / 29

Motivation

Classical call string based analyses are not directly applicable
for context-sensitive analysis of binaries that have obfuscated
calls. This is because:

They are tied to semantics of procedure call and return
statements of high-level languages, and therefore, call and
ret instructions of assembly language.

9 / 29

Proposed method

Objective: Design of a context-sensitive analysis based on
program semantics and abstract interpretation resilient from
call and ret obfuscation attacks.

10 / 29

Steps

1 Context abstractions (generic versions independent of
ICFG based definitions)

2 Context-trace semantics (can not rely on ICFG based
soundness results)

3 Language (a simple assembly language without call and
ret)

4 Stack context (to model change of context)
5 Transfer of control (is modeled using value-set analysis)
6 Derive the context sensitive analyzer from

context-insensitive one
7 Prove soundness of our analysis

11 / 29

Generalized notion of contexts

Opening and closing instructions are defined by:

L ⊆ I - the set of instructions that open contexts.

M ⊆ I - the set of instructions that close contexts.

For example, in the conventional interprocedural analysis,
the set L contains the call instructions and M contains the
ret instructions.

A context-string is a sequence of instructions that open
contexts, represented by L∗ ⊆ I∗.

12 / 29

k-context

Let Lk represent the set of sequences of opening contexts
of length ≤ k and k + 1 length sequences created by
appending > =

⊔
L to k -length sequences of opening

contexts.

An element of Lk is called a k-context. We can establish a
map αk : L∗→ Lk as:

αk ν ,

{
ν if |ν| ≤ k
νk .> otherwise, where ∃ν ′ : ν = νk ∧ |νk | = k .

L∗ and Lk form a Galois insertion with the abstraction map
αk

13 / 29

`-context

L` represent the set of sequence that open contexts with
size ≤ |L| and have cyclic sequence represented by +.

For example, the term c+ represents all cyclic context
strings from c to c.

A map α` : L∗→ L` can be defined such that L∗ and L` form
a Galois insertion with the abstraction map α`.

14 / 29

Examples of context abstractions

Context 2-Context `-Context
c2c1 c2c1 c2c1
c2c3c2c1 c2c3> c+

2 c1
c2c4c2c1 c2c4> c+

2 c1
c2c4c2c3c2c1 c2c4> c+

2 c1
c2c3c2c4c2c1 c2c3> c+

2 c1
c3c2c4c2c1 c3c2> c3c+

2 c1
c2c4c2c1 c2c4> c+

2 c1
c5c2c4c2c1 c5c2> c5c+

2 c1
c3c5c2c4c2c1 c3c5> c3c5c+

2 c1
c5c5c2c4c2c1 c5c5> c+

5 c+
2 c1

c2c1 c2c1 c2c1
ε ε ε

15 / 29

Context-trace semantics

A context-trace is a pair of a context string and a trace
(ν, σ) ∈ (L∗×Σ∗).

The set of all context-traces of a program, denoted by
℘(L∗×Σ∗) ≡ L∗→ ℘(Σ∗), gives its context-trace semantics.

16 / 29

Language

Syntactic Categories:

b ∈ B (boolean expressions)
e, e′ ∈ E (integer expressions)
i ∈ I (instructions)
l, l ′ ∈ L ⊆ Z (labels)
z ∈ Z (integers)
p ∈ P (programs)
r ∈ R (references)

Syntax:

e ::= l | z | r | ∗ r | e1 op e2

(op ∈ {+, −, ∗, /, ...})
b ::= true | false | e1 < e2 |¬b |

b1 && b2
i ::= l : esp = esp + e � eip = e′ |

l : esp = e � eip = e′ |
l : ∗esp = e � eip = e′ |
l : r = e � eip = e′ |
l : ∗r = e � eip = e′ |
l : if (b) eip = e; eip = l ′

p ::= seq(i)

17 / 29

Mapping Call and Ret in our language

An instruction “Call l” may be mapped to the following
sequence of instructions in our language:

l0 : esp = esp − 1 � eip = l1
l1 : ∗esp = l2 � eip = l

where l2 is the address of the instruction after the call
instruction. It is not necessary that these two instructions
appear contiguously in code.

A Ret instruction may be mapped to the following
instruction in our language:

l0 : esp = esp + 1 � eip = ∗esp

18 / 29

Stack Context

Idea: To have the information about instructions that
manipulate the stack pointer as a part of the context.

The stack context can be described as the set of opening
contexts and closing contexts represented by domains
Lasm ⊆ I × N and Masm ⊆ I × N resp. that are defined as:

Lasm, {(i ,n) | ∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp)− n}
Masm , {(i ,n)| ∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp) + n}

A context string is a sequence belonging to L∗asm.
Abstractions k-context and l-context can be applied to L∗asm
to reduce the complexity of the analysis.

19 / 29

Transfer of control

Upon execution of each instruction the instruction pointer
register, eip, is updated with the label (a numerical value)
of the next instruction to be executed.

The value of the label may be computed from an
expression involving values of registers and memory
locations.

We use Balakrishnan and Reps’ Value-Set Analysis (VSA)
to recover information about the contents of memory
locations and registers. VSA uses the domain
RIC = N× Z× Z to abstract ℘(Z).

20 / 29

Derivation of a static analyzer

The analysis is derived from a chain of Galois connections
linking the concrete domain ℘((I × Store)∗) to the analysis
domain I → AbStore. The steps of the derivation are:

The set ℘((I × Store)∗), called set of traces, is
approximated to trace of sets, represented by
(℘(I × Store))∗.

The trace of sets is equivalent to (I → ℘(Store))∗. This
sequence of mapping of instructions to set of stores can be
approximated to I → ℘(Store).

Finally, a Galois connection between ℘(Store) and AbStore
completes the analysis.

21 / 29

Deriving the context-sensitive analyzer

Starting from concrete domain L∗asm
Πasm−−−→ ℘(Σ∗) and the domain

for Venable et al.’s context insensitive analyzer
I → R + L→ ASG × RIC, we obtain our context sensitive
analyzer analyzer L̂

`

asm → I → R + L→ RIC using the following
results:

1 L∗asmv L̂
`

asm

2 ℘(Z) v RIC

3 L∗ Π−→ ℘(Σ∗) ≡ ℘(Σ∗)

22 / 29

Soundness

The concrete context-trace semantics is given by the least
fixpoint of the function
Fc : L∗asm

Πasm−−−→ ℘(Σ∗) −→ L∗asm
Πasm−−−→ ℘(Σ∗),where

Σ = I × R + L→ Z.

The context-trace semantics of the context-sensitive
analyzer is given by the least fixpoint of the function F# :

(L̂
`

asm → I → R + L→ RIC) −→ (L̂
`

asm → I → R + L→ RIC).

23 / 29

Soundness

Lemma

L∗asm
Πasm−−−→ ℘(Σ∗) v L̂

`

asm → I → R + L→ RIC.

It follows from the lemma and the fixpoint transfer theorem that
F# is a sound approximation of Fc .

24 / 29

DOC (Detector of Obfuscated Calls)

We implemented our derived analysis in a tool called DOC.
We studied the improvements in analysis of obfuscated
code resulting from the use of our `-context-sensitive
version of Venable et al.’s analysis against its
context-insensitive version.

We performed the analysis using two sets of programs:
Programs in the first set were hand-crafted with a certain
known obfuscated calling structure.
The second set contains W32.Evol.a, a metamorphic virus
that employs call obfuscation.

25 / 29

Time evaluation

26 / 29

Size of sets evaluation

27 / 29

Histogram of evaluations for Win32.Evol.a

28 / 29

Conclusions

Developed a method for performing context sensitive
analysis of binaries in which calling contexts cannot be
discerned.

Systematically derived generic versions of Sharir and
Pnueli’s k-suffix call-strings abstractions and Emami et al.’s
strategy of abstracting calling-contexts (referred to as
l-context in our work).

Introduced the concept of stack-context, used in lieu of
calling context, to perform context sensitive analysis of
binaries that use call obfuscation.

Proposed a general method for deriving sound
context-sensitive analysis from context-insensitive one.

29 / 29

