
On determining lifetime and aliasing of
dynamically allocated data in higher-order

functional specifications

ALAIN D EUTSCH*
ICSLA Team

Laboratoire d’Informatique de 1’Ecole Polytechnique (LIX)
91128 Palaiseau Cedex - France.

deutschQpoly.polytechnique.fr

Abstract

We preeent a static analysie method for determining alias-
ing and lifetime of dynamically allocated data in lexically
scoped, higher-order, strict and polymorphic languages with
5mt class continuations. The goal is validate program trans-
formation8 that introduce imperative constructs such aa de-
etructive updatinga, stack allocations and explicit dealloca-
tiona in order to reduce the run-time memory management
overhead. Our method is based on an operational model of
higher order functional programs from which we construct
statically computable abstractions ueing the abstract inter-
pretation framework. Our method provides a solution to a
problem left open [Hudak SS] : determining isolation of data
in the case of higher order languages with etructured data.

1 Introduction

Functional specificatione are a powerful deecription tool.
They are used in denotational specificatione, functional lan-
guages and specification languages. Our goal ie to imple-
ment efficiently functional epecificatione on conventional se-
quential computers. However, such specifications lack con-
trol over memory management : there are no means of con-
trolling aseignment and deallocation of heap allocated data
etructuree such as tuples, sums, partial applications, arrays,
numbers and continuations. Because of this, functional pro-
grams tend to be much slower than their imperative equiv-
alents. As destructive updating operations have constant
time and apace coat, it is desirable to transform applicative
updating6 into imperative updating8 (aa ehown in [Area,
Holmetrom & Nilsson 881).

We have developed a method for detecting opportunities
to automatically transform applicative constructs into im-
perative conetructe such aa destructive updating8 of com-

‘Thir work has been partly funded by the Greco de Program-
mation du CNRS

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

@ 1990 ACM 089791-343-4/90/0001/0157 $1.50 157

posite objects (such an partial applications, arrays, complex
numbera or continuations . . .), bounded-extent allocations
(for instance stack allocations) and explicit deallocatione
(i.e compile-time garbage collection). In order to validate
these program transformations, two clasrea of informations
are computed. The liveneaa of data structures is ueed to
control bounded-extent allocations. The isolation of data
structures controls the introduction .of destructive opera-
tions. Theae informations are themselves computed from
safe approximations of the poesible states of an abstract
machine simulating the execution of programs from which
we compute approximate informationr about reockobility of
data. These informations can be used even in the case of
imperative languages, as the introduction of explicit deal-
location commands in a programming language renders the
language uneafe, aa a program may deallocate a valid refer-
ence. Compile-time determination of liveness of data may
be used to check that deallocations are safe. This method
is an application of the formal framework of abetract inter-
pretation [Cousot & Coueot 79,Coueot 811.

1.1 Related work

Several methods have been proposed to reduce the run-time
cost of heap management :

Lifetime analyses have been proposed in [Barth 77,Hughes
87,Ruggieri & Murtagh 88). Theee analylea are used to
validate the replacement of indefinite extent allocations by
bounded-extent allocations. (Hughes 871 deecribes a method
suitable for higher-order purely functional programs with
structured data, baaed on a combination of a forward anal-
yeie and a backward analysis (to determine transmission
propertiee of procedures). [Chase 881 discusses the safety
of such transformations.

Appel hae shown in [Appel 871 that garbage collection
can be faster that etack allocation. An example of thie is
provided by the Standard ML [Appel 89) garbage collector
which is sufficiently efficient to allow the heap allocation of
the entire run-time stack. In euch a context it ia proba-
bly not worthwhile to transform heap allocations into stack
allocations. Unfortunately such a technique is not always
usable, as it requires assignments not to be frequent, which
is not the case with imperative languages or lazy languages
(becauee of the need to update delay closuree).

Another approach consists in replacing dynamic alloca-

tions by static allocations, for example by replacing local
variables by global variables [Baoult & Sethi 84,Raoult &
Sethi 85,Schmidt 85,Kastens & Schmidt 86,Sestoft 89].

An alternative approach to the elimination of temporary
data is symbolic compoeition, as proposed in [Wadler 881.
Given an expression /(g(z)), this method computes at com-
pile time a procedure f, such that f@(z)) = f,(z), but
which is less space consuming whenever the value of g(z) is
temporary, Although limited to first order linear programs,
this approach has the advantage of improving also the time
complexity of programs by eliminating multiple traversal of
data structures.

Sharing analyses for purely functional languages have
been proposed in : [Schwarts 78,Inoue, Seki & Yagi 88,Bloss
89,Jones k Le Metayer 891. The goal of these analyses is to
validate program transformations such as introduction of
destructive updatings and explicit deallocations. [Schwarts
781 describes a verification system for ueer-supplied sharing
declarations in a first order language without side-effects.
Sharing is directly described by abstract values, and this
can cause information to be lost acroes procedure calls. [In-
oue, Seki & Yagi 881 presents a method to perform compile-
time garbage collection of temporary results in a functional,
lexically-scoped, strict, first order language with dynami-
caiiy allocated data. It is based on the combination of an
analysis that detects newly allocated cells and a transmis-
sion analysis. These analyses compute informations relative
to a prespecified regular pattern (for example linearly linked
lists), but have a cost linear in the ske of the program. (Bless
891 describes a method for determining isolation of data in
the case of a lazy, first order language with tlat arrays using
path analysis. [Jones & Le Metayer 891 extends [Schwartz
78). Bather than relying on user-supplied declarations, this
method computes sharing information and is based on the
combination of two backward analyses (transmission and ne-
cessity of data) and a forward analysis. The language is a
lexically-scoped, strict, first order language with dynami-
cally allocated data. Abstract values are made finite by a
depth-limiting technique similar to that of [Jones & Much-
nick Sl].

Several sharing analyses for non-purely functional lan-
guages have been described. The method reported in
[Cousot & Cousot 77bJ is an alias analysis that computes at
each program point a partition of the program variables into
disjoint collections such that if two variables belong to dis-
tinct collections, then they cannot refer to the same record
(even indirectly). [Jones & Muchnick 81,Jones 8 Muchnick
821 describe several methods to perform data flow analysis
of languages with dynamic allocation and structured data,
These methods are forward data flow analyses that com-
pute descriptions of the possible structure of the values of
variables in a first order list-processing language with de-
structive updating and dynamic allocation. The analysis
of [Jones dc Muchnick 811 computes at each program point
a set of abstract stores. Each abstract store is a graph
which is k-limited : no path from the roots has length > k.
The method reported in [Jones & Muchnick 821 computes
a single data description per program point. Recursively
defined structures are approximated by the set of program
points that allocated them, plus a retrieval function that
maps program points to structure components. [Jones 81)
describes a method to perform data and flow analysis of A-
terms under call-by-value and call-by-name. This is done
by constructing a function that simulates the states reach-
able during the interpretation of a X-term using a SECD
like machine. [Coutant 861 describes an alias analysh for

first order imperative languages. [Hudak 861 describes a
method to compute approximations of reference counts of
dynamically allocated data in a lexically-scoped, strict, first-
order applicative language with dynamically allocated flat
arrays. The analysis computes at each program point a set
of palm of environments mapping variables to (abstract) lo-
cations and store6 mapping locations to approximate refer-
ence counts. (Neirynck, Panangaden & Demem 871 presents
an allas analysis for a strict, higher-order language with side-
effects, scalar data and bounded-extent allocation of muta-

ble cells containing scalam. [Stransky 881 describes a general
method to perform abstract interpretation of dynamically
scoped, strict, first order languages with dynamically allo-
cated mutable data. It computes for each program point
an abstract environment and an abstract etore represented
by a graph. [Larus & Hilfinger 881 presents a method to
determine aliasing of structured data in the case of a strict,
lexically-scoped, first order language with dynamically al-
located mutable data. It computes at each program point
a graph modeling the set of possible stores than can arise.
[Horwitz, Pfeiffer & Reps 891 describes a method for deter-
mining data dependence0 between program statements in a
language with dynamically allocated data. It is an extension
of [Jones & Muchnick 811.

[Weihl80,Shivers 881 describe control-flow and call-graph
estimation methods for languages with procedure parame-
ters or first class procedures. These methods could be used
to extend a first order analysis. But the resulting call graph
could be too conservative in the case of programs which
make intensive use of higher-order procedures. Moreover,
in order to flow analyse a procedure call, we need to known
what procedure is involved, but also its environment, so that
a call graph is not sufficient.

A static analysis for a higher-order language with first
class continuations was deecribed in [Jouvelot Q Gifford 891.
It is not based on abstract interpretation but on effect check-
ing. This method can be used to detect stack allocability
of objects, and relies to some extent on user supplied dec-
larations. It does not however achieve the effect of sharing
analysis.

Our goal is to develop a semantically based sharing
and lifetime analysis method applyable to lexically-scoped,
strict, higher-order languages with dynamically allocated
data.

1.2 Overview

Section 2 retails the framework of abstract interpretation.
Section 3.1 describes a typical functional language which
will be the subject of the discussion. This language will be
described by means of an operational, state-transition based
semantics that captures store-level details such as sharings.
Liveness and isolation of data structures will be formulated
by means of predicates on the set of reachable states (section
3.3). In this framework we construct an abstract semantics
(section 4). We then construct approximate isolation predi-
cates defined on approximate states (section 5). A summary
of the correctness proof is then presented (section 6). We
then conclude by a presentation of some results and possible
extensions.

158

2 Preliminaries

2.1 Notations

If f E Dr -+ Ds and S E p(Di), then f(S) denotes
{j(z) 1 z E S}. If D = Di + Ds, then the injection
function8 are (by abuse of overloading) Dr E Di + D
and Da E Ds -+ D. If 8 E L?’ and d E. D, then d::s da
notes (d)§8 ; (21 w yr,. . . , zn I+ yn} is the function than
maps z1 to y, . . . and in the context were a total function
is required, any u Q {zi, . . . ,z,,} to 1. If s E DO, then
(2 E 8) * 38 E I~,ll~lll : z = 8 1 n. Variable8 denoting
sets or sequences are often starred, such as 8.. If j is a
partial function, then s -+f y cs z E Dam(f) A f(z) = y.
If + is a relation, then +* is its reflexive, transitive clo-
sure, pod(+)(S) = {y] z E S A z -+ y}, prc(+)(S) =
(2 1 y E s A 2 + y}. If f E A + A is a continuous
function, A a complete lattice, z E A and z E f(z), then
Iuisjz is the lesst fixed point of j greater than z [Cousot
78, 2.7.0.1]. If X E p(A), and E is a partial ordering of A,
then 1 X = (z’] z E X A z’ C z}.

2.2 Definition and Construction of Ab-
stract Interpretations

We brie5y recall the framework of abetract interpretation as
defined by [Cousot & Coueot 79,Nielson 861.

The standard semantics (operational or denotational) of
a program 114 is typically defined by a mapping M from
states to states :

MQP]I E state --) state

As we wish to express properties w,r.t the set of all reach-
able states, the M function is extended point to point to sets
of states, thus providing the static semantics (or collecting
semantics) :

MsUPj f p(State) + p(Sfate)

An abdtroct scmanfics ie
de5ned by a triple (State 8, MS, (a,~)), where (Stoteb, C) is
a complete lattice that abstract8 sets of states and M* is an
abstraction of Ms. The relationship between (p(Stafe), C)
and (State*, &) is defined by the pair of adjoined junction
(a,7) : both a and 7 are required to be monotonic and to
satisfy (Gousot & Cousot 79, 5.3.0.1,5.3.0.4] :

Q f p(SMe) + state+

7 E State+ 3 p(Stote)
id E yoa

soy E id

Mn is a correcf upper approtimotion of MS iff for all P
[Cousot & Coueot 79, 7.1.0.2] :

a0 MsuPno7 C M*(Pn 0)

How is Sfafe# constructed ? It is possible to invent
Sfde”, and then the pair of adjoined.functiona. Another
approach consists in inducing State* from the structure of
State. Indeed State is constructed from basic operator8 such
aa x,+,+ au well as basic sets such as W and IB. For each

such operator, it is possible to define several abstraction
(and concretiration) functionals varying in cost and preci-
sion. These functional8 synthesize new abstraction (con-
cretiration) functions from existing ones.

2.3 Constructing Abstraction F’unc-
tions

In this section we describe useful abstraction functions and
abstraction functionals that will be used to construct ab
stract domains form concrete ones. Most of these abstrac-
tion function8 were given in [Cousot & Couaot 791 and INiel-
son 861. The concretisation function8 are not described ex-
plicitly, since they are determined by the abstraction func-
tions provided these are surjective complete-U-morphismrr
[Cousot & Cou8ot 79, 5.3.0.53.

We begin with (almost) simplest abetraction function: as
maps the empty set on I, any non empty set on T.

aa(0) = I

an({el,...)) = T

The less informative abstraction function ~1 maps any set
onto I :

al(S) = l.

Another useful abstraction, ae, maps any singleton set onto
itself. It is used for constant propagation.

h(0) = I

a,({z)) = z
ac({zl,za,.. .}) = T

Given a lifted set Al, we may want to abstract sets of
elements. We have two ordering8 : an ordering on the ele-
ments, and the inclusion ordering. As the element ordering
is simple, we can define an abstraction that preserves both
orderings as follows :

f-u(a) = ~S.a(S\{l))

There are several method8 to abstract a set of pairs
p(A x B). Firet of all the independent attribute method
that treats members of A and B separately. Given two ab-
straction functions aA E p(A) + A*, aB E p(B) -+ Bb,
axI computes an abstraction function mapping sets of pairs
to (strict) pairs of abstractions.

QXI QA,QB Ep(AxB)--+(A’+xB’+)
I I axf QA,aB = XS.(aA{al(o,b) E S),aB,(bl(a,b) E S))

The abstract domain A* x B* can be constructed using the
smash product. This identifies elements having the same
meaning (through the induced concretitation function 7) :
for instance : 7((I, 2)) = 7((z, I)) = 7(l) ‘= 0.

However this abstraction ignores the relations between
members of A and B. To obtain better precision, the rela-
tional method can be used :

axR(aAIaB) E P(A x B) -+ p(A+ x Bn)
QXR(QA,QB) = ~S.{(QA(~),Q’B{b}) 1 @,a) Es}

An intermediate approach consists in recording for each
value of &A(a) the abstraction of the set of corresponding
B values [Cousot & Coueot 791. This uses the isomorphism
between p(A x B) and A + p(B).

159

More generally, we may want to reduce the cardinality of
a set of abstract values p(A8). Thia can be done by means
of a eurjective function f E A + B that extract8 from an
abstract value a distinctive information (the tokens of [Jones
6 Muchnick 821) :

a=(f,a) E p(A) + (E + A*)
Q=(f, Q)(S) UU(4 I-+ a(z) I 2 E S)

All these abetraction fun:tions are useful, depending on
the degree of precision needed’

F.Niele.on haa proposed to abstract p(A+B) by A++@
INielson 85, p.1811 :

a+~ a~,a~ Ep(A+B)-+AQfB8
I I afN aAjaE =

XS.A6(a~{z 1 A(z) E S}) LI Bn(a,{z 1 B(z) E S})

However, thia abstraction can be insufficiently precise :
consider a polymorphic language. Then the valuee of a
polymorphic variable can be of several monomorphic types,
and Q+N would abstract these values to T. A more precise
abetraction consists in abstracting p(A + B) by A9 x B8
[Cousot & Cousot 79, 10.1.0.4], baed on the ieomorphiem
p(A+B) N (p(A) x p(B)), the abstraction function ie then:

Q+C(UA, cw) E P(A + B) + (A* x @)
a+c(aA, a3) =

AS.(aA{z I A(z) E S), ~LI{Z I B(z) E S))

Because of the ieomorphism A’ II (A0 + A’ + . . .), it is
poesible to define an abetraction functional for p(X) using
the abstractions for euma and products :

h(a+,ax, QA) = a+(a2,cu,aX(fx4,aA), . . .)

However because A’ is isomorphic to an unbounded aum
of products its abstraction through a. and czXc would result
in an infinite product. Using the ieomorphiem A” I! (IN +
A) and specializing a. w.r.t Q+C and &+N yields :

Q=c ax,w
I 1

E p(A’) + (IN 4 B+)
Q*c ax,aA (S) =

U{ll II 8 ++QX(QA ,...,QA){d) 1 sES}

Q*N

t
QX,aA) E p(A’) - B”

Q.N y , os*)(sB) =

t
2 a.i(ax,aA)(S) = {n t-b 2)
T otherwise

‘Example. Let P, be tqe abstraction function that aeso&tee
to each set of naturals its sign.

s = (l-1, -1)s (O,O), (1, q,{-l,l)l

axd~s,h)(S) = (TB-0

axR(h, ‘h)(s) = {(-,-),(0,0),(+,+),(-,+))

axdh,h)(S) = {--T,0~0,++++}

A more approximate abstraction can be defined by identify-
ing all element8 of the sets of sequences :

a.(a)EA’-,A”
a*(a)(S) = u{z 1 8 f S A 2 E 8)

Sets of partial functions can be abstracted by monotone
maps. To ensure monotonicity we uee the following func-
tion :

man(f) = UC 2’ l-b f(i) 1 2’ 5 z}

Now a lret of functions can be abstracted by :

a-(aA,ag) E p(A + B) + mon(Aff + B+)
&--(01A, Q)(F) =

mot.3
t-J {m(z) ++ mdf(Z)l I f E F A = E Dom(fIl>

The abstract equivalent of application is application, the
abstract equivalent

of updating ie :

upd#(f, 2, ar) = f LJ Urz’ l-k Y I z’ c 2)

Whenever the target of QA (say A#) is such that any
element is equal to the union of a finite number of atome
(an atom is a minimal, non I element), and provided aA is
totally strict (aA is strict and &A(Z) = I + z = L), a more
approximate veraion of a, can be given. Indeed we can
restrict the domain of aA to the atome of A#. Let D,*(a)
be the atomic decomposition of a E A” :

a,, aA,cx~ E p(A --+ B) + (An + Bn)
ad aA, CKB (F) = t I

u{z’ I-, w{f(z)) 1 f E F A z E Dam(f) A

2’ E D*# (QA(Z)))

The abstract equivalent of application is no more appli-
cation but the union of the images of the decomposition :

uPd’+(f,w) = mu++ Y I Z’E DA*(z))

Generally a,a(aA,aB)(F) ia lese precise than
MaA, QB)(F), unless CYA maps atoms to atoms, in which
cake they are equivalent in precision.

PROPOSITION 1 IfaA E p(A) -, A+ and Q~ E p(B) -+
Bn ore abatroction functions, LYA is totally strict, and every
clement of An is the union of u finite number of atom, then
a,a(aA,as) is on abstraction funcfion from p(A -+ 8) to
mon(A# -+ Bn).

3 Concrete Semantics

3.1 Operational Semantics

Rather than directly analyzing a high level language, we con-
sider a language suited to the implementation of functional

160

I E Cmd

:
E cst
E pgm

L E Lab
N E Num
Pr E Prim = {+, =, inj l ct , tuple, cc, array.. .}
p + IL1,...,ILn
I 7 wyk,l WC)

,-*-, L) 1 JuIpP(L)] Apply] Return
I Closurs(L,N)] Stop1 Prin(Pr)

Figure 1: Syntax

languages (as in [Hecht 77,Nielson 85,Stransky 881 with
other languagee). This language is a variant of the SECD
machine [Landin 641 not dissimilar to the FAM [Cardelli
84 , to the the Ponder abstract machine [Fairbairn k Wray
86 I and to the abstract machine of [Nielson & Nielson 861.
The syntax of the language is shown at figure 1. Note that
it is possible to translate arbitrary programs into this lan-
guage using for instance the two level semantics approach
of [Nielson 8 Nielson 881. Given a language L defined by
its denotational semantics, we can analyse L programa by
translating their TML denotations into our language.

Commands operate on states consisting of a value stack, a
store, a reference to a continuation and a program counter.
Stacks are represented by sequences of values, stores by fi-
nite mappings from locationa (Lot) to stored values (Sv)
and continuations by states not comprising stores. Ekpress-
ible values (Ev) are either scalar objects (integers, . ..) or
reference to sharable objects such as sums, tuples, partial
applications (closures) and continuations. Eu also contains
a least element 0 which denotea undefined values. This in-
duces a partial order on State.

state = Lab x Stk x Store x Cent

Stk = Ev’

Store = Lot -+ sv
Conf = Locn

Ev = (Id + Unit + Loc)~

SV = sum -t TUp i- c/d + Cd i- VCC

Sum = IN x Ev

Tup = Ev’
cid = LabxEv’xlN
Cnt = Lab x Sfk x Conf

Vet = Ev’

A program P is a sequence of labeled commands. The
Dup(n) command pushes the nth stack value on top of stack,
cet(C) pushes a constant, Caee(Lr,. ..,L,,) branches to
&, where t is the tag of the sum object on top of the
stack, and pushes the untagged sum value, Junp(L) trane-
fers control (only forward, so that no loops can be con-
structed without Apply), Apply applies a procedure to an
argument. If the procedure is a closure, then the appli-

cation may result either in the construction of a new cl+
lure (a partial application), or in an effective application.
If the procedure is a continuation, then the current local
state is discarded. Clorure(L, N) constructs a closure ob-
ject of order N of the procedure starting at label L, Stop
halt the machine and Prin(Pr) perform various data oper-
ations such as arithmetic (+, -, . . .), tuple construction and
component selection (tuplrt,tuplo2,. . . ,selectr,. . .), sum
injection (InI tact I ,ind l ets,. . .), array creation, selection,
destructive and applicative updating (arrap,eel,upd,fupd).
The cc primitive captures the current procedure continu-
ation, which is sufficiently powerful to model the Scheme
call/cc construct]Hayner & Friedman 871.

The meaning of a program will be defined by the partial
state transition function r mapping states to states (see fig-
ure 2). The meaning of constants is defined by the auxiliary
function K. Primitive operatiorfs are defined by P.

K E Cst -+ Ev
P E (Prim x Ev’ x State) + Ev x Store

New store locations are allocated by the new function. The
exact structure of Lot is left unspecified yet, for instance
whole states may be used as locations (although this would
require domains rather than sets). Indeed the common us-
age of integers (or time stamps) as locations is related : to
each location uniquely corresponds a state (not considering
garbage collection).

new E State + Lot

We outline some typical primitive definitions :

P[tuple,]u’*(L, V’,P,K) =
(Loc(L),a[l ++ Tup(u’*)]) where & = new(L, v*, a,~)

P[injeCt”~(V)(L,V*,(I,nj =
(Loc(t),u(t - Sumfn, v)]) where L = ncu@, U*,U,IE)

P(+ (rnf(Vl), We4))(L, v*,u,nj = (rnf(v, + th),u)
P + (q,)(L,v’,u,n) = (a,u)

I/
P + (-,n)(L,v*,u,n) = (i&u)
P cc]()(L, v’,a,n) = (Conf(n),c)

Now the meaning of a program P in the initial configu-
ration co = (L, u*,u,n) is defined as the (possibly infinite)
sequence of states (co, I, T(T(CO)) . . .) whose last element
(if the sequence is finite) is either an exit state or an error
state.

3.2 Static Semantics

We now define the static semantics as the point to point
exteneion of r to sets of states [Cousot & Coueot 77a] :

States = p(Statc)

Q(Q) = Podt(--‘,)(cs)

Given a set of initial states 9, the set of its immediate suc-
cessors is defined by post h:)(9) which by [Coueot 81,10-4]
can be computed as Ms I 0) :

Ms(cs) = luid (rs U id) cs (2)
>

3.3 Exact Isolation Predicates

The Ms function computes the (possibly infinite) set of suc-
cessors of the initial states. From it, we can now provide a

161

r E state --, state
l(8) =
c88e 8 of

(pup(n)&], u*,u,R) -+ (L + 1, (u’ 1 ?b)::d,u, K)
(@st(C)L~,u*,u,R) --, (L + l,(Kqc])::+-,.)
(

(%
CMe(Ll,... ,Ln)L],LOC(L)::U*,u (f ++ SUm(i,V)]~R) + (Li, U::V*,u[L c, SUm(i, U)],K)

J-p(L’)~~,v*,v) ---) (L’, v’,o,n)
(~ApplyL],u::loe(~)::u’,a[~ I-+ Ch(L’, v’., l)],n) -+

(L’s u::u’*,u[f I-+ Clb(L’, v’*,l),L’~ Cnt(L+ 1,~.,lt)],L’) where L’= new(8)
([Apply,], u::Loc(L)::v*,cr[.f H Cb(L’, v’*, n + l)], 6) +

(L-t l,Loe(L’)::u*,u[L I-+ Cls(L’, v’*,n + l),L’ H Cld(L’, u::u’*,n)],n) where l’ = new(a)
(~Apply,],v::loc(f)::v’,c# H Cnt(L’, V’*,n’)],rc) --, (L’,v::u’.,u[C I-+ Cd(L’, V’*,d)],lc’)
(Return~],u::v*,u[n c-) Cnt(L’, u’*,K’)],n) -b (L’, u::u’*,a[n H Cnf(L’, U’*,n’)],K’)
(II ClOmlrl(L’, n)& d,u,‘c) + (L+ l,Loc(L):: u*,u[fo CIu(L’,(),n)],n) where L = new(b)
([Prh(P)L], Ul::*~~Varit~~P1~~ -w*,u,n) -+ (L + 1, v::v*,u,IE) where (v,u’) = P[~‘](uI, .., U,,ityupl)b

Figure 2: The state transition function T

semantic characterization of isolation : an expreeeible value
v is isolated if it is not accessible : a value is accessible if
there are no valid paths from active are= (stack and con-
tinuation) to the location referred to by u. This provides
a definition of isolation ae a property which we now make
more precise :

DEFINITION 1 (ACCESSIBILITY) A location (E LOC is
accessible from a value u through the store u if r&[u, L,u),
where :

*Ed% hu) = (v E Lot) v X~((U]LOC),f,U)

~toc(fl,&a,~) = (f* = (a) v v ~E.(U,b,u)

vES(a(h))
fckmt (‘5 4 4 = (‘c # n) A *toc(‘G4~)

and S(W) are the directly accceriblc eona of au :

&&~;/I
E Sv-, Eu’
= 1:)
= u

S(Cl$, u’,n)) = I’*
Cnf(L,v’,f)) = (Loc(f)::u’)
Vec(u’)) = u-

The active part8 of a state are those that will be used in
a future computation. We will define the restriction of a
state c to its active parts aa the least state equivalent to c.
Two states can be defined aa equivalent either if both fail to
terminate, or if both produce identical outputs. We aeoume
the existence of a function output E State -+ Out that selects
from a state the output computed no far (we could be more
precise by adjoining an output store to State).

DEFINITION 2 (STATE EQUIVALENCE) TWO datea

cl,cs E Sfotc’ arc equivalent ifl cl M cs, where :
Cl w ‘22 e ((Cl 4; c; 7%) A (ep 4: e: 7%) A (ou~puf(c:) =
outP’+:)))

In the case of programs with partial output, this defini-
tion would not be suitable, aa non’terminating programs
with different outputs would be considered aa equivalent. A
revised definition would be : given two computation traces
(cl,...) and (ca, . . .), for each ci there must exietr a etate cj
such that outpuf(c;) = output (if r preserves the order

of output). In this way, all non-terminating programa would
not be considered aa equivalent.

Now we can define the restriction of a atate el, an the
least defined state ca that ie still equivalent to ~1 :

DEFINITION 3 (STATE RESTRICTION) Given u rtate
c E State, the smdlesf state equivalent to c is R(c), where :

R E State --+ State

R(c) = n{c’ 1 C’ g c A C’ M C}

The R function in a lower closure operator (i.e a reductive
projection). Another u@e of projections in eemantic analysis
was reported in [Launchbury 871 in the context of binding
time analyris.

DEFINITION 4 (ISOLATION) The n-th rtact vdue ie d-
ways isolated in the confczf L if given an initid description
Cp E States, (1 (R(Ms(iP))) L n) holds, where :

I E States -+ Lab --* IN --, B
IcsLn e)

(V(L,U*,U,R) E cs(L)),v = (v’ 1 n) A u E LocA

-cont(‘h (v]Loc), u) A

A ‘*E. ((v* 1 i)s (+‘+fl)
l~i~t~v*ll A i#n

4 Abstract Semantics

4.1 Partitioning the States

The firet step conrietr in partioning sets of rtater by pro-
gram point [Cousot & Cousot 77a]. To each program point
is associated the set of all corresponding rtates. The corre
apondence between States and Stottp is immediate and ia
based on the iaomorphism p(A x 23) N A -+ p(B) :

State p = Lab --+ p(Stl: x Store x Dump)
rp E Statep + Stafep
TP(CP) = U{TP1(L,Vh4 I

L E Dom(cp) A (u*,u,K) E cp(L)}
rp1(c) = {L’ I+ {(u’*,u’,/c’)}] c --tr (L’, V’*,u’,‘c’)}

162

The meaning of a whole program, given a description of the
initial stat- @E Sfotep is hip(@) where :

Mp(cp) = luis (TP U id) cp (3)

The next step is to conetruct appropriate abstractions of
Statep. More precisely, we need to construct abstraction
functions for each component of Stotep : (sets of) value
rtacks, stores and continuations.

4.2 Abstracting Local Stacks

As the language does not allow loope (jump commands can
only skip forward), local stacks have finite heights IQrrther-
more we assume that the set of all stacks obtainable at a
given point have the same height. Thus the o*N is suffi-
cient :

QStk E p(Stk) + Stt”

QStk = Q*N(QxI,QEe)

Stkn = aS&(Stt)) = (E”“):

Assuming that abetract operations are doubly strict, the ab-
stractions of concatenation and projection are concatenation
and projection.

4.3 Abstracting Stored Values

Stored values are abstracted using the standard abstraction
functionals :

aSrm

Sum+

aTup

Tup*

aCl*

c1*n

QCnt
cntff

ave.2

VC8

as9
S”#

=

=

=

aXE(ihaEv)

IN-, Eve
a*C(aXI,aEe)

IN-, Eu”l
axE(id,axf(~*N(aXr,aE~),a,))

Lab -P (N x Ev#‘)

~x~(W~dwtk, f-wont 1)
Lab -I (Stk# x Conln)

+Ev)

E”’

Q+c(Qs,m, QTsps QCI*, Qvec)
Sum+ x lbpff x Clan X Cnt#

The corresponding abstract injection operations are de-
fined as follows :

sum* (t, u) = ({t++ u),LJ-,-L-J-)

Tup#(u.) = (1, {IIu7l I-b u*1, J-P-L 4
ChQ(L,n,u’) = (I,I,{LH (n,u*)},I,I)

cnt + (L, u*, n) = (LJ-,-L{Lw (u’,4),4
V&u) = Lw-,-L~,4

The projection operations are :

StdqS) = {(t,u) 1 u = (S 11)(t)}

Tup#-‘(S) = {u’ 1 u* = (S 1 z)(n))

CvqS) = {(L, n, u’) I in, u’) = (S 13)(L))

cntn-‘(S) = {(L , u*, 4 1 (u-1 4 = (S 14)(Q)

vce”-A(s) = {S 15)

4.4 Abstracting Locations

Until now, the structure of Lot has not been specified. Let
us auppose that each concrete L E Lot ie a tuple repreeenting
the state in which C has been allocated. That is, a location
is composed of a label, a stack, a store and a dump. The
new function is then : new(s) = u.

The lattice of abstract locations can be constructed using
one of the abstraction functionab for products. As we wish
precise approximation of locations, we use the relational ab-
straction function :

&LOC = OXR ~L~b~~stk,aStore~~cOnt (” ‘1

Now several definition8 of (or&, , aktk, Q)S(~~~, c~‘~~,,~) are
suitable.

For instance using (i&al, ~1, or) would distinguish loca-
tione by birth point : ali objecte’allocated at a given program
point are referenced by the same abstract location. In this
case we have (using simplification isomorphisms) :

Lo? N p(Lab)

This precisely models the approximation method of [Jones
81, p.3891 and [Jones & Muchnick 821 later used by [Ruggieri
& Murtagh 88,Mogensen 871. Extensions of this method
[Hudak 86,Stransky 88,Larus & Hilfinger 881 use more pre-
cise abetractione taking into account other state components
such as continuations or initial cell values. They can be de-
scribed by a suitable choice of the abstraction functions. For
example the family of approximations proposed in [Hudak
861 can be modeled by Q’~,,.,~, where n is the order of ap-
proximation and :

Q)C”ont(S) =
{(Li I i (5 11) n] A Cnt#(Li, -Ji+l) E U(k)) 1

(@,(I) E S}

In that case :

Lo3 N p(Lab”+‘)

In the case of programs with recursive data structures
such as trees, these abstractions may fail to detect unshar-
ings. This is because the abstractions chosen for locations
identify data that have different structures. For instance a
non convergent binary tree and a convergent binary tree can
be approximated in the same way. Storeless methods rep
resenting directly sharing information /Schwartz 78,Inoue,
Seki & Yagi 88,Jones &L Le Metayer 891 are more precise in
these cases. But unfortunately they are less precise across
procedure calls, and are not appropriate for languages with
side-effects.

4.5 Abstracting Stores

A set of stores can be abstracted using the a, abstraction
function. However, as abstract locations are sets, we can
use the a-.! abstraction, since each element of a power set
is the union of atome (in this case singleton sete), and that

163

([~p(n)L.D,u’,u,~> --) {(L+l,(u’ 1 n)::u*,Ql4)

(u-t(C)LD, V.,U,K) -+ {(L + l,(Kqc])::V*,O,K)}

(~CMO(Ll,...,L~)~~,U::V’,U,R) + {(Lit U’::U*,U,R) 1 (i,U’) E SUm*-l(~pply’n(U,LOCU-l(U)))}

(UJUP@‘)L], u*, Q,4 * {W’, u*, 09 41
([Apply,], u::u’::u*,u,n) -+

{(L’, u::u’., upP(u,L’, Cnf(L + 1, u’,n)),C’) 1
(L’, n, u”) E as+---’ (apply’+(u, Locn-‘(v’))) A n = 1 A (’ = neuY(s)} U
{(L+ l,Loeqf)::u’, up@(u,L, cls+(L’,n - 1, u::u’,)),n) 1
(L’, A, u’.) E crsq apJ@(u, LoK’(u’))) A n > 1 A L’ = new+(s)} u
{(L’, u::u’. ,ud4 I (L’, u’*, n’) E Cnt+-l(apply’~(u,Loc*-‘(u’)))}

([Retull~,I1, u::u*,u,R) + {(L’, u::V’*,u,R’) 1 (L’, V’., R’) = Cnf+-l(app[y’+(~,Loeff -‘wm
([Clo=e(L’, N)LD, v-, U,R) + {(L + 1, Lot+(L), q#(u,L, ClaqL’,zv, ())),Ic) 1 L = new++)}
(ustoP,DI u*,q,4 + (04 U.,Q,4)
([Prim(Pr)t~,vl::. . . ~~~~~~fl~~~::u*,u,~) + {(L+ 1, v::v*,u’,x) I (v,u’) = PfilPr]((vl,s s s, v,,ity~Plg),8)}
(4 v*,u,4 --t {(L, v*,u,d)

P E Lafafe+ -+ State*

T”(8) = {L W {&*,U,R) ++ (V’,U,K)} 1 (L, V*,U,JC) E @(8)}

r# E Sfafe# -+ Sfofe#
r*(c) = U(r’“(L, v*,u,n) 1 L E Dam(c) A (t,(v’,a,~)) E c(t)}

Figure 3: The abstract function r#

(IL, is totally strict :

*store = Q-9 QLOCI *se (1

storen = Lot* + su”

4.6 Abstracting Values

How can a set of values {t)l, . . .} E p(Eu) be approximated ?
p(Ev) is a set of sum objects. As the language we are an-
alyzing ie polymorphic, several instances of a variable may
be bound to values of different types. Thus we use the CY+C
abetractor. Furthermore ae a value can be undefined (the Cl
value), we use the an abstraction :

aEo = Qn(a+c(ahcp a Vnitr ah))

aht = aa

allnit = a2

Zh+ = 2 x 2 x Locff

Note that the choice of alRt is arbitrary. For instance we
could have chosen an abstraction suitable for constant prop-
agation or range estimation.

The abstract injection and projection functions are :

Irlvqn) = (n,I,I)
Unit+(u)

haf#I:(v) = v 11

1 I;,; ;/ thw+ 1(v) = v 12

LOCV) , , lioc*- (u) = u 13

4.7 Abstracting continuations

Ae procedure continuations are represented by locations, we
can use the same abstraction as for locations, lifted by an :

*cant = m(aLoc)
Conf+ = Lo?

4.8 Abstracting States

Abetract statee can be constructed following two ap
proaches. It is first possible to consider the set of poeai-
ble triples of abstract stacks, abstract stores and abstract
continuation8 using & xR. This correspond8 to the rela
tional method: the analysie would determine relations be-
tween stack components (see for instance [Jones & Muchnick
81,Hudak 86,Horwite, Pfeiffer & Reps 891). However a fully
relational analyeie can have a cost exponential in the size
of the program, as each n-way conditional with m prede-
cessors can yield nm successors. We can use the indepen-
dent attribute method (as in [Jones k Muchnick 82,Stran-
sky 88,Larue & Hilfinger 88j), by ignoring relations between
stacks, stores and continuations using axI.

astde = XS.(axdastk, astore, wmt) 0 4

State+ = astate(Sfatep) (4)
= Lab + Stt” x Store+ x Conf* (5)

Alternatively, the analysis can be made more precise by
using a limited form of relational analysis [Sharir k Pnueli
81,Jonee & Muchnick 82,Stransky 88,Mogensen 891. In this
case we have :

asth = ~S-(a&aXR(%tk, aStote, wont)) 0 S)

164

St&’ = Lab I* (T 3 (SfkQ x store+ x Conf#)) (0)

where p E (Sfk x Store x Conf) -+ T. The precision of the
analysis will now depend on the choice of the p function.
Setting p = A(v*, Q, K) .T yields the non relational analysis
(5). Setting T = INI’ and p au a function that extracts
from the stack the tags of the sum objects directly accessible
would yield a semi relational scheme ([Coueot & Cousot 79,
10.2.0.21). We have found in practice that choosing a p that
extract8 from the current continuation the set of successive
return point6 yields quite precise results (2’ = p(Lab)) :

p E (Sfk x Store x Conf) + p(Lab)
P(v*,u,m) =

{Li+l] G E Born(U) A (Li+lp V*i+l, ni+l) = U(Q)}

The abstraction p * of p can be derived directly.
A further abetraction can be defined in order to get a

smaller domain. We can ignore relations between &ores and
program points, thus yielding a single global store (the re-
trieval function of [Jones & Muchnick 821) :

State+ = Store* x (Lab -+ Sttn x Conf+) (71

In any case the order on Sfafc# is con&tent both with
the subset ordering on State (because abstraction functions
preserve order) and to the element ordering on State (by
definition of a~~) :

PROPOSITION 2 V(Cl,Cs) E Sfatep’,(VL E Lab,Vcr E
G(qJcl E G(L)
wJte(C~)

: Cl Estate CD) =) Q.%ute(G) &St&W

4.9 Abstracting the Transition F’unc-
tion

The abstract equivalent of the transition function r ie shown
at figure 3. The r’+ function computes the successors of an
abstract state. The following auxiliary functions are used :

Lstafe+ = Lab x Stk# x Store+ x Conf+

new

K:

E Lsfafe# -+ Lot+

E Cet-‘Ev#

The exact definition of primitives depends on the defi-
nition of the correeponding abstraction functions. For in-
stance :

newq(L, I?,b,Jc) = (L}
P#[tup1e,Ijv”(L, u*, a,n) =

(Loc#(f), upd’#(q L, Tujq F)))
where .t = new* (L, v*, u,lt)

P”[+](th, w)(L, u’,u,‘4 =
(mfqlntqv,))++(Intqv2)),u)

Pqcc]v’~(L,v’,u,n) = (Loc#(n),u)

The approximate analysis of a whole program given the ab-
etract initial conditions Q is M*(O) where :

M*(c) = his (T+ U id) c (8)

4.10 Abstracting the restriction func-
tion R

The restriction of a state to ita necessary components ia in
essence a backward problem. Thus a precise solution re-
quiree a backward analysis that compute8 from an abstract
state the smallest neceseary predecesaore (w.r.t Estate+)
compatible with the descendants of the initial etates. More
precisely, we look for a monotonic function r~* such that
given a set of initial states 0, a correct upper approximation
of the initial states 0” and a concrete state .Y E Stafe (with
p(Stafc) N Sfatep) :

(9)

The r~* function itself is conetructed with the help of an
auxiliary function B* E Lstafe* x Lsfatc# + Lsfafet,
which given an abstract etate c and one of ite abstract BUC-
cesaorn c’, computes a restriction of c sufficient to generate
c’. The B# function is directly derived from the r’# func-
tion and is not shown here.

Then the approximate analysie of a whole program given
the abstract ent states Cp E State+ and the abstract exit
states Q E State7is MB#(@ 9) : ,

MEJ+(@,*) = his (mn(M”(*)) l-l id) * 00)

Rather than providing explicitly an abetraction of R, we
have provided a backward analyeis, which reetrictrr the result
of the forward analysis by computing backward the minimal
states neceeeary to meet an output epecification.

4.11 Correctness

In this section we provide a summary of the correctnese proof
of our abstract interpretation. We refer to]Deutech 891 for
details. The proof consiste in showing that the abstract
functions are correct approximatione of their etatic counter-
parts.

First, we show that astate is a correct abstraction func-
tion.

PROPOSITION 3 u state is a complete-U-morphism.

DEFINITION 5 An abstract state c E Staten is a correct up-
per approzimafion of cp E Sfatcp by astote iflQState(cp) C c

We next ahow that r* is a correct upper approximation
of rp: given a correct upper approximation of a state cp,
rry compute8 a correct upper approximation of rp(cp). This
will allow UI to prove that M” is a correct upper approxi-
mation of Ms. We give a lemma stating the correctness of
r” w.r.t rpl.

PROPOSITION 4 r”
c E State+

is safe : for all cp E Statep, for ail
such that c ia a correct upper approzimation of

cp:

VL E Dom(cp),
V(V., u, 6) E CP(L),

v(e** ,u#,d+) = c(L),

a.stdJe(rP1(L, u*,u,n)) C r’#(L, v#‘,u~,K+)

165

PROOF : By enumeration of the possible commands. q

PROPOSITION 5 M# is o correct upper epprozimatiorz
MP.

of

PROOF : First show that rd is 4 correct upper approzi-
mation of rP. Then let f,(cP) = cp U zP(cP) and j2(c) =
c LI r+(c). Let Q(cp,c) w astdc(cp) C c, then we show
that Q(luisj~cp,luiaj~c) by fixed point induction (Q is an
inclusive predicate). From this we deduce that astde 0 MP 5
At* o aSt,,te {Cowof 81, Theorem IO-SS]. q

PROPOSITION 6 MB+ is Safe : for dl Cp E SWeP, let
Q? E Statep be the ezit rtates reachable from @, then :
wtate(~(MP(~P))) E &3++(wzte(~)~ QState(*))

5 Approximate Isolation Predi-
cates

Isolation of data is detected by performing a poet analy-
sic on the abstract statee. We define a monotone (w.r.t
implication ordering on IEl) approximate isolation predicate
I# E State+ + Lab -+ IN + Pa. It must be related to I by
the following property :

In (astote(L n =+ I (CP) L n (11)

DEFINITION 6 (ACCESSIBILITY ESTIMATES)

z*E.(v,&%L) = v .+ Lo&l, Cl, Q, L)

f,ELfxY -I (0)
*#L&t, u, L) = tt
~ffLoc(W2,6{&) UL) =B

~~L&,tz,~,L) = v v c&J~4~&PL)
v*ES*(s(f)) l s*

&ont(~,~,~) = &a(LoclY(~)A~,O)

The S’ junction eztracts from an abstract dtorable value
the set of sequences of abstract ezpressible vducs aimultane-
owly acctssibk :

S# E su+ --* p(E”“*)

s+(dU) = {(v) 1 (-, v) E Sumem’(U

{V’ 1 V* E tip’-‘(8”)) u

iv* I L-3 v’) E Crd#-‘(d”)} u

{~OC#(t)::V’ 1 {-, U*, t) E Cnt#-I(,,)}

{u (v E veeqsv)}

DEPINITION 7 (ISOLATION ESTIMATES) The I*
junction is defined 48 jol1ow8:

I+EStated--,Lab+IN+IR
I+cLn*

V(t)(v*,u,~) = c(L) A LE Lot+-‘(v’ 1 n) A

--%ont(~,&~) A A -d&* 1 i,L,u,B)
l~i<lle'II A i#n

PROPOSITION 7 I# provides safe iaolation estimates : the
property (11) is sati8jicd by In.

6 Results

6.1 Implementation

A preliminary prototype haa been implemented in ML. This
includes the analyeer aa well as a compiler for a subeet of ML.
The analyser itself implements the M” and Mnb functions.
The crucial efficiency point is the order in which the program
points are processed during the iteration. Classical data flow
analysera perform a pm-analysie in order to determine a
node listing from the dependencier between program point6
[Kennedy 761. But we can not do 00, because the control ftow
is not a priori available, aa our language comprises higher-
order procedures. Several evaluation orders have been tried.
The moat efficient we have experimented coneiets in locally
iterating each procedure in turn until global stabilization.
But more work is required to find a formal rolution.

6.2 Examples

As an example, we show the analysis of a continuation-based
denotational-like specification of a call by value X-calculus
with constants and a cdl/cc-like conetruct (figure 4). After
a straightforward translation into our language (syntactic
domains replaced by disjoint rum types, lambda-lifting,. . .),
the analysis correctly recognize8 that the continuations are
non-isolated (poeribly shared) with the baee semantics. But
if the equation corresponding to cwcc is suppreeeed, then the
continuations are shown to be ieolated just before applica-
tion, and may thue be discarded during invocation. Indeed
we have tried our method on a epecitication of a full core
Scheme aimilar to that of [Rees & Clinger 861. As with
the last example, our analyaia correctly recognizee that the
continuations can be deallocated before invocation if the
call/cc construct is euppreaaed. Moreover, the etore com-
ponent ia shown to be isolated before updates (i-e : single-
threaded). The example arrays program6 of [Aaea, Holm-
etrom 6 Nilsson 881 have been successfully analyeed.

6.3 Extensions

The work reported here is a first attempt to aolve the prob-
lem of sharing determination for higher-order languages ;
more work ie needed to provide more precise abstraction8
for structured data.

Although we have considered the ca8e of a low-level lan-
guage, we could probably reformulate our work without
much change in the case of higher level, expression oriented
languages.

We have considered the case of a language with lexically
scoped names. However, many languages support con&u&
which introduce dynamically ecoped names, for inetance the
exception mechanisms of ML or ADA. The method proposed
in [Straneky 881 could be used to handle euch constructs.

We have not discueaed how the isolation informations can
be used to transform programs. Work this area is reported
in [Ruggieri & Murtagh 88,Inoue, Seki I Yagi 88,Jones &
Le Metayer 891.

Although we have discussed a epecific problem, Beverai
other problems can be solved in an uniform manner u&g
our analysis. For instance the problem of detecting sharing
of partial applications [Goldberg 871 can be solved by exam-
ining the abstract states corresponding to applications. We

syntax
V E Var
c E Cst
E E Exv
E + VIti:JXV.EI(EI Es)I(cwcc E)

Domains
e E Ev = D+P+K vducs

D = cst constant8
P = K+K procedures

n K = Ev ---, Ev continuations
P E u = Var+Ev environment8

Valnatfonr
apply E Ev -t K + K
apply(Dc)n = Au.1
fJPPb(Pf)n = f(n)
opply(Kn’)n = n’

Figure 4: Example specification of a X-language with
call/cc

can then derive propositions such as : every partial applica-
tion of procedure f to k arguments is not shared. In order to
extend our analysis to languages with call by need, we could
formulate the semantics of a lazy language using explicit rep
reaentatione of delayed expressions as self-modifying proce-
dural thunks. Our analysis method may prove sufficiently
powerful to handle such cases.

7 Conclusion

We have presented a formal method for statically estimating
sharings and lifetimes of dynamically allocated data in a
higher order language with 5rst class continuations. Our
method is based on the abstract interpretation of a suitable
language defined by an operational semantics that explicit6
details such as storage allocation and sharing. An exact
formulation of the problem was given, then a simulation
method that computes a superset of the reachable states
has been constructed. The correctnees of thie simulation
was established following the abstract interpretation proof
method.

References
[Aasa, Holmstrom & Nileson 881 A. Aasa, S. HolmstrSm, and C.

Nilsson. An efficiency comparison of some representations of
purely functional arrays. BIT, 28:490-503, 1988.

[Appel 871 A. Appel. Garbage collection can be faster than stack
allocation. Informath Procewing L&err, (25):276-279, Jun.
1987.

[Appel 89) A. Appel. Simple generational garbage collection and
fast allocation. Sofiukarc Pmcticeand&periencc, 19(2):171-188,
Feb. 1989.

[Barth 771 J-M. Barth. Shifting garbage collection overhead to
compile time. CACM, 20(7):5X3-518, Jul. 1977.

[Blom 891 A. Blora. Update analyair and the cfflcient implemen-
tation of functional aggregates. In Conferewe on I4wfbnd
Pmgmmming Langwqrr and Comp&r Anhitecturr, pages 26-88,
ACM Preu, London, Sep. 1989.

[Cardelli 841 L. Csrdelh. Compiling a functional language. In
Spmpotium 0nJXSP and &lwthaf Programming, pages 208-209,
ACM, 1984.

[Chase 881 DR. Chase. Safety considerations for rtorage allocs-
tion optirnisations. In SIGPLAN’88 Conjetente on Propramming
Longuege Dcrign and Implementation, pager l-9, Atlanta, Jun.
1988.

[Cousot &c Cousot 77a] P. Cousot and R. Cousot. Abstract in-
terpretation : a unified lattice model for static analysis of
programs by construction of approximation of flxpoints. In
4th Annud ACM s#mporivn on Ptincipler of Prcgmmmt-ng L&l-
guaga, pager 288-252, Lor Angeler, Jan. 1977.

[Coumt & Cousot 77b] P. Comot and R. Cousot. Static deter-
mination of dynamic properties of generaliaed type unions.
SXGPLAN Noticer, 12(8):77-94, Mar. 1977.

[Couaot & Cousot 791 P. Couaot and R. Cowt. Systematic de-
rign of program analysis framework*. In wh Annual ACM
Svmporium on Pritaciple~ of Progmmming Languages, pager 269-
282, 1979.

[Cousot 781 P. Couaot. Mtfhodcr ittmt8*ecr de conrtnrcti4n et
d’approzimdion de pointe jk.er d’optieure monotoner cur un treib
lb, and~C rtmantique de pmgmmrne 8. ThLe d’ttat, Mar. 1978.
Wnivemitl sdentiRque et mldicale de Grenoble.

[Cousot 81) P. Couot. Pmgmm FIovt Anafgeie: llheorg and Appfi-
c&&u, chapter Semantic foundations of program analyclis,
pagea 802-842. PrenticaHaU, 1981.

[Coutant 801 D. Coutant. Retargetable high-level atiaa anaiysir.
In lJth Annud ACM Sympolium on Ptincipler of Progwntning
htguage~, pages 119-118, Jan. 1986.

[Deutech 891 A. Deutsch. On determining tijctjmc and die&g of
dgnamicdly dlocated data in higher-order junctional epecijbtbw
(ezhded oerrion). Research Report LXX/RR/dQ/(to appear),
Ecole Polytechnique, 91128 Palaiseau, France, 1989.

[Fairbairn L Wray 861 J. Fairbairn and S.C. Wray. Code genera-
tion techniques for functional languages. In Conference Record
of the 1086 ACM eympoeium on LISP und Functional Pmgmmming,
pages 94-104, Aug. 1986.

[Goldberg 871 B. Goldberg. Detecting sharing of partial applicb
tions in functional programs. In G. Kahn, editor, Functiond
Progmmming Language4 and Computer Aneh&xture, pages 408-
425, Springer Verlag, Sep. 1987. Volume 274 of Leetune Not0
on Computer Science.

[Haynes & Friedman 871 C.T. Haynea and D.P. Friedman. Em-
beding continuations in procedural objects. ACM ‘hnmc-
tiotu onProgmmmingLanguagerandSg&me, 9(4):582-598, Oct.
1987.

[Hecht 771 MS. Hecht. now And& of Computer Progmmr. Else-
vier North-Holland, New York, 1977.

[Horwitt, Pfeiffer L Reps 89) S. Horwitr, P. Pfeiffer, and T.
Reps. Dependence analysis for pointer variables. In Con-
jerence on Prqlmmming Language De&n and Implementation,
pages 28-40, Jun. 1989. Volume 24 of SIGPLAN Noticer.

[Hudak 881 P. Hudak. A semantic model of reference counting
and its abetraction. In Conjerewe Rccont of the l&96 ACM rym-
p&urn on LISP and Fibnotiond Progmnuning, pages 351-863,
Aug. 1980.

167

[Hughes 87) J. Hughes. Backward analysis of functional prm
grams. In D. Bjomer, A.P. Ershov, and N.D Jones, edi-
tors, Proc. Work&p on Partid Ewduation and Mixed Comp&-
tion, pages 155-169, North-Holland, Denmark, Oct. 1987.

[Inoue, Seki & Yagi 88) K. Inoue, Ii. Seki, and II. Yagi. Analysis
of functional programs to detect run-time garbage cells. ACM
lhsnnactio~ on Pmgmmming Languages and SgrCemr, 10(4):55&
578, Oct. 1988.

[Jones & Le Metayer 891 S.B. Jones and D. Le Metayer.
Compil&ime garbage collection by sharing analysis. In Con-
ference on finctiond Proqmmming Language8 and Computer Ar-
chitecture, pages 54-74, ACM Press, London, Sep. 1989.

[Jones & Muchnick 811 N.D. Jones and S. Muchnick. Progmm
Row And+ Theory and Applhtbtu, chapter Flow Analy-
sir and Optimization of Lisglike structures, pages 102-131.
Prentice-Hall, New Jersey, 1981.

[Jones & Muchnick 821 N.D. Jones and S. Muchnick. A flexible
approach to interprocedural data flow analysis and programn
with recursive data structures. In olh Annud ACM Spmpo-
rium on Principles of Progmmming Languager, pages 6674, ACM
Press, 1982.

[Jones 811 N.D. Jones. Flow analysis of lambda expressions. In
Sympom’um on Fimctiond Lmguagcr and Computer Amhitcctun,
pages 376-401, Chalmers University of Technology, Gote-
borgSweden, Jun. 1981.

(Jouvelot & Gifford 891 P. Jouvelot and D.K. Gifford. Reaeoning
about continuations with control effects. In Conference on
Propmmming Language Deign and Implementation, pages 218-
226, ACM Press, Jun. 1989.

[Kastens & Schmidt 861 U. Kaetenr and M. Schmidt. Lifetime
analysis for procedure parameters. In G. Gooa and J. Hart-
manis, editors, European Symporium on Pmgmmming, pages 53-
69, Springer Verlag, Mar. 1986. Volume 213 of I&u* Note.
cm ComputBr Seicnce.

[Kennedy 761 K.W. Kennedy. Node listings applied to data flow
analysis. In sth Annual ACM Sympoeium on Principlcr of Pro-
gramming Longuagcr, pagee 10-21, Jan. 1976.

[Landin 64] J. Landin. l%c Me&&cd Eoduation of Ezpnuiow.
Volume 6, Computer Journal, Jan. 1964.

(Larus C Hilfinger 881 J.R. Larue and P.N. Hilfinger. Detect-
ing conflicts between structure acceesea. In SIGPLAN’88
Conference on Pmgmmming Language Dcrign and Impfementatbn,
pages 21-34, ACM, Jun. 1988.

[Launchbury 87] J. Launchbury. Projections for epecialisation.
In D. Bjomer, A.P. Ershov, and N.D. Jones, editors, Work
rhop on Partid Evduation and M&d Computation, pages 299-
315, North Holland, Oct. 1987.

[Mogeneen 871 T.IE. Mogenaen. Partially static structures in a
self-applicable partial evaluator. In D. Bjbrner, A.P. Ershov,
and N.D. Jones, editors, Work&p on Partial Evduation and

Mized Cmnputafion, pages 325-347, North Holland, Oct. 1987.

[Mogensen 891 T.IE. Mogeneen. Binding time analysis for poly-
morphically typed higher-order languages. In Proc. TAP-
SOFT, pages 298-312, Springer Verlag, 1989. Volume 352
of Lecture Nottr on Computer Science.

[Neirynck, Panangaden L Demen 871 A. Neirynck, P. Panan-
gaden, and A.J. Demers. Computation of aliaeee and support
sets. In f4th Annud ACM Syrnpoeium on Principlcr of Progmm-
ming Lmguuger, pages 274-283, 1987.

[Nielson 0 Nielson 861 H.R. Nielson and F. Nielson. Semantics
directed compiling for functional languages In Annual ACM
Conference ML Lisp and fin&and Propmmming, pages 249-257,
Aug. 1986.

[Nielson L Nielson 881 F. Nielson and H.R. Nielson. Two-level
semantics and code generation. I&or&cd Computer Science,
56(1):5Q-133, Jan. 1988.

[Nielson 851 F. Nielson. Expected forms of data flow analyses. In
H. Ganciger and N.D. Jones, editors, Pmgnwu a~ Data Objectr,
pages 172-191, Springer Verlag, 1985. Volume 217 of Lecture
Noter on Computer Science.

[Raoult & Sethi 841 J.C. Raoult and R. Sethi. Theglobalstorage
needs of a subcomputation. In 11th Annud ACM Sgmporium
on Principlcr of Progmmming Languagcr, pages 149-157, ACM
Preen, 1984.

[Raoult & Sethi 851 J.C. Raoult and Ft. Sethi. On finding Stucked
Athibuter. Technical Report 206, LRI, Universit4 Parie-Sud,
91405 Oreay, France, Feb. 1985.

[I&es & Clinger 861 J. Rees and W Clinger. Reviseds report
on the algorithmic language scheme. SIGPLAN Noticcr,
21(12):37-79, Dec. 1986.

[Ruggieri I Murtagh 881 C. Ruggieri and T. Murtagh. Lifetime
analysis of dynamically allocated objects. In 15thAnnud ACM
Symposium on Principler of Progmmming Longuager, pages 285
293, 1988.

[Schmidt 851 D. Schmidt. Detecting global variables in denota-
tional speciiications. ACM Du~octionr on Programming L4n-

guager clnd S+eme, 7(2):29Q-310, Apr. 1985.

[Schwartz 781 J. Schwartc. Verifying the safe use of destructive
operations in applicative programs. In B. Robinet, editor,
!hn#folmation# de programmer : .se coltoque intcmetiond BUT l4

prqmmmation, pages 394-410. Dunod, Paris, mar. 1978.

[Sestoft 891 P. Se&oft. Replacing function parameters by global
variables. In &nferenCC on finctio?iaI Pqlnmmiing haguagcr

and Computer Architectun, pages 39-53, ACM Press, London,
Sep. 1989.

[Sharir & Pnueli 811 M. Sharir and A. Pnueli. Prqmm Flow And-
urir: theory and Apphbztbw, chapter Two approaches to inter-
procedural data Sow analysis, pages 189-234. Prentice-Hall,
1981.

[Shivem 881 0. Shivers. Control flow analysis in scheme. In
Conferena on Progmmming Language De&n amd Implementation,
pages 164-174, Jun. 1988.

[Stransky 881 I. Stransky. An&c r6mantiqu.e de rtructurer de
dorm&r dgnamiquer avec appkation au COI partidier de langager
LISPienr. PhD thesis, UnivemitC de Paris-Sud, Orsay, France,
Jun. 1988.

[Wadler 881 P. Wadler. Deforestation: transforming programs
to eliminate trees. In European Sgmpom’um On Progmmmhg,
Springer Verlag, 1988. Volume 300 of Lecfun Note, on Cow+
puter Science.

[Weihl 801 W.E. Weihl. Interprocedural data flow analysis in the
preoence of pointers, procedure variables, and label variables.
In 7th Annual A CM Sgmpotium on Principler of Pmgmmming Law
guagcr, pages 8%94, 1980.

168

