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Abstract 

We preeent a static analysie method for determining alias- 
ing and lifetime of dynamically allocated data in lexically 
scoped, higher-order, strict and polymorphic languages with 
5mt class continuations. The goal is validate program trans- 
formation8 that introduce imperative constructs such aa de- 
etructive updatinga, stack allocations and explicit dealloca- 
tiona in order to reduce the run-time memory management 
overhead. Our method is based on an operational model of 
higher order functional programs from which we construct 
statically computable abstractions ueing the abstract inter- 
pretation framework. Our method provides a solution to a 
problem left open [Hudak SS] : determining isolation of data 
in the case of higher order languages with etructured data. 

1 Introduction 

Functional specificatione are a powerful deecription tool. 
They are used in denotational specificatione, functional lan- 
guages and specification languages. Our goal ie to imple- 
ment efficiently functional epecificatione on conventional se- 
quential computers. However, such specifications lack con- 
trol over memory management : there are no means of con- 
trolling aseignment and deallocation of heap allocated data 
etructuree such as tuples, sums, partial applications, arrays, 
numbers and continuations. Because of this, functional pro- 
grams tend to be much slower than their imperative equiv- 
alents. As destructive updating operations have constant 
time and apace coat, it is desirable to transform applicative 
updating6 into imperative updating8 (aa ehown in [Area, 
Holmetrom & Nilsson 881). 

We have developed a method for detecting opportunities 
to automatically transform applicative constructs into im- 
perative conetructe such aa destructive updating8 of com- 
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posite objects (such an partial applications, arrays, complex 
numbera or continuations . . . ), bounded-extent allocations 
(for instance stack allocations) and explicit deallocatione 
(i.e compile-time garbage collection). In order to validate 
these program transformations, two clasrea of informations 
are computed. The liveneaa of data structures is ueed to 
control bounded-extent allocations. The isolation of data 
structures controls the introduction .of destructive opera- 
tions. Theae informations are themselves computed from 
safe approximations of the poesible states of an abstract 
machine simulating the execution of programs from which 
we compute approximate informationr about reockobility of 
data. These informations can be used even in the case of 
imperative languages, as the introduction of explicit deal- 
location commands in a programming language renders the 
language uneafe, aa a program may deallocate a valid refer- 
ence. Compile-time determination of liveness of data may 
be used to check that deallocations are safe. This method 
is an application of the formal framework of abetract inter- 
pretation [Cousot & Coueot 79,Coueot 811. 

1.1 Related work 

Several methods have been proposed to reduce the run-time 
cost of heap management : 

Lifetime analyses have been proposed in [Barth 77,Hughes 
87,Ruggieri & Murtagh 88). Theee analylea are used to 
validate the replacement of indefinite extent allocations by 
bounded-extent allocations. (Hughes 871 deecribes a method 
suitable for higher-order purely functional programs with 
structured data, baaed on a combination of a forward anal- 
yeie and a backward analysis (to determine transmission 
propertiee of procedures). [Chase 881 discusses the safety 
of such transformations. 

Appel hae shown in [Appel 871 that garbage collection 
can be faster that etack allocation. An example of thie is 
provided by the Standard ML [Appel 89) garbage collector 
which is sufficiently efficient to allow the heap allocation of 
the entire run-time stack. In euch a context it ia proba- 
bly not worthwhile to transform heap allocations into stack 
allocations. Unfortunately such a technique is not always 
usable, as it requires assignments not to be frequent, which 
is not the case with imperative languages or lazy languages 
(becauee of the need to update delay closuree). 

Another approach consists in replacing dynamic alloca- 



tions by static allocations, for example by replacing local 
variables by global variables [Baoult & Sethi 84,Raoult & 
Sethi 85,Schmidt 85,Kastens & Schmidt 86,Sestoft 89]. 

An alternative approach to the elimination of temporary 
data is symbolic compoeition, as proposed in [Wadler 881. 
Given an expression /(g(z)), this method computes at com- 
pile time a procedure f, such that f@(z)) = f,(z), but 
which is less space consuming whenever the value of g(z) is 
temporary, Although limited to first order linear programs, 
this approach has the advantage of improving also the time 
complexity of programs by eliminating multiple traversal of 
data structures. 

Sharing analyses for purely functional languages have 
been proposed in : [Schwarts 78,Inoue, Seki & Yagi 88,Bloss 
89,Jones k Le Metayer 891. The goal of these analyses is to 
validate program transformations such as introduction of 
destructive updatings and explicit deallocations. [Schwarts 
781 describes a verification system for ueer-supplied sharing 
declarations in a first order language without side-effects. 
Sharing is directly described by abstract values, and this 
can cause information to be lost acroes procedure calls. [In- 
oue, Seki & Yagi 881 presents a method to perform compile- 
time garbage collection of temporary results in a functional, 
lexically-scoped, strict, first order language with dynami- 
caiiy allocated data. It is based on the combination of an 
analysis that detects newly allocated cells and a transmis- 
sion analysis. These analyses compute informations relative 
to a prespecified regular pattern (for example linearly linked 
lists), but have a cost linear in the ske of the program. (Bless 
891 describes a method for determining isolation of data in 
the case of a lazy, first order language with tlat arrays using 
path analysis. [Jones & Le Metayer 891 extends [Schwartz 
78). Bather than relying on user-supplied declarations, this 
method computes sharing information and is based on the 
combination of two backward analyses (transmission and ne- 
cessity of data) and a forward analysis. The language is a 
lexically-scoped, strict, first order language with dynami- 
cally allocated data. Abstract values are made finite by a 
depth-limiting technique similar to that of [Jones & Much- 
nick Sl]. 

Several sharing analyses for non-purely functional lan- 
guages have been described. The method reported in 
[Cousot & Cousot 77bJ is an alias analysis that computes at 
each program point a partition of the program variables into 
disjoint collections such that if two variables belong to dis- 
tinct collections, then they cannot refer to the same record 
(even indirectly). [Jones & Muchnick 81,Jones 8 Muchnick 
821 describe several methods to perform data flow analysis 
of languages with dynamic allocation and structured data, 
These methods are forward data flow analyses that com- 
pute descriptions of the possible structure of the values of 
variables in a first order list-processing language with de- 
structive updating and dynamic allocation. The analysis 
of [Jones dc Muchnick 811 computes at each program point 
a set of abstract stores. Each abstract store is a graph 
which is k-limited : no path from the roots has length > k. 
The method reported in [Jones & Muchnick 821 computes 
a single data description per program point. Recursively 
defined structures are approximated by the set of program 
points that allocated them, plus a retrieval function that 
maps program points to structure components. [Jones 81) 
describes a method to perform data and flow analysis of A- 
terms under call-by-value and call-by-name. This is done 
by constructing a function that simulates the states reach- 
able during the interpretation of a X-term using a SECD 
like machine. [Coutant 861 describes an alias analysh for 

first order imperative languages. [Hudak 861 describes a 
method to compute approximations of reference counts of 
dynamically allocated data in a lexically-scoped, strict, first- 
order applicative language with dynamically allocated flat 
arrays. The analysis computes at each program point a set 
of palm of environments mapping variables to (abstract) lo- 
cations and store6 mapping locations to approximate refer- 
ence counts. (Neirynck, Panangaden & Demem 871 presents 
an allas analysis for a strict, higher-order language with side- 
effects, scalar data and bounded-extent allocation of muta- 

ble cells containing scalam. [Stransky 881 describes a general 
method to perform abstract interpretation of dynamically 
scoped, strict, first order languages with dynamically allo- 
cated mutable data. It computes for each program point 
an abstract environment and an abstract etore represented 
by a graph. [Larus & Hilfinger 881 presents a method to 
determine aliasing of structured data in the case of a strict, 
lexically-scoped, first order language with dynamically al- 
located mutable data. It computes at each program point 
a graph modeling the set of possible stores than can arise. 
[Horwitz, Pfeiffer & Reps 891 describes a method for deter- 
mining data dependence0 between program statements in a 
language with dynamically allocated data. It is an extension 
of [Jones & Muchnick 811. 

[ Weihl80,Shivers 881 describe control-flow and call-graph 
estimation methods for languages with procedure parame- 
ters or first class procedures. These methods could be used 
to extend a first order analysis. But the resulting call graph 
could be too conservative in the case of programs which 
make intensive use of higher-order procedures. Moreover, 
in order to flow analyse a procedure call, we need to known 
what procedure is involved, but also its environment, so that 
a call graph is not sufficient. 

A static analysis for a higher-order language with first 
class continuations was deecribed in [Jouvelot Q Gifford 891. 
It is not based on abstract interpretation but on effect check- 
ing. This method can be used to detect stack allocability 
of objects, and relies to some extent on user supplied dec- 
larations. It does not however achieve the effect of sharing 
analysis. 

Our goal is to develop a semantically based sharing 
and lifetime analysis method applyable to lexically-scoped, 
strict, higher-order languages with dynamically allocated 
data. 

1.2 Overview 

Section 2 retails the framework of abstract interpretation. 
Section 3.1 describes a typical functional language which 
will be the subject of the discussion. This language will be 
described by means of an operational, state-transition based 
semantics that captures store-level details such as sharings. 
Liveness and isolation of data structures will be formulated 
by means of predicates on the set of reachable states (section 
3.3). In this framework we construct an abstract semantics 
(section 4). We then construct approximate isolation predi- 
cates defined on approximate states (section 5). A summary 
of the correctness proof is then presented (section 6). We 
then conclude by a presentation of some results and possible 
extensions. 
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2 Preliminaries 

2.1 Notations 

If f E Dr -+ Ds and S E p(Di), then f(S) denotes 
{j(z) 1 z E S}. If D = Di + Ds, then the injection 
function8 are (by abuse of overloading) Dr E Di + D 
and Da E Ds -+ D. If 8 E L?’ and d E. D, then d::s da 
notes (d)§8 ; (21 w yr,. . . , zn I+ yn} is the function than 
maps z1 to y, . . . and in the context were a total function 
is required, any u Q {zi, . . . ,z,,} to 1. If s E DO, then 
(2 E 8) * 38 E I~,ll~lll : z = 8 1 n. Variable8 denoting 
sets or sequences are often starred, such as 8.. If j is a 
partial function, then s -+f y cs z E Dam(f) A f(z) = y. 
If + is a relation, then +* is its reflexive, transitive clo- 
sure, pod(+)(S) = {y ] z E S A z -+ y}, prc(+)(S) = 
(2 1 y E s A 2 + y}. If f E A + A is a continuous 
function, A a complete lattice, z E A and z E f(z), then 
Iuisjz is the lesst fixed point of j greater than z [Cousot 
78, 2.7.0.1]. If X E p(A), and E is a partial ordering of A, 
then 1 X = (z’ ] z E X A z’ C z}. 

2.2 Definition and Construction of Ab- 
stract Interpretations 

We brie5y recall the framework of abetract interpretation as 
defined by [Cousot & Coueot 79,Nielson 861. 

The standard semantics (operational or denotational) of 
a program 114 is typically defined by a mapping M from 
states to states : 

MQP]I E state --) state 

As we wish to express properties w,r.t the set of all reach- 
able states, the M function is extended point to point to sets 
of states, thus providing the static semantics (or collecting 
semantics) : 

MsUPj f p(State) + p(Sfate) 

An abdtroct scmanfics ie 
de5ned by a triple (State 8, MS, (a,~)), where (Stoteb, C) is 
a complete lattice that abstract8 sets of states and M* is an 
abstraction of Ms. The relationship between (p(Stafe), C) 
and (State*, &) is defined by the pair of adjoined junction 
(a,7) : both a and 7 are required to be monotonic and to 
satisfy (Gousot & Cousot 79, 5.3.0.1,5.3.0.4] : 

Q f p(SMe) + state+ 

7 E State+ 3 p(Stote) 
id E yoa 

soy E id 

Mn is a correcf upper approtimotion of MS iff for all P 
[Cousot & Coueot 79, 7.1.0.2] : 

a0 MsuPno7 C M*(Pn 0) 

How is Sfafe# constructed ? It is possible to invent 
Sfde”, and then the pair of adjoined.functiona. Another 
approach consists in inducing State* from the structure of 
State. Indeed State is constructed from basic operator8 such 
aa x,+,+ au well as basic sets such as W and IB. For each 

such operator, it is possible to define several abstraction 
(and concretiration) functionals varying in cost and preci- 
sion. These functional8 synthesize new abstraction (con- 
cretiration) functions from existing ones. 

2.3 Constructing Abstraction F’unc- 
tions 

In this section we describe useful abstraction functions and 
abstraction functionals that will be used to construct ab 
stract domains form concrete ones. Most of these abstrac- 
tion function8 were given in [Cousot & Couaot 791 and INiel- 
son 861. The concretisation function8 are not described ex- 
plicitly, since they are determined by the abstraction func- 
tions provided these are surjective complete-U-morphismrr 
[Cousot & Cou8ot 79, 5.3.0.53. 

We begin with (almost) simplest abetraction function: as 
maps the empty set on I, any non empty set on T. 

aa(0) = I 

an({el,...)) = T 

The less informative abstraction function ~1 maps any set 
onto I : 

al(S) = l. 

Another useful abstraction, ae, maps any singleton set onto 
itself. It is used for constant propagation. 

h(0) = I 

a,({z)) = z 
ac({zl,za,.. .}) = T 

Given a lifted set Al, we may want to abstract sets of 
elements. We have two ordering8 : an ordering on the ele- 
ments, and the inclusion ordering. As the element ordering 
is simple, we can define an abstraction that preserves both 
orderings as follows : 

f-u(a) = ~S.a(S\{l)) 

There are several method8 to abstract a set of pairs 
p(A x B). Firet of all the independent attribute method 
that treats members of A and B separately. Given two ab- 
straction functions aA E p(A) + A*, aB E p(B) -+ Bb, 
axI computes an abstraction function mapping sets of pairs 
to (strict) pairs of abstractions. 

QXI QA,QB Ep(AxB)--+(A’+xB’+) 
I I axf QA,aB = XS.(aA{al(o,b) E S),aB,(bl(a,b) E S)) 

The abstract domain A* x B* can be constructed using the 
smash product. This identifies elements having the same 
meaning (through the induced concretitation function 7) : 
for instance : 7( (I, 2)) = 7((z, I)) = 7(l) ‘= 0. 

However this abstraction ignores the relations between 
members of A and B. To obtain better precision, the rela- 
tional method can be used : 

axR(aAIaB) E P(A x B) -+ p(A+ x Bn) 
QXR(QA,QB) = ~S.{(QA(~),Q’B{b}) 1 @,a) Es} 

An intermediate approach consists in recording for each 
value of &A(a) the abstraction of the set of corresponding 
B values [Cousot & Coueot 791. This uses the isomorphism 
between p(A x B) and A + p(B). 
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More generally, we may want to reduce the cardinality of 
a set of abstract values p(A8). Thia can be done by means 
of a eurjective function f E A + B that extract8 from an 
abstract value a distinctive information (the tokens of [Jones 
6 Muchnick 821) : 

a=(f,a) E p(A) + (E + A*) 
Q=(f, Q)(S) UU(4 I-+ a(z) I 2 E S) 

All these abetraction fun:tions are useful, depending on 
the degree of precision needed’ 

F.Niele.on haa proposed to abstract p(A+B) by A++@ 
INielson 85, p.1811 : 

a+~ a~,a~ Ep(A+B)-+AQfB8 
I I afN aAjaE = 

XS.A6(a~{z 1 A(z) E S}) LI Bn(a,{z 1 B(z) E S}) 

However, thia abstraction can be insufficiently precise : 
consider a polymorphic language. Then the valuee of a 
polymorphic variable can be of several monomorphic types, 
and Q+N would abstract these values to T. A more precise 
abetraction consists in abstracting p(A + B) by A9 x B8 
[Cousot & Cousot 79, 10.1.0.4], baed on the ieomorphiem 
p(A+B) N (p(A) x p(B)), the abstraction function ie then: 

Q+C(UA, cw) E P(A + B) + (A* x @) 
a+c(aA, a3) = 

AS.(aA{z I A(z) E S), ~LI{Z I B(z) E S)) 

Because of the ieomorphism A’ II (A0 + A’ + . . .), it is 
poesible to define an abetraction functional for p(X) using 
the abstractions for euma and products : 

h(a+,ax, QA) = a+(a2,cu,aX(fx4,aA), . . .) 

However because A’ is isomorphic to an unbounded aum 
of products its abstraction through a. and czXc would result 
in an infinite product. Using the ieomorphiem A” I! (IN + 
A) and specializing a. w.r.t Q+C and &+N yields : 

Q=c ax,w 
I 1 

E p(A’) + (IN 4 B+) 
Q*c ax,aA (S) = 

U{ll II 8 ++QX(QA ,...,QA){d) 1 sES} 

Q*N 

t 
QX,aA) E p(A’) - B” 

Q.N y , os*)(sB) = 

t 
2 a.i(ax,aA)(S) = {n t-b 2) 
T otherwise 

‘Example. Let P, be tqe abstraction function that aeso&tee 
to each set of naturals its sign. 

s = (l-1, -1)s (O,O), (1, q,{-l,l)l 

axd~s,h)(S) = (TB-0 

axR(h, ‘h)(s) = {(-,-),(0,0),(+,+),(-,+)) 

axdh,h)(S) = {--T,0~0,++++} 

A more approximate abstraction can be defined by identify- 
ing all element8 of the sets of sequences : 

a.(a)EA’-,A” 
a*(a)(S) = u{z 1 8 f S A 2 E 8) 

Sets of partial functions can be abstracted by monotone 
maps. To ensure monotonicity we uee the following func- 
tion : 

man(f) = UC 2’ l-b f(i) 1 2’ 5 z} 

Now a lret of functions can be abstracted by : 

a-(aA,ag) E p(A + B) + mon(Aff + B+) 
&--(01A, Q)(F) = 

mot.3 
t-J {m(z) ++ mdf(Z)l I f E F A = E Dom(fIl> 

The abstract equivalent of application is application, the 
abstract equivalent 

of updating ie : 

upd#(f, 2, ar) = f LJ Urz’ l-k Y I z’ c 2) 

Whenever the target of QA (say A#) is such that any 
element is equal to the union of a finite number of atome 
(an atom is a minimal, non I element), and provided aA is 
totally strict (aA is strict and &A(Z) = I + z = L), a more 
approximate veraion of a, can be given. Indeed we can 
restrict the domain of aA to the atome of A#. Let D,*(a) 
be the atomic decomposition of a E A” : 

a,, aA,cx~ E p(A --+ B) + (An + Bn) 
ad aA, CKB (F) = t I 

u{z’ I-, w{f(z)) 1 f E F A z E Dam(f) A 

2’ E D*# (QA(Z))) 

The abstract equivalent of application is no more appli- 
cation but the union of the images of the decomposition : 

uPd’+(f,w) = mu++ Y I Z’E DA*(z)) 

Generally a,a(aA,aB)(F) ia lese precise than 
MaA, QB)(F), unless CYA maps atoms to atoms, in which 
cake they are equivalent in precision. 

PROPOSITION 1 IfaA E p(A) -, A+ and Q~ E p(B) -+ 
Bn ore abatroction functions, LYA is totally strict, and every 
clement of An is the union of u finite number of atom, then 
a,a(aA,as) is on abstraction funcfion from p(A -+ 8) to 
mon(A# -+ Bn). 

3 Concrete Semantics 

3.1 Operational Semantics 

Rather than directly analyzing a high level language, we con- 
sider a language suited to the implementation of functional 
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I E Cmd 

: 
E cst 
E pgm 

L E Lab 
N E Num 
Pr E Prim = {+, =, inj l ct , tuple, cc, array.. .} 
p + IL1,...,ILn 
I 7 wyk,l WC) 

,-*-, L) 1 JuIpP(L) ] Apply] Return 
I Closurs(L,N) ] Stop1 Prin(Pr) 

Figure 1: Syntax 

languages (as in [Hecht 77,Nielson 85,Stransky 881 with 
other languagee). This language is a variant of the SECD 
machine [Landin 641 not dissimilar to the FAM [Cardelli 
84 , to the the Ponder abstract machine [Fairbairn k Wray 
86 I and to the abstract machine of [Nielson & Nielson 861. 
The syntax of the language is shown at figure 1. Note that 
it is possible to translate arbitrary programs into this lan- 
guage using for instance the two level semantics approach 
of [Nielson 8 Nielson 881. Given a language L defined by 
its denotational semantics, we can analyse L programa by 
translating their TML denotations into our language. 

Commands operate on states consisting of a value stack, a 
store, a reference to a continuation and a program counter. 
Stacks are represented by sequences of values, stores by fi- 
nite mappings from locationa (Lot) to stored values (Sv) 
and continuations by states not comprising stores. Ekpress- 
ible values (Ev) are either scalar objects (integers, . ..) or 
reference to sharable objects such as sums, tuples, partial 
applications (closures) and continuations. Eu also contains 
a least element 0 which denotea undefined values. This in- 
duces a partial order on State. 

state = Lab x Stk x Store x Cent 

Stk = Ev’ 

Store = Lot -+ sv 
Conf = Locn 

Ev = (Id + Unit + Loc)~ 

SV = sum -t TUp i- c/d + Cd i- VCC 

Sum = IN x Ev 

Tup = Ev’ 
cid = LabxEv’xlN 
Cnt = Lab x Sfk x Conf 

Vet = Ev’ 

A program P is a sequence of labeled commands. The 
Dup(n) command pushes the nth stack value on top of stack, 
cet(C) pushes a constant, Caee(Lr,. ..,L,,) branches to 
&, where t is the tag of the sum object on top of the 
stack, and pushes the untagged sum value, Junp(L) trane- 
fers control (only forward, so that no loops can be con- 
structed without Apply), Apply applies a procedure to an 
argument. If the procedure is a closure, then the appli- 

cation may result either in the construction of a new cl+ 
lure (a partial application), or in an effective application. 
If the procedure is a continuation, then the current local 
state is discarded. Clorure(L, N) constructs a closure ob- 
ject of order N of the procedure starting at label L, Stop 
halt the machine and Prin(Pr) perform various data oper- 
ations such as arithmetic (+, -, . . .), tuple construction and 
component selection (tuplrt,tuplo2,. . . ,selectr,. . . ), sum 
injection (InI tact I ,ind l ets,. . . ), array creation, selection, 
destructive and applicative updating (arrap,eel,upd,fupd). 
The cc primitive captures the current procedure continu- 
ation, which is sufficiently powerful to model the Scheme 
call/cc construct ]Hayner & Friedman 871. 

The meaning of a program will be defined by the partial 
state transition function r mapping states to states (see fig- 
ure 2). The meaning of constants is defined by the auxiliary 
function K. Primitive operatiorfs are defined by P. 

K E Cst -+ Ev 
P E (Prim x Ev’ x State) + Ev x Store 

New store locations are allocated by the new function. The 
exact structure of Lot is left unspecified yet, for instance 
whole states may be used as locations (although this would 
require domains rather than sets). Indeed the common us- 
age of integers (or time stamps) as locations is related : to 
each location uniquely corresponds a state (not considering 
garbage collection). 

new E State + Lot 

We outline some typical primitive definitions : 

P[tuple,]u’*(L, V’,P,K) = 
(Loc(L),a[l ++ Tup(u’*)]) where & = new(L, v*, a,~) 

P[injeCt”~(V)(L,V*,(I,nj = 
(Loc(t),u(t - Sumfn, v)]) where L = ncu@, U*,U,IE) 

P(+ (rnf(Vl), We4))(L, v*,u,nj = (rnf(v, + th),u) 
P + (q,)(L,v’,u,n) = (a,u) 

I/ 
P + (-,n)(L,v*,u,n) = (i&u) 
P cc]()(L, v’,a,n) = (Conf(n),c) 

Now the meaning of a program P in the initial configu- 
ration co = (L, u*,u,n) is defined as the (possibly infinite) 
sequence of states (co, I, T(T(CO)) . . .) whose last element 
(if the sequence is finite) is either an exit state or an error 
state. 

3.2 Static Semantics 

We now define the static semantics as the point to point 
exteneion of r to sets of states [Cousot & Coueot 77a] : 

States = p(Statc) 

Q(Q) = Podt(--‘,)(cs) 

Given a set of initial states 9, the set of its immediate suc- 
cessors is defined by post h:)(9) which by [Coueot 81,10-4] 
can be computed as Ms I 0) : 

Ms(cs) = luid (rs U id) cs (2) 
> 

3.3 Exact Isolation Predicates 

The Ms function computes the (possibly infinite) set of suc- 
cessors of the initial states. From it, we can now provide a 
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r E state --, state 
l(8) = 
c88e 8 of 

(pup(n)&], u*,u,R) -+ (L + 1, (u’ 1 ?b)::d,u, K) 
(@st(C)L~,u*,u,R) --, (L + l,(Kqc])::+-,.) 
( 

( % 
CMe(Ll,... ,Ln)L],LOC(L)::U*,u (f ++ SUm(i,V)]~R) + (Li, U::V*,u[L c, SUm(i, U)],K) 

J-p(L’)~~,v*,v) ---) (L’, v’,o,n) 
(~ApplyL],u::loe(~)::u’,a[~ I-+ Ch(L’, v’., l)],n) -+ 

(L’s u::u’*,u[f I-+ Clb(L’, v’*,l),L’~ Cnt(L+ 1,~.,lt)],L’) where L’= new(8) 
([Apply,], u::Loc(L)::v*,cr[.f H Cb(L’, v’*, n + l)], 6) + 

(L-t l,Loe(L’)::u*,u[L I-+ Cls(L’, v’*,n + l),L’ H Cld(L’, u::u’*,n)],n) where l’ = new(a) 
(~Apply,],v::loc(f)::v’,c# H Cnt(L’, V’*,n’)],rc) --, (L’,v::u’.,u[C I-+ Cd(L’, V’*,d)],lc’) 
( Return~],u::v*,u[n c-) Cnt(L’, u’*,K’)],n) -b (L’, u::u’*,a[n H Cnf(L’, U’*,n’)],K’) 
( II ClOmlrl(L’, n)& d,u,‘c) + (L+ l,Loc(L):: u*,u[fo CIu(L’,(),n)],n) where L = new(b) 
([Prh(P)L], Ul::*~~Varit~~P1~~ -w*,u,n) -+ (L + 1, v::v*,u,IE) where (v,u’) = P[~‘](uI, .., U,,ityupl)b 

Figure 2: The state transition function T 

semantic characterization of isolation : an expreeeible value 
v is isolated if it is not accessible : a value is accessible if 
there are no valid paths from active are= (stack and con- 
tinuation) to the location referred to by u. This provides 
a definition of isolation ae a property which we now make 
more precise : 

DEFINITION 1 (ACCESSIBILITY) A location ( E LOC is 
accessible from a value u through the store u if r&[u, L,u), 
where : 

*Ed% hu) = (v E Lot) v X~((U]LOC),f,U) 

~toc(fl,&a,~) = (f* = (a) v v ~E.(U,b,u) 

vES(a(h)) 
fckmt (‘5 4 4 = (‘c # n) A *toc(‘G4~) 

and S(W) are the directly accceriblc eona of au : 

&&~;/I 
E Sv-, Eu’ 
= 1:) 
= u 

S(Cl$, u’,n)) = I’* 
Cnf(L,v’,f)) = (Loc(f)::u’) 
Vec(u’)) = u- 

The active part8 of a state are those that will be used in 
a future computation. We will define the restriction of a 
state c to its active parts aa the least state equivalent to c. 
Two states can be defined aa equivalent either if both fail to 
terminate, or if both produce identical outputs. We aeoume 
the existence of a function output E State -+ Out that selects 
from a state the output computed no far (we could be more 
precise by adjoining an output store to State). 

DEFINITION 2 (STATE EQUIVALENCE) TWO datea 

cl,cs E Sfotc’ arc equivalent ifl cl M cs, where : 
Cl w ‘22 e ((Cl 4; c; 7%) A (ep 4: e: 7%) A (ou~puf(c:) = 
outP’+:))) 

In the case of programs with partial output, this defini- 
tion would not be suitable, aa non’terminating programs 
with different outputs would be considered aa equivalent. A 
revised definition would be : given two computation traces 
(cl,...) and (ca, . . .), for each ci there must exietr a etate cj 
such that outpuf(c;) = output (if r preserves the order 

of output). In this way, all non-terminating programa would 
not be considered aa equivalent. 

Now we can define the restriction of a atate el, an the 
least defined state ca that ie still equivalent to ~1 : 

DEFINITION 3 (STATE RESTRICTION) Given u rtate 
c E State, the smdlesf state equivalent to c is R(c), where : 

R E State --+ State 

R(c) = n{c’ 1 C’ g c A C’ M C} 

The R function in a lower closure operator (i.e a reductive 
projection). Another u@e of projections in eemantic analysis 
was reported in [Launchbury 871 in the context of binding 
time analyris. 

DEFINITION 4 (ISOLATION) The n-th rtact vdue ie d- 
ways isolated in the confczf L if given an initid description 
Cp E States, (1 (R(Ms(iP))) L n) holds, where : 

I E States -+ Lab --* IN --, B 
IcsLn e) 

(V(L,U*,U,R) E cs(L)),v = (v’ 1 n) A u E LocA 

-cont(‘h (v]Loc), u) A 

A ‘*E. ((v* 1 i)s (+‘+fl) 
l~i~t~v*ll A i#n 

4 Abstract Semantics 

4.1 Partitioning the States 

The firet step conrietr in partioning sets of rtater by pro- 
gram point [Cousot & Cousot 77a]. To each program point 
is associated the set of all corresponding rtates. The corre 
apondence between States and Stottp is immediate and ia 
based on the iaomorphism p(A x 23) N A -+ p(B) : 

State p = Lab --+ p(Stl: x Store x Dump) 
rp E Statep + Stafep 
TP(CP) = U{TP1(L,Vh4 I 

L E Dom(cp) A (u*,u,K) E cp(L)} 
rp1(c) = {L’ I+ {(u’*,u’,/c’)} ] c --tr (L’, V’*,u’,‘c’)} 
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The meaning of a whole program, given a description of the 
initial stat- @E Sfotep is hip(@) where : 

Mp(cp) = luis (TP U id) cp (3) 

The next step is to conetruct appropriate abstractions of 
Statep. More precisely, we need to construct abstraction 
functions for each component of Stotep : (sets of) value 
rtacks, stores and continuations. 

4.2 Abstracting Local Stacks 

As the language does not allow loope (jump commands can 
only skip forward), local stacks have finite heights IQrrther- 
more we assume that the set of all stacks obtainable at a 
given point have the same height. Thus the o*N is suffi- 
cient : 

QStk E p(Stk) + Stt” 

QStk = Q*N(QxI,QEe) 

Stkn = aS&(Stt)) = (E”“): 

Assuming that abetract operations are doubly strict, the ab- 
stractions of concatenation and projection are concatenation 
and projection. 

4.3 Abstracting Stored Values 

Stored values are abstracted using the standard abstraction 
functionals : 

aSrm 

Sum+ 

aTup 

Tup* 

aCl* 

c1*n 

QCnt 
cntff 

ave.2 

VC8 

as9 
S”# 

= 

= 

= 

aXE(ihaEv) 

IN-, Eve 
a*C(aXI,aEe) 

IN-, Eu”l 
axE(id,axf(~*N(aXr,aE~),a,)) 

Lab -P (N x Ev#‘) 

~x~(W~dwtk, f-wont 1) 
Lab -I (Stk# x Conln) 

+Ev) 

E”’ 

Q+c(Qs,m, QTsps QCI*, Qvec) 
Sum+ x lbpff x Clan X Cnt# 

The corresponding abstract injection operations are de- 
fined as follows : 

sum* (t, u) = ({t++ u),LJ-,-L-J-) 

Tup#( u.) = (1, {IIu7l I-b u*1, J-P-L 4 
ChQ(L,n,u’) = (I,I,{LH (n,u*)},I,I) 

cnt + (L, u*, n) = (LJ-,-L{Lw (u’,4),4 
V&u) = Lw-,-L~,4 

The projection operations are : 

StdqS) = {(t,u) 1 u = (S 11)(t)} 

Tup#-‘(S) = {u’ 1 u* = (S 1 z)(n)) 

CvqS) = {(L, n, u’) I in, u’) = (S 13)(L)) 

cntn-‘(S) = {(L , u*, 4 1 (u-1 4 = (S 14)(Q) 

vce”-A(s) = {S 15) 

4.4 Abstracting Locations 

Until now, the structure of Lot has not been specified. Let 
us auppose that each concrete L E Lot ie a tuple repreeenting 
the state in which C has been allocated. That is, a location 
is composed of a label, a stack, a store and a dump. The 
new function is then : new(s) = u. 

The lattice of abstract locations can be constructed using 
one of the abstraction functionab for products. As we wish 
precise approximation of locations, we use the relational ab- 
straction function : 

&LOC = OXR ~L~b~~stk,aStore~~cOnt ( ” ‘1 

Now several definition8 of (or&, , aktk, Q)S(~~~, c~‘~~,,~) are 
suitable. 

For instance using (i&al, ~1, or) would distinguish loca- 
tione by birth point : ali objecte’allocated at a given program 
point are referenced by the same abstract location. In this 
case we have (using simplification isomorphisms) : 

Lo? N p(Lab) 

This precisely models the approximation method of [Jones 
81, p.3891 and [Jones & Muchnick 821 later used by [Ruggieri 
& Murtagh 88,Mogensen 871. Extensions of this method 
[Hudak 86,Stransky 88,Larus & Hilfinger 881 use more pre- 
cise abetractione taking into account other state components 
such as continuations or initial cell values. They can be de- 
scribed by a suitable choice of the abstraction functions. For 
example the family of approximations proposed in [Hudak 
861 can be modeled by Q’~,,.,~, where n is the order of ap- 
proximation and : 

Q)C”ont(S) = 
{(Li I i (5 11) n] A Cnt#(Li, -Ji+l) E U(k)) 1 

(@,(I) E S} 

In that case : 

Lo3 N p(Lab”+‘) 

In the case of programs with recursive data structures 
such as trees, these abstractions may fail to detect unshar- 
ings. This is because the abstractions chosen for locations 
identify data that have different structures. For instance a 
non convergent binary tree and a convergent binary tree can 
be approximated in the same way. Storeless methods rep 
resenting directly sharing information /Schwartz 78,Inoue, 
Seki & Yagi 88,Jones &L Le Metayer 891 are more precise in 
these cases. But unfortunately they are less precise across 
procedure calls, and are not appropriate for languages with 
side-effects. 

4.5 Abstracting Stores 

A set of stores can be abstracted using the a, abstraction 
function. However, as abstract locations are sets, we can 
use the a-.! abstraction, since each element of a power set 
is the union of atome (in this case singleton sete), and that 
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([~p(n)L.D,u’,u,~> --) {(L+l,(u’ 1 n)::u*,Ql4) 

(u-t(C)LD, V.,U,K) -+ {(L + l,(Kqc])::V*,O,K)} 

(~CMO(Ll,...,L~)~~,U::V’,U,R) + {(Lit U’::U*,U,R) 1 (i,U’) E SUm*-l(~pply’n(U,LOCU-l(U)))} 

(UJUP@‘)L], u*, Q,4 * {W’, u*, 09 41 
([Apply,], u::u’::u*,u,n) -+ 

{(L’, u::u’., upP(u,L’, Cnf(L + 1, u’,n)),C’) 1 
(L’, n, u”) E as+---’ (apply’+(u, Locn-‘(v’))) A n = 1 A (’ = neuY(s)} U 
{(L+ l,Loeqf)::u’, up@(u,L, cls+(L’,n - 1, u::u’,)),n) 1 
(L’, A, u’.) E crsq apJ@(u, LoK’(u’))) A n > 1 A L’ = new+(s)} u 
{(L’, u::u’. ,ud4 I (L’, u’*, n’) E Cnt+-l(apply’~(u,Loc*-‘(u’)))} 

([Retull~,I1, u::u*,u,R) + {(L’, u::V’*,u,R’) 1 (L’, V’., R’) = Cnf+-l(app[y’+(~,Loeff -‘wm 
([Clo=e(L’, N)LD, v-, U,R) + {(L + 1, Lot+(L), q#(u,L, ClaqL’,zv, ())),Ic) 1 L = new++)} 
(ustoP,DI u*,q,4 + (04 U.,Q,4) 
([Prim(Pr)t~,vl::. . . ~~~~~~fl~~~::u*,u,~) + {(L+ 1, v::v*,u’,x) I (v,u’) = PfilPr]((vl,s s s, v,,ity~Plg),8)} 
(4 v*,u,4 --t {(L, v*,u,d) 

P E Lafafe+ -+ State* 

T”(8) = {L W {&*,U,R) ++ (V’,U,K)} 1 (L, V*,U,JC) E @(8)} 

r# E Sfafe# -+ Sfofe# 
r*(c) = U(r’“(L, v*,u,n) 1 L E Dam(c) A (t,(v’,a,~)) E c(t)} 

Figure 3: The abstract function r# 

(IL, is totally strict : 

*store = Q-9 QLOCI *se ( 1 

storen = Lot* + su” 

4.6 Abstracting Values 

How can a set of values {t)l, . . .} E p(Eu) be approximated ? 
p(Ev) is a set of sum objects. As the language we are an- 
alyzing ie polymorphic, several instances of a variable may 
be bound to values of different types. Thus we use the CY+C 
abetractor. Furthermore ae a value can be undefined (the Cl 
value), we use the an abstraction : 

aEo = Qn(a+c(ahcp a Vnitr ah)) 

aht = aa 

allnit = a2 

Zh+ = 2 x 2 x Locff 

Note that the choice of alRt is arbitrary. For instance we 
could have chosen an abstraction suitable for constant prop- 
agation or range estimation. 

The abstract injection and projection functions are : 

Irlvqn) = (n,I,I) 
Unit+(u) 

haf#I:(v) = v 11 

1 I;,; ;/ thw+ 1(v) = v 12 

LOCV) , , lioc*- (u) = u 13 

4.7 Abstracting continuations 

Ae procedure continuations are represented by locations, we 
can use the same abstraction as for locations, lifted by an : 

*cant = m(aLoc) 
Conf+ = Lo? 

4.8 Abstracting States 

Abetract statee can be constructed following two ap 
proaches. It is first possible to consider the set of poeai- 
ble triples of abstract stacks, abstract stores and abstract 
continuation8 using & xR. This correspond8 to the rela 
tional method: the analysie would determine relations be- 
tween stack components (see for instance [Jones & Muchnick 
81,Hudak 86,Horwite, Pfeiffer & Reps 891). However a fully 
relational analyeie can have a cost exponential in the size 
of the program, as each n-way conditional with m prede- 
cessors can yield nm successors. We can use the indepen- 
dent attribute method (as in [Jones k Muchnick 82,Stran- 
sky 88,Larue & Hilfinger 88j), by ignoring relations between 
stacks, stores and continuations using axI. 

astde = XS.( axdastk, astore, wmt) 0 4 

State+ = astate(Sfatep) (4) 
= Lab + Stt” x Store+ x Conf* (5) 

Alternatively, the analysis can be made more precise by 
using a limited form of relational analysis [Sharir k Pnueli 
81,Jonee & Muchnick 82,Stransky 88,Mogensen 891. In this 
case we have : 

asth = ~S-(a&aXR(%tk, aStote, wont)) 0 S) 
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St&’ = Lab I* (T 3 (SfkQ x store+ x Conf#)) (0) 

where p E (Sfk x Store x Conf) -+ T. The precision of the 
analysis will now depend on the choice of the p function. 
Setting p = A( v*, Q, K) .T yields the non relational analysis 
(5). Setting T = INI’ and p au a function that extracts 
from the stack the tags of the sum objects directly accessible 
would yield a semi relational scheme ([Coueot & Cousot 79, 
10.2.0.21). We have found in practice that choosing a p that 
extract8 from the current continuation the set of successive 
return point6 yields quite precise results (2’ = p(Lab)) : 

p E (Sfk x Store x Conf) + p(Lab) 
P(v*,u,m) = 

{Li+l ] G E Born(U) A (Li+lp V*i+l, ni+l) = U(Q)} 

The abstraction p * of p can be derived directly. 
A further abetraction can be defined in order to get a 

smaller domain. We can ignore relations between &ores and 
program points, thus yielding a single global store (the re- 
trieval function of [Jones & Muchnick 821) : 

State+ = Store* x (Lab -+ Sttn x Conf+) (71 

In any case the order on Sfafc# is con&tent both with 
the subset ordering on State (because abstraction functions 
preserve order) and to the element ordering on State (by 
definition of a~~) : 

PROPOSITION 2 V(Cl,Cs) E Sfatep’,(VL E Lab,Vcr E 
G(qJcl E G(L) 
wJte(C~) 

: Cl Estate CD) =) Q.%ute(G) &St&W 

4.9 Abstracting the Transition F’unc- 
tion 

The abstract equivalent of the transition function r ie shown 
at figure 3. The r’+ function computes the successors of an 
abstract state. The following auxiliary functions are used : 

Lstafe+ = Lab x Stk# x Store+ x Conf+ 

new 

K: 

E Lsfafe# -+ Lot+ 

E Cet-‘Ev# 

The exact definition of primitives depends on the defi- 
nition of the correeponding abstraction functions. For in- 
stance : 

newq(L, I?,b,Jc) = (L} 
P#[tup1e,Ijv”(L, u*, a,n) = 

(Loc#(f), upd’#(q L, Tujq F))) 
where .t = new* (L, v*, u,lt) 

P”[+](th, w)(L, u’,u,‘4 = 
(mfqlntqv,))++(Intqv2)),u) 

Pqcc]v’~(L,v’,u,n) = (Loc#(n),u) 

The approximate analysis of a whole program given the ab- 
etract initial conditions Q is M*(O) where : 

M*(c) = his (T+ U id) c (8) 

4.10 Abstracting the restriction func- 
tion R 

The restriction of a state to ita necessary components ia in 
essence a backward problem. Thus a precise solution re- 
quiree a backward analysis that compute8 from an abstract 
state the smallest neceseary predecesaore (w.r.t Estate+) 
compatible with the descendants of the initial etates. More 
precisely, we look for a monotonic function r~* such that 
given a set of initial states 0, a correct upper approximation 
of the initial states 0” and a concrete state .Y E Stafe (with 
p(Stafc) N Sfatep) : 

(9) 

The r~* function itself is conetructed with the help of an 
auxiliary function B* E Lstafe* x Lsfatc# + Lsfafet, 
which given an abstract etate c and one of ite abstract BUC- 
cesaorn c’, computes a restriction of c sufficient to generate 
c’. The B# function is directly derived from the r’# func- 
tion and is not shown here. 

Then the approximate analysie of a whole program given 
the abstract ent states Cp E State+ and the abstract exit 
states Q E State7is MB#(@ 9) : , 

MEJ+(@,*) = his (mn(M”(*)) l-l id) * 00) 

Rather than providing explicitly an abetraction of R, we 
have provided a backward analyeis, which reetrictrr the result 
of the forward analysis by computing backward the minimal 
states neceeeary to meet an output epecification. 

4.11 Correctness 

In this section we provide a summary of the correctnese proof 
of our abstract interpretation. We refer to ]Deutech 891 for 
details. The proof consiste in showing that the abstract 
functions are correct approximatione of their etatic counter- 
parts. 

First, we show that astate is a correct abstraction func- 
tion. 

PROPOSITION 3 u state is a complete-U-morphism. 

DEFINITION 5 An abstract state c E Staten is a correct up- 
per approzimafion of cp E Sfatcp by astote iflQState(cp) C c 

We next ahow that r* is a correct upper approximation 
of rp: given a correct upper approximation of a state cp, 
rry compute8 a correct upper approximation of rp(cp). This 
will allow UI to prove that M” is a correct upper approxi- 
mation of Ms. We give a lemma stating the correctness of 
r” w.r.t rpl. 

PROPOSITION 4 r” 
c E State+ 

is safe : for all cp E Statep, for ail 
such that c ia a correct upper approzimation of 

cp: 

VL E Dom(cp), 
V(V., u, 6) E CP(L), 

v(e** ,u#,d+) = c(L), 

a.stdJe(rP1(L, u*,u,n)) C r’#(L, v#‘,u~,K+) 
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PROOF : By enumeration of the possible commands. q 

PROPOSITION 5 M# is o correct upper epprozimatiorz 
MP. 

of 

PROOF : First show that rd is 4 correct upper approzi- 
mation of rP. Then let f,(cP) = cp U zP(cP) and j2(c) = 
c LI r+(c). Let Q(cp,c) w astdc(cp) C c, then we show 
that Q(luisj~cp,luiaj~c) by fixed point induction (Q is an 
inclusive predicate). From this we deduce that astde 0 MP 5 
At* o aSt,,te {Cowof 81, Theorem IO-SS]. q 

PROPOSITION 6 MB+ is Safe : for dl Cp E SWeP, let 
Q? E Statep be the ezit rtates reachable from @, then : 
wtate(~(MP(~P))) E &3++(wzte(~)~ QState(*)) 

5 Approximate Isolation Predi- 
cates 

Isolation of data is detected by performing a poet analy- 
sic on the abstract statee. We define a monotone (w.r.t 
implication ordering on IEl) approximate isolation predicate 
I# E State+ + Lab -+ IN + Pa. It must be related to I by 
the following property : 

In (astote( L n =+ I (CP) L n (11) 

DEFINITION 6 (ACCESSIBILITY ESTIMATES) 

z*E.(v,&%L) = v .+ Lo&l, Cl, Q, L) 

f,ELfxY -I (0) 
*#L&t, u, L) = tt 
~ffLoc(W2,6{&) UL) =B 

~~L&,tz,~,L) = v v c&J~4~&PL) 
v*ES*(s(f)) l s* 

&ont(~,~,~) = &a(LoclY(~)A~,O) 

The S’ junction eztracts from an abstract dtorable value 
the set of sequences of abstract ezpressible vducs aimultane- 
owly acctssibk : 

S# E su+ --* p(E”“*) 

s+(dU) = {(v) 1 (-, v) E Sumem’( U 

{V’ 1 V* E tip’-‘(8”)) u 

iv* I L-3 v’) E Crd#-‘(d”)} u 

{~OC#(t)::V’ 1 {-, U*, t) E Cnt#-I(,,)} 

{u ( v E veeqsv)} 

DEPINITION 7 (ISOLATION ESTIMATES) The I* 
junction is defined 48 jol1ow8: 

I+EStated--,Lab+IN+IR 
I+cLn* 

V(t)(v*,u,~) = c(L) A LE Lot+-‘(v’ 1 n) A 

--%ont(~,&~) A A -d&* 1 i,L,u,B) 
l~i<lle'II A i#n 

PROPOSITION 7 I# provides safe iaolation estimates : the 
property (11) is sati8jicd by In. 

6 Results 

6.1 Implementation 

A preliminary prototype haa been implemented in ML. This 
includes the analyeer aa well as a compiler for a subeet of ML. 
The analyser itself implements the M” and Mnb functions. 
The crucial efficiency point is the order in which the program 
points are processed during the iteration. Classical data flow 
analysera perform a pm-analysie in order to determine a 
node listing from the dependencier between program point6 
[Kennedy 761. But we can not do 00, because the control ftow 
is not a priori available, aa our language comprises higher- 
order procedures. Several evaluation orders have been tried. 
The moat efficient we have experimented coneiets in locally 
iterating each procedure in turn until global stabilization. 
But more work is required to find a formal rolution. 

6.2 Examples 

As an example, we show the analysis of a continuation-based 
denotational-like specification of a call by value X-calculus 
with constants and a cdl/cc-like conetruct (figure 4). After 
a straightforward translation into our language (syntactic 
domains replaced by disjoint rum types, lambda-lifting,. . . ), 
the analysis correctly recognize8 that the continuations are 
non-isolated (poeribly shared) with the baee semantics. But 
if the equation corresponding to cwcc is suppreeeed, then the 
continuations are shown to be ieolated just before applica- 
tion, and may thue be discarded during invocation. Indeed 
we have tried our method on a epecitication of a full core 
Scheme aimilar to that of [Rees & Clinger 861. As with 
the last example, our analyaia correctly recognizee that the 
continuations can be deallocated before invocation if the 
call/cc construct is euppreaaed. Moreover, the etore com- 
ponent ia shown to be isolated before updates (i-e : single- 
threaded). The example arrays program6 of [Aaea, Holm- 
etrom 6 Nilsson 881 have been successfully analyeed. 

6.3 Extensions 

The work reported here is a first attempt to aolve the prob- 
lem of sharing determination for higher-order languages ; 
more work ie needed to provide more precise abstraction8 
for structured data. 

Although we have considered the ca8e of a low-level lan- 
guage, we could probably reformulate our work without 
much change in the case of higher level, expression oriented 
languages. 

We have considered the case of a language with lexically 
scoped names. However, many languages support con&u& 
which introduce dynamically ecoped names, for inetance the 
exception mechanisms of ML or ADA. The method proposed 
in [Straneky 881 could be used to handle euch constructs. 

We have not discueaed how the isolation informations can 
be used to transform programs. Work this area is reported 
in [Ruggieri & Murtagh 88,Inoue, Seki I Yagi 88,Jones & 
Le Metayer 891. 

Although we have discussed a epecific problem, Beverai 
other problems can be solved in an uniform manner u&g 
our analysis. For instance the problem of detecting sharing 
of partial applications [Goldberg 871 can be solved by exam- 
ining the abstract states corresponding to applications. We 



syntax 
V E Var 
c E Cst 
E E Exv 
E + VIti:JXV.EI(EI Es)I( cwcc E) 

Domains 
e E Ev = D+P+K vducs 

D = cst constant8 
P = K+K procedures 

n K = Ev ---, Ev continuations 
P E u = Var+Ev environment8 

Valnatfonr 
apply E Ev -t K + K 
apply(Dc)n = Au.1 
fJPPb(Pf)n = f(n) 
opply(Kn’)n = n’ 

Figure 4: Example specification of a X-language with 
call/cc 

can then derive propositions such as : every partial applica- 
tion of procedure f to k arguments is not shared. In order to 
extend our analysis to languages with call by need, we could 
formulate the semantics of a lazy language using explicit rep 
reaentatione of delayed expressions as self-modifying proce- 
dural thunks. Our analysis method may prove sufficiently 
powerful to handle such cases. 

7 Conclusion 

We have presented a formal method for statically estimating 
sharings and lifetimes of dynamically allocated data in a 
higher order language with 5rst class continuations. Our 
method is based on the abstract interpretation of a suitable 
language defined by an operational semantics that explicit6 
details such as storage allocation and sharing. An exact 
formulation of the problem was given, then a simulation 
method that computes a superset of the reachable states 
has been constructed. The correctnees of thie simulation 
was established following the abstract interpretation proof 
method. 
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