On determining lifetime and aliasing of
dynamically allocated data in higher-order
functional specifications

ALAIN DEUTSCH*
ICSLA Team
Laboratoire d’Informatique de I’Ecole Polytechnique (LIX)
91128 Palaiseau Cedex - France.
deutsch@poly.polytechnique.fr

Abstract

We presgent a static analysia method for determining alias-
ing and lifetime of dynamically allocated data in lexically
scoped, higher-order, strict and polymorphic languages with
first class continuations. The goal is validate program trans-
formations that introduce imperative constructs such as de-
structive updatings, stack allocations and explicit dealloca-
tions in order to reduce the run-time memory management
overhead. Our method is based on an operational model of
higher order functional programs from which we construct
statically computable abstractions using the abstract inter-
pretation framework. Our method provides a solution to a
problem left open [Hudak 86] : determining isolation of data
in the case of higher order languages with structured data.

1 Introduction

Functional specifications are a powerful description tool.
They are used in denotational specifications, functional lan-
guages and specification languages. Our goal is to imple-
ment efficiently functional specifications on conventional se-
quential computers. However, such specifications lack con-
trol over memory management : there are no means of con-
trolling assignment and deallocation of heap allocated data
structures such as tuples, sums, partial applications, arrays,
numbers and continuations. Because of this, functional pro-
grams tend to be much slower than their imperative equiv-
alents. As destructive updating operations have constant
time and space cost, it is desirable to transform applicative
updatings into imperative updatings (as shown in [Aasa,
Holmstrom & Nilsson 88]).

We have developed a method for detecting opportunities
to automatically transform applicative constructs into im-
perative constructs such as destructive updatings of com-

*This work has been partly funded by the Greco de Program-
mation du CNRS

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1990 ACM 089791-343-4/90/0001/0157 $1.50

posite objects (such as partial applications, arrays, complex
numbers or continuations ...), bounded-extent allocations
(for instance stack allocations) and explicit deallocations
(i.e compile-time garbage collection). In order to validate
these program transformations, two classes of informations
are computed. The liveness of data structures is used to
control bounded-extent allocations. The isolation of data
structures controls the introduction of destructive opera-
tions. These informations are themselves computed from
safe approximations of the possible states of an abstract
machine simulating the execution of programs from which
we compute approximate informations about reachabslity of
data. These informations can be used even in the case of
imperative languages, as the introduction of explicit deal-
location commands in a programming language renders the
language unsafe, as a program may deallocate a valid refer-
ence. Compile-time determination of liveness of data may
be used to check that deallocations are safe. This method
is an application of the formal framework of abstract inter-
pretation [Cousot & Cousot 79,Cousot 81].

1.1 Related work

Several methods have been proposed to reduce the run-time
cost of heap management :

Lifetime analyses have been proposed in [Barth 77,Hughes
87,Ruggieri & Murtagh 88]. These analyses are used to
validate the replacement of indefinite extent allocations by
bounded-extent allocations. [Hughes 87} describes a method
suitable for higher-order purely functional programs with
structured data, based on a combination of a forward anal-
ysis and a backward analysis (to determine transmission
properties of procedures). {Chase 88] discusses the safety
of such transformations.

Appel has shown in [Appel 87] that garbage collection
can be faster that stack allocation. An example of this is
provided by the Standard ML [Appel 89] garbage collector
which is sufficiently efficient to allow the heap allocation of
the entire run-time stack. In such a context it is proba-
bly not worthwhile to transform heap allocations into stack
allocations. Unfortunately such a technique is not always
usable, as it requires assignments not to be frequent, which
is not the case with imperative languages or lazy languages
(because of the need to update delay closures).

Another approach consists in replacing dynamic alloca-

tions by static allocations, for example by replacing local
variables by global variables [Raoult & Sethi 84,Raoult &
Sethi 85,Schmidt 85,Kastens & Schmidt 86,Sestoft 89].

An alternative approach to the elimination of temporary
data is symbolic composition, as proposed in [Wadler 88].
Given an expression f(g(z)), this method computes at com-
pile time a procedure f, such that f(g(z)) = f,(z), but
which is less space consuming whenever the value of g(z) is
temporary. Although limited to first order linear programs,
this approach has the advantage of improving also the time
complexity of programs by eliminating multiple traversal of
data structures.

Sharing analyses for purely functional languages have
been proposed in : {Schwartz 78,Inoue, Seki & Yagi 88,Bloss
89,Jones & Le Metayer 89]. The goal of these analyses is to
validate program transformations such as introduction of
destructive updatings and explicit deallocations. [Schwartz
78] describes a verification system for user-supplied sharing
declarations in a first order language without side-effects.
Sharing is directly described by abstract values, and this
can cause information to be lost across procedure calls. [In-
oue, Seki & Yagi 88] presents a method to perform compile-
time garbage collection of temporary results in a functional,
lexically-scoped, strict, first order language with dynami-
cally allocated data. It is based on the combination of an
analysis that detects newly allocated cells and a transmis-
sion analysis. These analyses compute informations relative
to a prespecified regular pattern (for example linearly linked
lists), but have a cost linear in the size of the program. {Bloss
89] describes a method for determining isolation of data in
the case of a lazy, first order language with flat arrays using
path analysis. [Jones & Le Metayer 89] extends [Schwartz
78]. Rather than relying on user-supplied declarations, this
method computes sharing information and is based on the
combination of two backward analyses (transmission and ne-
cessity of data) and a forward analysis. The language is a
lexically-scoped, strict, first order language with dynami-
cally allocated data. Abstract values are made finite by a
depth-limiting technique similar to that of {Jones & Much-
nick 81}.

Several sharing analyses for non-purely functional lan-
guages have been described. The method reported in
[Cousot & Cousot 77b] is an alias analysis that computes at
each program point a partition of the program variables into
disjoint collections such that if two variables belong to dis-
tinct collections, then they cannot refer to the same record
(even indirectly). [Jones & Muchnick 81,Jones & Muchnick
82] describe several methods to perform data flow analysis
of languages with dynamic allocation and structured data.
These methods are forward data flow analyses that com-
pute descriptions of the possible structure of the values of
variables in a first order list-processing language with de-
structive updating and dynamic allocation. The analysis
of {Jones & Muchnick 81] computes at each program point
a set of abstract stores. Each abstract store is a graph
which is k-Limited : no path from the roots has length > k.
The method reported in [Jones & Muchnick 82] computes
a single data description per program point. Recursively
defined structures are approximated by the set of program
points that allocated them, plus a retrieval function that
maps program points to structure components. [Jones 81]
describes a method to perform data and flow analysis of A-
terms under call-by-value and call-by-name. This is done
by constructing a function that simulates the states reach-
able during the interpretation of a A-term using a SECD
like machine. [Coutant 86] describes an alias analysis for

158

first order imperative languages. [Hudak 86] describes a
method to compute approximations of reference counts of
dynamically allocated data in a lexically-scoped, strict, first-
order applicative language with dynamically allocated flat
arrays. The analysis computes at each program point a set
of pairs of environments mapping variables to (abstract) lo-
cations and stores mapping locations to approximate refer-
ence counts. [Neirynck, Panangaden & Demers 87] presents
an alias analysis for a strict, higher-order language with side-
effects, scalar data and bounded-extent allocation of muta-
ble cells containing acalars. [Stransky 88] describes a general
method to perform abstract interpretation of dynamically
scoped, strict, first order languages with dynamically allo-
cated mutable data. It computes for each program point
an abstract environment and an abstract store represented
by a graph. [Larus & Hilfinger 88] presents a method to
determine aliasing of structured data in the case of a strict,
lexically-scoped, first order language with dynamically al-
located mutable data. It computes at each program point
a graph modeling the set of possible stores than can arise.
[Horwitz, Pfeiffer & Reps 89)] describes a method for deter-
mining data dependences between program statements in a
language with dynamically allocated data. It is an extension
of [Jones & Muchnick 81).

[Weihl 80,Shivers 88] describe control-flow and call-graph
estimation methods for languages with procedure parame-
ters or first class procedures. These methods could be used
to extend a first order analysis, But the resulting call graph
could be too conservative in the case of programs which
make intensive uge of higher-order procedures. Moreover,
in order to flow analyse a procedure call, we need to known
what procedure is involved, but also its environment, so that
a call graph is not sufficient.

A static analysis for a higher-order language with first
class continuations was described in [Jouvelot & Gifford 89].
It is not based on abstract interpretation but on effect check-
ing. This method can be used to detect stack allocability
of objects, and relies to some extent on user supplied dec-
larations. It does not however achieve the effect of sharing
analysis.

Our goal is to develop a semantically based sharing
and lifetime analysis method applyable to lexically-scoped,
strict, higher-order languages with dynamically allocated
data.

1.2 Overview

Section 2 recalls the framework of abstract interpretation.
Section 3.1 describes a typical functional language which
will be the subject of the discussion. This language will be
described by means of an operational, state-transition based
semantice that captures store-level details such as sharings.
Liveness and isolation of data structures will be formulated
by means of predicates on the set of reachable states (section
3.3). In this framework we construct an abstract semantics
(section 4). We then construct approximate isolation predi-
cates defined on approximate states (section 5). A summary
of the correctness proof is then presented (section 6). We
then conclude by a presentation of some results and possible
extensions.

2 Preliminaries

2.1 Notations

If f € Dy = Dz and S € p(D1), then f(S) denotes
{f(z) | z € 8}. X D = D) + D3, then the injection
functions are (by abuse of overloading) D; € D; — D
and D; € D =+ D. If s € D* and d € D, then d::s de-
notes (d)§s ; {z1 ~ y1,...,2Zn ~* ya} is the function than
maps z; to y; ... and in the context were a total function
is required, any v & {z1,...,2a} to L. If s € D*, then
(z € &)« 3n € [1,]|s]]j : 2 =8 | n. Variables denoting
sets or sequences are often starred, such as s*. If f is a
partial function, then z —; y ¢ z € Dom(f) A f(z) = y.
If — is a relation, then —° is its reflexive, transitive clo-
sure, post(—)(S) = {y |z € S A z — y}, pre(=)(S) =
{zlyeS Az —-y}. Hf€E A Aisa continuous
function, A a complete lattice, z € A and z C f(z), then
luisfz is the least fixed point of f greater than z [Cousot
78, 2.7.0.1]. If X € p(A), and C is a partial ordering of A,
then | X ={z'|z€ X A 2'C z}.

2.2 Definition and Construction of Ab-
stract Interpretations

We briefly recall the framework of abstract interpretation as
defined by [Cousot & Cousot 79,Nielson 85].

The standard semantics (operational or denotational) of
a program [P] is typically defined by a mapping M from
states to states :

M[P] € State — State

As we wish to express properties w.r.t the set of all reach-
able states, the M function is extended point to point to sets
of states, thus providing the static semantics (or collecting
semantics) :

Ms[[P] € p(State) — p(State)

An abstract semantics is
defined by a triple {State*, M*, (@, 7)), where (State®,C) is
a complete lattice that abstracts sets of states and M* is an
abstraction of Ms. The relationship between (p(State),C)
and (State® L) is defined by the pair of adjoined functions
{a,7) : both & and 7y are required to be monotonic and to
satisfy [Cousot & Cousot 79, §.3.0.1,5.3.0.4] :

a € p(State) — State*
4 € State* o p(State)
td C qoa

aoy L dd

M* is a correct upper approzimation of Ms iff for all P
[Cousot & Cousot 79, 7.1.0.2] :

ao Ms[P]oq E M¥[P] (1)

How is State® constructed ? It is possible to invent
State®, and then the pair of adjoined.functions. Another
approach consists in inducing State* from the structure of
State. Indeed State is constructed from basic operators such
as X,+,— as well as basic sets such as IN and IB. For each

159

such operator, it is possible to define several abstraction
(and concretization) functionals varying in cost and preci-
sion. These functionals synthesize new abstraction (con-
cretization) functions from existing ones,

2.3 Constructing Abstraction Func-
tions

In this section we describe useful abstraction functions and
abstraction functionals that will be used to construct ab-
stract domains form concrete ones. Most of these abstrac-
tion functions were given in [Cousot & Cousot 79 and [Niel-
son 85). The concretization functions are not described ex-
plicitly, since they are determined by the abstraction func-
tions provided these are surjective complete-Ll-morphisms
[Cousot & Cousot 79, 5.3.0.5].

We begin with (almost) simplest abstraction function: a2
maps the empty set on 1, any non empty set on T.

az(9) L
az({e1,.-.}) T

The less informative abstraction function o, maps any set
onto 1 :

01(5)

1

Another useful abstraction, a., maps any singleton set onto
itself. It is used for constant propagation.

a.@) = 1L
a({z}) = =
a.({z1,22,...}) = T

Given a lifted set Ay, we may want to abstract sets of
elements. We have two orderings : an ordering on the ele-
ments, and the inclusion ordering. As the element ordering
is simple, we can define an abstraction that preserves both
orderings as follows :

AS.a(S\{L})

ai(a)
There are several methods to abstract a set of pairs
p(A x B), First of all the independent attribute method
that treats members of A and B separately. Given two ab-
straction functions ax € p(4) = A¥,ap € p(B) - BY,
axs computes an abstraction function mapping sets of pairs
to (strict) pairs of abstractions.

€ p{A x B) — (a* x B*)

axIEQA,QB;
= AS.{aa{al(s,b) € S}, ap{bl(s,b) € §})

Qxi\xa,ap

The abstract domain A* x B* can be constructed using the
smash product. This identifies elements having the same
meaning (through the induced concretization function 7) :
for instance : y((L,z)) = v({z, L)) =~(L1)=0.

However this abstraction ignores the relations between

members of A and B. To obtain better precision, the rela-
tional method can be used :

axr(as,an) € p(Ax B)— p(A* x BY)
axr(aa,ap) AS.{{aa{a},as{b}) | (a,}) € S}

An intermediate approach consists in recording for each
value of a{a) the abstraction of the set of corresponding
B values [Cousot & Cousot 79]. This uses the isomorphism
between p(A x B) and A — p(B).

axe(oa,ap) € p(A x B) — (A¥ — B¥)
axs(as,ap) = AS.| [{aa{s} — ap{b}] {a,b) € S}

More generally, we may want to reduce the cardinality of
a set of abstract values p(A"). This can be done by means
of a surjective function f € A — B that extracts from an
abstract value a distinctive information (the tokens of [Jones
& Muchnick 82]) :

a=(f,a) € p(A) — (B — A*)
a=(£,a)(S)LI{/(2) = a{z} | z € 5}

All these abstraction functions are useful, depending on
the degree of precision needed!

F.Nielson has proposed to abstract p(A+ B) by At B*
{Nielson 85, p.181] :

€ p(A+ B) — A* + B*

inemon)
AS.A*(as{z | A(z) € S})u B¥(as{z | B(z) € §})

However, this abstraction can be insufficiently precise :
consider a polymorphic language. Then the values of a
polymorphic variable can be of several monomorphic types,
and a4n would abstract these values to T. A more precise
abstraction consists in abstracting p(A + B) by A* x B¥
[Cousot & Cousot 79, 10.1.0.4], based on the isomorphism
p(A+ B) ~ (p(A) x p(B)), the abstraction function is then:

atc(as ap) € p(A+ B) — (A% x B¥)
a+c(a,¢,aa) =
AS.(aa{z | A(z) € S},ap{z | B(z) € S})

Because of the isomorphism A” ~ (A% + A +...), it is
possible to define an abstraction functional for p(A®) using
the abstractions for sums and products :

ad(ay,ax, an) = as(az, an,ax(ea,aa),...)

However because A® is isomorphic to an unbounded sum
of products its abstraction through a. and axc would result
in an infinite product. Using the isomorphism A% o~ (IN —
A) and specializing a. w.rt aic and a4y yields :

Srofon aa) SPLAT) — (N = BY)

LJlell = ax(aa, ..., cn){s} | s € S}

=

a.Ngax,aA) € p(A') - B#
a.n(ax,aq

z a.c(ax,as)(S) = {n+ z}
T otherwise

1Example. Let a4 be the abstraction function that associates
to each set of naturals its sign.

{(_1) —1): (0,0), (1) 1))("1»1)}
(T, 7)

{("")1(0l0)1<+l+)i("7+)}
{~ 7,004 +}

S
axr(cas,as)(S)
axrl(ae, ae)(S)
axE(a'ta')(s)

i

H

160

A more approximate abstraction can be defined by identify-
ing all elements of the sets of sequences :

a.(a) € A* — A*
aJa)(S)=|J{z|s€S Azcs}

Sets of partial functions can be abstracted by monotone
maps. To ensure monotonicity we use the following func-
tion :

mon(f) =| [{z' ~ f(z') | 2' C 2}
Now a set of functions can be abstracted by :

a—.(aa,ap) € p(A — B) = mon(A* — B¥)
a—(aa,ap)(F) =

mon (U{a,;{z} —ap{f(z)} | fEF A z€E Dom(f)})

The abstract equivalent of application is application, the
abstract equivalent

of updating is :
» - []
upd*(f,2,9) = fu| [{s'— y|2'C 3}

Whenever the target of as (say A*) is such that any
element is equal to the union of a finite number of atoms
(an atom is a minimal, non 1 element), and provided a, is
totally strict (a4 is strict and as(z) = 1L ¢ z = 1), a more
approximate version of a—. can be given. Indeed we can
restrict the domain of a4 to the atoms of A*. Let D, (a)
be the atomic decomposition of ¢ € A* :

a_..rgou, QB} € p(A— B) - (A# - B#)

a_(aa,ap)(F) =

U{z' — ap{f(z)} [f€F A z € Dom(f) A
z' € Daw(aa{z})}

The abstract equivalent of application is no more appli-
cation but the union of the images of the decomposition :

apply'™ (f,2) = L f(D 4w (3))
upd*(f,2,9) = fu|_[{z' — v | 2’ € Dan(2)}

Generally a_(as,ap)(F) is less precise than
a—{a4,ap)(F), unless a4 maps atoms to atoms, in which
case they are equivalent in precision.

PROPOSITION 1 If au € p(A) = A* and ap € p(B) —
B* are abstraction functions, as se totally sirict, and every
element of A¥ is the union of a finite number of atoms, then
a_+(aa,ap) is an abstraction function from p(A — B) to
mon(A* — B¥).

3 Concrete Semantics

3.1 Operational Semantics

Rather than directly analyzing a high level language, we con-
sider a language suited to the implementation of functional

Cmd
Cst
Pgm
Lab
Num
Prim
IL 1scccy ILn

Dup(N) | Cst(C)

Case(Ly,...,Ls) | Jump(L) | Apply| Return
Closure(L,N) | Stop| Prim(Pr)

]

{+,=, inject, tuple, cc,array...}

—~g Yz YO
T llmnmammam

Figure 1: Syntax

languages (as in [Hecht 77,Nieleon 85,Stransky 88] with
other languages). This language is a variant of the SECD
machine [Landin 64] not dissimilar to the FAM [Cardelli
84], to the the Ponder abstract machine [Fairbairn & Wray
86| and to the abstract machine of [Nielson & Nielson 86).
The syntax of the language is shown at figure 1. Note that
it is possible to translate arbitrary programs into this lan-
guage using for instance the two level semantics approach
of [Nielson & Nielson 88]. Given a language L defined by
its denotational semantics, we can analyse L programs by
translating their TML denotations into cur language.

Commands operate on states consisting of a value stack, a
store, a reference to a continuation and a program counter.
Stacks are represented by sequences of values, stores by fi-
nite mappings from locations (Loc) to stored values (Sv)
and continuations by states not comprising stores. Express-
ible values (Ev) are either scalar objects (integers, ...) or
reference to sharable objects such as sums, tuples, partial
applications {closures) and continuations. Ev also contains
a least element {2 which denotes undefined values. This in-
duces a partial order on State.

State Lab x Stk x Store x Cont

Stk = Ev*
Store = Loc— Sv
Cont = Locq

Ev = (Int+ Unit+ Loc)a

Sv = Sum+ Tup+ Cls + Cnt + Vec
Sum = WNxEv

Tup = Ev*

Cls = Labx Ev' xIN

Cnt = Lab x Stk x Cont

Vee = Ev°

A program P is a sequence of labeled commandse. The
Dup{n) command pushes the nth stack value on top of stack,
Cst(C) pushes a constant, Case(L;,...,L,) branches to
L¢, where t is the tag of the sum object on top of the
stack, and pushes the untagged sum value, Jump(L) trans-
fers control (only forward, so that no loops can be con-
structed without Apply), Apply applies a procedure to an
argument. If the procedure is a closure, then the appli-

161

cation may result either in the construction of a new clo-
sure (a partial application), or in an effective application.
If the procedure is a continuation, then the current local
state is discarded. Closure(L, N) constructs a closure ob-
ject of order N of the procedure starting at label L, Stop
halt the machine and Prim(Pr) perform various data oper-
ations such as arithmetic (+,—,...), tuple construction and
component selection (tuple;,tuple,,...,select,,...), sum
injection (inject;,inject;,...), array creation, selection,
destructive and applicative updating (array,sel,upd,fupd).
The cc primitive captures the current procedure continu-
ation, which is sufficiently powerful to model the Scheme
call/cc construct [Haynes & Friedman 87|,

The meaning of a program will be defined by the partial
state transition function 7 mapping states to states {see fig-
ure 2). The meaning of constants is defined by the auxiliary
function K. Primitive operations are defined by P.

K € Cst— Ev
P € (Prim x Ev® x State) — Ev x Store

New store locations are allocated by the new function. The
exact structure of Loc is left unspecified yet, for instance
whole states may be used as locations (although this would
require domains rather than sets). Indeed the common us-
age of integers (or time stamps) as locations is related : to
each location uniquely corresponds a state (not considering
garbage collection).

new € State — Loc

We outline some typical primitive definitions :

Pltuple.}v'" (L, v*, 0, :c.) =

{Loc(t),o [t — Tup(v'")]) where ¢ = new(L,v",0,x)
Plinject.}{v)(L,v",0,k) =

{Loc(L),0[t — Sum(n, v)]) where L= new(L,v",0,x)
Pl+){Int(v1), Int(w)}{L, v*,0,k) = {Int(vy + v2), o)
PI+)(Q, Y (L, v*,0,x) = (02,0
PI+(L, Q) (L,v",0,K) = (R, 0)
Plec){){L,v",0,&8) = (Coni(x),c)

Now the meaning of a program P in the initial configu-
ration ¢o = {L,v",0,x) is defined as the (possibly infinite)
sequence of states {(co, 7{co), 7(7(co))...) whose last element
(if the sequence is finite) is either an exit state or an error
state.

3.2 Static Semantics

We now define the static semantics as the point to point
extension of 7 to sets of states [Cousot & Cousot 77a) :

States p(State)
7s(cs) post(—)(cs)

Given a set of initial states ®, the set of its immediate suc-
cessors is defined by post(—;)(®) which by [Cousot 81, 10-4]
can be computed as Mgs(®

Ms(es) = luis (15 U id) ¢s (2)

ES

3.3 Exact Isolation Predicates

The M function computes the (possibly infinite) set of suc-
cesgsors of the initial states. From it, we can now provide a

T € State — State

7(s) =

case s of
([[Dup(n);,]],u‘,a,x) (L+1,(v Ln)::u‘,o‘, x)
{[cst(C)L],v", 0,6} = (L +1,(KqC]) 0°,0,K)
{ Cuo(L;, L,.)L],Loc(t) u ot Sum(t, N e) —
{[Jump(L’)Ln v*,0,8) = (L', v* a :c)

[[ApplyL],v Loc(t) wh ol — CIJ(L v'*,1)],x) —
(L' vzv'* ot Cla(L'
([App1y.], v::Loc(¢): u ,ole— Cl:(L' v'*,n+ 1)), n)

(L, vizv®, o[t > Sumi, v)], &)

1), ¢ = » Cnt(L+1,v%,x)},¢ '} where £' = new(s)

(L+1,Loe()::v* a’[lH Cis(L’, u",n+ 1), t’ ~ Cls(L', v :ww'", n})], k) where ' = new(s)

(ﬂApplyL],v Loc(t) ot C'nt(L' v, &'}, x)

- (L o', oft s Cnt(L!, 0" m')],)

([Returnt], v::v* O’[IC — Cnt(L',v'"",x")],x) — (L' vy’ ,a'[ch cnt(L' v, &),k
(ﬁCIOlurc(L n);,l],u o,K) — (L+ 1, Loc(t)::v* a[tH Cis(L', (), n}],) where ¢ = new(c)

([Prim{P)L], va::- - - varirygry:iv” a,n)

— (L +1,v:v",0,&) where (v,0') = PEPI{w1, -, Yaritygp))®

Figure 2: The state transition function 7

semantic characterization of isolation : an expressible value
v is isolated if it is not accessible : a value is acceasible if
there are no valid paths from active areas (stack and con-
tinuation) to the location referred to by v. This provides
a definition of isolation as a property which we now make
more precise :

DEFINITION 1 (ACCESSIBILITY) A location ¢ € Loc is
accessible from a value v through the store o iff g, (v, 2,0),
where :

rEe(v, 4,0) = (v &€Loc) V #poe((v|Loc),¢,0)

Froc(lita,0) = (L=GL)VvV \| xg(v,6,0)
vES(e(L1))

Toont(k, ,0) = (k#0) A TLoc(k,¢,0)

and S{av) are the directly accessible sons of sv :

s € Sv— Ev*
S(Sumit,0)) = (v)
S(Tup(v*)) = v
8(Cls(L,v*,n)) = v°
S§Cnt(L,v',£)) = (Loc(f)::v*)
S{Vec(v®)) =

The active parts of a state are those that will be used in
a future computation. We will define the restriction of a
state ¢ to its active parts as the least state equivalent to ¢.
Two states can be defined as equivalent either if both fail to
terminate, or if both produce identical outputs. We assume
the existence of a function oufput € State — Out that selects
from a state the output computed so far (we could be more
precise by adjoining an output store to State).

DEFINITION 2 (STATE EQUIVALENCE) Two states
¢1,¢a € State? are equnva.lent iff 1 N e, where :
c1 85 ca @ ((e1 27 ¢} A¢) A(ea =) ¢ £.) A (output(c}) =

output(c3)))

In the case of programs with partial output, this defini-
tion would not be suitable, as non terminating programs
with different outputs would be considered as equivalent. A
revised definition would be : given two computation traces
{c1,...) and {ca,...}, for each ¢; there must exists a state c;
such that output(c;) = output(c;) (if r preserves the order

162

of output). In this way, all non-terminating programs would
not be considered as equivalent.

Now we can define the restriction of a state c,, as the
least defined state ca that is still equivalent to ¢; :

DEFINITION 3 (STATE RESTRICTION) Given a state
¢ € State, the smallest state equivalent to ¢ is R(c), where :

R € State — State
R(c) M| Cencmc}

The R function is a lower closure operator (i.e a reductive
projection). Another use of projections in semantic analysis
was reported in [Launchbury 87] in the context of binding
time analysis.

DEFINITION 4 (ISOLATION) The n-th stack value is al-
ways ssolated in the contezt L if given an initial deacnptwn
& € States, (1 (R(Ms(®))) L n) holds, where :

I € Stategs — Lab—-IN—-+ 1B
ITesn &
(V(L,v*,0,x8) € cs(L)),v=(v" | n) A v€E LocA
¥ cont (K, (v|Loc), ¢) A
~x gy ((v* | 1),(v|Loc),0)
1Sisie*ll A i#n

4 Abstract Semantics

4.1 Partitioning the States

The first step consists in partioning sets of states by pro-
gram point [Cousot & Cousot 77a]. To each program point
is associated the set of all corresponding states. The corre-
spondence between States and Statep is immediate and is
based on the isomorphism p(A X B) ~ A — p(B) :

Statep = Lab — p(Stk x Store x Dump)
Tp € Stalep — Statep
TP(CP) = L'{TP1<L’ v, IC,U) |
L € Dom(cp) A (v*,0,x) € cp(L)}
tei(e) = {L' — {{v'"°,0", &)} | ¢ =, (L', v'",0',x')}

The meaning of a whole program, given a description of the
initial states & € Statep is Mp(®) where :

Mp(cp) = luis (rp U id) cp (3)

The next step is to construct appropriate abstractions of
Statep. More precisely, we need to construct abstraction
functions for each component of Statep : (sets of) value
stacks, stores and continuations.

4.2 Abstracting Local Stacks

As the language does not allow loops (jump commands can
only skip forward), local stacks have finite heights. Further-
more we assume that the set of all stacks obtainable at a
given point have the same height. Thus the a.n is suffi-
cient :

ase € p(Stk) — Stk*
asie = a'N(axhaEv)
St* = agu(p(Stk)) = (Bv*")]

Assuming that abstract operations are doubly strict, the ab-
stractions of concatenation and projection are concatenation
and projection.

4.3 Abstracting Stored Values

Stored values are abstracted using the standard abstraction
functionals :

asem = axe(id,agy)

Sum¥* = W Ev*

ATyp = ato(axl,aEv)

Tup* = N Ev*’

ac, = oxg(id,axr(a.n(axr,agy),ac))
Cls® ~ Lab— (INx Ev*")

acat = oaxe(id,axr(ase, xcont))
Ccnt* o Lab— (Stk* x Cont*)

Ayee = a’(aEv)

Vee*! = Ev* ‘
agy = a+c(as.,,,, X Tups aCln“Vec)
sv* = Sum® x Tup# x Clis* x cnt*

The corresponding abstract injection operations are de-
fined as follows :

Sum?(t,v) = ({t—v},1,1,1,1)
Tup*(v)) = (L (vl o'}, L, L, 10)
cle¥*(Lyn,v*) = (L, L,{Lw~ (n,v")},1,1)
et (L, v*,5) = (L, L, L {L—(v",k)}, 1)
Vcc#(v) = (4,4,4,1,v)

The projection operations are :

sum*~'(S) = {(t,0) |v=(S | 1))}

Tup® ~'(5) {v* | v =(512)(n)}
Cle*N(S) = {{L,mv") | {n,v") = (S L 3)(L)}

cnt*71(S)
Vec*7(5)

{L, v, k) (o7, x) = (S | 4)(L1)}
{5 5}

4.4 Abstracting Locations

Until now, the structure of Loc has not been specified. Let
us suppose that each concrete £ € Loc is a tuple representing
the state in which £ has been allocated. That is, a location
is composed of a label, a atack, a store and a dump. The
new function is then : new(s) = s.

The lattice of abstract locations can be constructed using
one of the abstraction functionals for products. As we wish
precise approximation of locations, we use the relational ab-
straction function :

’ ! ’
QALoc = axR(QLabs QStks XStorer aCont)

Now several definitions of (QLaby Oers Xseores X'cone) 3T€
suitable.

For instance using (#d,ay, a1, a1} would distinguish loca-
tions by birth point : all objects’allocated at a given program
point are referenced by the same abstract location. In this
case we have (using simplification isomorphisms) :

Loc* ~ p(Lab)

This precisely models the approximation method of [Jones
81, p.389] and {Jones & Muchnick 82] later used by [Ruggieri
& Murtagh 88 Mogensen 87|. Extensions of this method
[Hudak 86,Stransky 88,Larus & Hilfinger 88| use more pre-
cise abstractions taking into account other state components
such as continuations or initial cell values. They can be de-
scribed by a suitable choice of the abstraction functions. For
example the family of appreximations proposed in [Hudak
86] can be modeled by a3,,,, where n is the order of ap-
proximation and :

a'C"ont(S) =
{{Li | s € [1,n] A Cnt*(Li,_,Lis1) € 0(L)) |
(6’, ll) €S

In that case :

Loc* ~ p(Lab™*?)

In the case of programs with recursive data siructures
such as trees, these abstractions may fail to detect unshar-
ings. This is because the abstractions chosen for locations
identify data that have different structures. For instance a
non convergent binary tree and a convergent binary tree can
be approximated in the same way. Storeless methods rep-
resenting directly sharing information [Schwartz 78,Inoue,
Seki & Yagi 88,Jones & Le Metayer 89] are more precise in
these cases. But unfortunately they are less precise across
procedure calls, and are not appropriate for languages with
side-effects.

4.5 Abstracting Stores

A set of stores can be abstracted using the a_. abstraction
function. However, as abstract locations are sets, we can
use the a_s abstraction, since each element of a power set
is the union of atoms (in this case singleton sets), and that

™% € Latate™ —» p(Lstate?)

r"#(a) =f
([oup(n)e],v®,0,5) = {{L+1,(v" | n):v*,0,K)}
[est(C)L],v*,0,8) = {{L +1,(K*[C])::v°,0,x)}

{
é{ICue(Ll,... yLa)L],viiv*,0,8) — {{L;, v'::v*,0,K) | {i,v") € Sum® ' (apply'* (o, Loc* "} (v)))}

ﬂJunp(L')LI], U‘,U,&) - {(L') u.)ai K')}
([apply.], viiv'sv®,0,K) —
(L', vi:v'", upd'* (o, €, Cnt(L + 1, v° k),) |

(L', n,v"") € Cls® " *(apply'™ (0, Loc® " (v'))) A n=1 A & = new?(s)} U

{(L+1, Loc*(£)=v*, upd'* (0,2, Cls* (L',n — 1, v::0"")), x) |

(L', n,v"") € Cls* ™ (appiy'* (o, Loc* ™! (v'))) A n>1 A €' = new#(s)} U

(L', vio" 0,8} | (L', v"*, &) € Cnt* ™" (apply'* (o, Loc#‘l(ul')))} \
([Returni], vi:v®, 0,8) — {(L',vi:v'",0,&') | (L', v'", &'} = Cnt* ™ (apply'* (¢, Loc* ™" (x)))}
([closure(L!, N)L], v", o,5) — {(L + 1, Loc® (£),upd'® (0, ¢, Cls* (L', N, (}}), £} | £ = new® ()}

(HStopL]]x u.)din) had {(Lv v, O',Ic)}

(ﬂPrim(Pr)L]l, Ypiiee "an’ty[{le::u"U»n) - {(L +1, "::“.’0"’(’) l (v,a') = P#HP"H(('-’h Y "aritv[lPrII)")}

(L,v*,0,6) = {{L,v",0,x}}

r'* € Lstate® — State?

r"*(8) = (L~ {p*(v*,0,8) = (v*,0,6)} | (L, v*,0,5) € 'r"#(s)}

r* ¢ State® — State®

r#(c) = L{r"*(L,v",0,£) | L € Dom(c) A {t,{v",0,x)) € ¢(L)}

Figure 3: The abstract function 7%

Qro. is totally strict :

(o B (aLoc’ QSv)
Loc* — Su*

QStore
Store®

4.6 Abstracting Values

How can a set of values {v1,...} € p(Ev) be approximated ?
p(Ev) is a set of sum objects. As the language we are an-
alyzing is polymorphic, several instances of a variable may
be bound to values of different types. Thus we use the atc
abstractor. Furthermore as a value can be undefined (the Q2
value), we use the aqg abstraction :

ag, = oaa(arc(@nt, @Units XLoc))
Ant = Oz

QAYnit - 27
Ev¥ = 2x2x Loc*

Note that the choice of aj,; is arbitrary. For instance we
could have chosen an abstraction suitable for constant prop-
agation or range estimation.

The abstract injection and projection functions are :

Int*(n) = (n,1,1) In*7'(v) = v]1
Unit*(v) = (L,u,1) Unit* '(v) = w2
Loc*(8) = {L,1,8) Loc* '(v) v]3

164

4.7 Abstracting continuations

As procedure continnations are represented by locations, we
can use the same abstraction as for locations, lifted by aq :

an(agoc)
Loc*

QA Cont
Cont*

4.8 Abstracting States

Abstract states can be constructed following two ap-
proaches. It is first possible to consider the set of possi-
ble triples of abstract stacks, abstract stores and abstract
continuations using axg. This corresponds to the rela-
tional method: the analysis would determine relations be-
tween stack components {see for inatance [Jones & Muchnick
81,Hudak 86,Horwitz, Pfeiffer & Reps 89]). However a fully
relational analysis can have a cost exponential in the size
of the program, as each n-way conditional with m prede-
cessors can yield nm successors. We can use the indepen-
dent attribute method (as in (Jones & Muchnick 82,Stran-
sky 88,Larus & Hilfinger 88]), by ignoring relations between
stacks, stores and continuations using ax;.

QAState = AAS'-(C')U(O‘Stln QStore) aCont) o S)
State® = aseate(Stater) (4)
= Lab — Stk* x Store* x Cont* (5)

Alternatively, the analysis can be made more precise by
using a limited form of relational analysis [Sharir & Pnueli
81,Jones & Muchnick 82,Stransky 88,Mogensen 89]. In this
case we have :

AS'(C'=(p'axR(c‘Stlc: QStores aGom‘.)) 0 S)

QX State

State® = Lab s (T — (Stk* x Store* x Cont?)) (6)

where p € (Stk x Store x Cont) — T. The precision of the
analysis will now depend on the choice of the p function.
Setting p = A(v*,0,%).T yields the non relational analysis
(5). Setting T = IN.* and p as a function that extracts
from the stack the tags of the sum objects directly accessible
would yield a semi relational scheme ([Cousot & Cousot 79,
10.2.0.2]). We have found in practice that choosing a p that
extracts from the current continuation the set of successive
return points yields quite precise results (T = p(Lab)) :

¢ € (Stk x Store x Cont) — p(Lab)
p{v*,0,m1) =
{Liy1r [ki € Dom(o) A (Lig1, 0" i41,Ki41) = 0(x:)}

The abstraction p* of p can be derived directly.

A further abstraction can be defined in order to get a
smaller domain. We can ignore relations between stores and
program points, thus yielding a single global store (the re-
trieval function of [Jones & Muchnick 82]) :

State* = Store® x (Lab — Stk* x Cont*) (7

In any case the order on State* is consistent both with
the subset ordering on State (because abstraction functions
preserve order) and to the element ordering on State (by
definition of ag,) :

PROPOSITION 2 V(C1,C;) € Statep?, (VL € Lab,Ve, €
Ci1(L),3ca € Ca(L) : 1 Cstate €3} > @state(C1) Cgpqrew
astate(Ca)

4.9 Abstracting the Transition Func-
tion

The abstract equivalent of the transition function r is shown

at figure 3. The r'* function computes the successors of an
abstract state. The following auxiliary functions are used :

Lstate® = Lab x Stk* x Store® x Cont*
new* € Lstate® — Loc*
k* € Cst— Ev*

The exact definition of primitives depends on the defi-
nition of the corresponding abstraction functions. For in-
stance :

new®(L,v*,0,x) = {L}
P*[tuple, Jo'* (L, v*,0,8) =

(Loc*(£), upd'* (o, ¢, Tup* (v")))

where £ = new* (L, v*,0,x)
P#[I+](V1s W)(Ls v,o, K') =

(Int?* (Int* " (1)) +* (Int* 7 (42)), o)
P*lcc}v'"(L,v",0,&) = (Loc*(x), o)

The approximate analysis of a whole program given the ab-
stract initial conditions ® is M*(®) where :

M*(c) = luis (* L id) ¢ (8

4.10 Abstracting the restriction func-
tion R

The restriction of a state to its necessary components is in
essence a backward problem. Thus a precise solution re-
quires a backward analysis that computes from an abstract
state the smallest necessary predecessors (w.r.t Cg, 0. %)
compatible with the descendants of the initial states. More
precisely, we look for a monotonic function rg¥ such that
given a set of initial states ®, a correct upper approximation
of the initial states * and a concrete state s € State (with
p(State) ~ Statep) :

agtate(R[pre(—+)(s)N | post(—7)(®)]) C (9)
8% (8%)(astate {6})

The rp* function itself is constructed with the help of an
auxiliary function B¥ € Lstate® x Lstate* — Latate®,
which given an abstract state ¢ and one of ita abstract suc-
cessors ¢, computes a restriction of ¢ sufficient to generate
¢'. The B* function is directly derived from the r'* func-
tion and is not shown here.

Then the approximate analysis of a whole program given
the abstract ent? states ® € State™ and the abstract exit
states W € State” is Ma#(‘b,\ll) :

Mp®(®,0) = luis (re*(M*(3)) L id) ¥ (10)

Rather than providing explicitly an abstraction of R, we
have provided a backward analysis, which restricts the result
of the forward analysis by computing backward the minimal
states necessary to meet an output specification.

4.11 Correctness

In this section we provide a summary of the correctness proof
of our abstract interpretation. We refer to [Deutsch 89] for
details. The proof congists in showing that the abstract
functions are correct approximations of their atatic counter-
parts.

First, we show that ag,. i8 a correct abstraction func-
tion.

PROPOSITION 3 agqe. i8 a complete-Li-morphism.

DEFINITION 5 An abstract state c € State® is a correct up-
per approzimation of cp € Statep by agyqse Sff dstaee(cp) C ¢

We next show that 7* is a correct upper approximation
of 7p: given a correct upper approximation of a state ¢p,
r# computes a correct upper approximation of re{cp). This
will allow us to prove that M* is a correct upper approxi-
mation of Ms. We give a lemma stating the correctness of
* wrt 1p,.

PROPOSITION 4 7'* is safe : for all cp € Statep, for all
¢ € State® such that ¢ is o correct upper approzimation of
cp?

VL € Dom(cp),
V{v*,0,k) € cp(L),
V{(o*" o*, x¥*) = ¢(L),
aslate(TPl(Ll v.,al K)) ; T'#<L’ v#.ta#ln#)

PROOF : By enumeration of the possible commands. O

PROPOSITION 5 M™ is a correct upper approzimation of
Mp.

PROOF : First show that t" 45 a correct upper approzi-
mation of rp. Then let fi(cp) = cp Utp(cp) and fa(c) =
cut®(c). Let Q(cp,c) & astate(cr) C ¢, then we show
that Q(luss ficp,luisfac) by fized point induction (Q is an
inclusive predicate). From this we deduce that agiy. 0 Mp C
M* o agyae [Cousot 81, Thearem 10-25]. O

PROPOSITION 6 Mp* is safe : for all ® € Statep, let
W € Statep be the exit states reachable from P, then :
aseate(R(Mp(®))) T Ms?* (astate(P), astate(¥))

5 Approximate Isolation Predi-
cates

Isolation of data is detected by performing a post analy-
sis on the abstract states. We define a monotone (w.r.t
implication ordering on IB) approximate isolation predicate
I* ¢ State* — Lab — IN — IB. It must be related to I by
the following property :

I* (astatelcr)) Ln = I (cp) Ln (11)

DEFINITION 6 (ACCESSIBILITY ESTIMATES)
w#gv(u,h,o’,L) = v I#Lw(tq,ll,U,L)
ta3€Loc? " (v)
™ poc(t,t,0,L) = tt
'#Loc(tla L,0,{t,}uL)=f
W#Loc(terZn”rL) = V
v*ES# (o (1)) vEL*
7% Cont (K, 4,0) = 7% g, (Loc* k), ¢,0,0)

The S* function exztracts from an abstract storable value
the set of sequences of abstract ezpreasible values simultane-
ously accessible :

S¥
5% (sv)

€ Sv¥ - p(Ev*")

{{v) | (< v) € Sum* 7 (s)} U

{v* | v* € Tup* " (sv)} U

{v* | {Lov*) € Cls* ! (av)} U
{Loc*(8)::v* | {-,v", 8) € Cnt* ™ (ov)}
{v|v€E Vec? ' ()}

DEFINITION 7 (ISOLATION ESTIMATES) The I

function is defined as follows:

I* € State®* - Lab—- IN— B
I*¢cLne
V() (v*,0,8) = (L) A L€ Loc* (v* | n) A
¥ Cont(K,4,0) A ~a* g (v* 1 4,4,0,0)
1<i<iv* [Ai#n

ProroOSITION 7 I* provides safe isolation estimates : the
property (11) is satisfied by I*.

V W*E,(u,t,a, {gulL)

166

6 Results

6.1 Implementation

A preliminary prototype has been implemented in ML. This
includes the analyser as well as a compiler for a subset of ML.
The analyser itself implements the M* and Mp* functions.
The crucial efficiency point is the order in which the program
points are processed during the iteration. Classical data flow
analysers perform a pre-analysis in order to determine a
node listing from the dependencies between program points
[Kennedy 76]. But we can not do 8o, because the control flow
is not a priori available, as our language comprises higher-
order procedures. Several evaluation orders have been tried.
The most efficient we have experimented consists in locally
iterating each procedure in turn until global stabilization.
But more work is required fo find a formal solution.

6.2 Examples

As an example, we show the analysis of a continuation-based
denotational-like specification of a call by value A-calculus
with constants and a call/cc-like construct (figure 4). After
a straightforward translation into our language (syntactic
domains replaced by disjoint sum types, lambda-lifting,.. .),
the analysis correctly recognizes that the continuations are
non-isolated (possibly shared) with the base semantics. But
if the equation corresponding to ¢wcc is suppressed, then the
continuations are shown to be isolated just before applica-
tion, and may thus be discarded during invocation. Indeed
we have tried our method on a specification of a full core
Scheme similar to that of [Rees & Clinger 86]. As with
the last example, our analysis correctly recognizes that the
continuations can be deallocated before invocation if the
call/cc construct is suppressed. Moreover, the store com-
ponent is shown to be isolated before updates (i.e : single-
threaded). The example arrays programs of [Aasa, Holm-
strom & Nilsson 88] have been successfully analysed.

6.3 Extensions

The work reported here is a first attempt to solve the prob-
lem of sharing determination for higher-order languages ;
more work is8 needed to provide more precise abstractions
for structured data.

Although we have considered the case of a low-level lan-
guage, we could probably reformulate our work without
much change in the case of higher level, expression oriented
languages.

We have considered the case of a language with lexically
scoped names. However, many languages support constructs
which introduce dynamically scoped names, for instance the
exception mechanisms of ML or ADA. The method proposed
in [Stransky 88] could be used to handle such constructs.

We have not discussed how the isolation informations can
be used to transform programs. Work this area is reported
in [Ruggieri & Murtagh 88,Inoue, Seki & Yagi 88,Jones &
Le Metayer 89].

Although we have discussed a specific problem, several
other problems can be solved in an uniform manner using
our analysis. For instance the problem of detecting sharing
of partial applications [Goldberg 87] can be solved by exam-
ining the abstract states corresponding to applications. We

Syntax
V € Var
C € Cst
E € Exp
E — V|C|AV.E|(E; E3)|(cwec E)
Domains
e € EBv = D+P+ K values
D = Cst consiants
P = K- K procedures
K K = Ev—Ev continuations
p € U = Var— Ev environments
Valuations

apply € Ev - K+ K
apply(Dc)x = Av. L
apply(Pf)x = f(x)
apply(Kk')x = «'

EE€EExp = U—> K — Ev

E[V]ex = x(p[V])

£ g]pn = x[C

é‘ AVE]p«k = x(A&'v.E[E](p[IV] = v]) &)
el(e: Exlles = el Ealp (g)

E(cwee E))px = E[E]p(Av.apply v & (Kx))

Figure 4:

Example specification of a A-language with
call/cc

can then derive propositions such as : every partial applica-
tion of procedure f to k arguments is not shared. In order to
extend our analysis to languages with call by need, we could
formulate the semantics of a lazy language using explicit rep-
resentations of delayed expressions as self-modifying proce-
dural thunks. Our analysis method may prove sufficiently
powerful to handle such cases.

7 Conclusion

We have presented a formal method for statically estimating
sharings and lifetimes of dynamically allocated data in a
higher order language with first class continuations. Our
method ia based on the abstract interpretation of a suitable
language defined by an operational semantics that explicits
details such as storage allocation and sharing. An exact
formulation of the problem was given, then a simulation
method that computes a superset of the reachable states
has been constructed. The correctness of this simulation
was established following the abstract interpretation proof
method.

References

(Aasa, Holmstrom & Nilsson 88] A. Aasa, S. Holmstrdm, and C.
Nilsson. An efficiency comparison of some representations of
purely functional arrays. BIT, 28:490-503, 1988.

[Appel 87] A. Appel. Garbage collection can be faster than stack
allocation. Information Proccesing Letiers, (25):276-279, Jun.
1987.

|Appel 89] A. Appel. Simple generational garbage collection and
fast allocation. Software Practice and Ezperience, 19(2):171-183,
Feb. 1989.

167

[Barth 77] J.M. Barth. Shifting garbage collection overhead to
compile time. CACM, 20(7):513-618, Jul. 1977.

[Bloes 89] A.Bloss. Update analysis and the efficient implemen-
tation of functional aggregates. In Conference on Functional
Programmang Languages and Computer Architecture, pages 2638,
ACM Press, London, Sep. 1989.

[Cardelli 84) L. Cardelli. Compiling a functional language. In
Symposium on LISP and Functional Programming, pages 208209,
ACM, 1984.

[Chase 88] D.R. Chase. Safety considerations for storage alloca-
tion optimirations. In SIGPLAN’88 Conference on Programming
Language Design and Implementation, pages 1-9, Atlanta, Jun.
1988.

[Cousot & Cousot 77a] P. Cousot and R. Cousot. Abstract in-
terpretation : a unified lattice model for static analysis of
programs by construction of approximation of fixpoints. In
4th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 238-252, Los Angeles, Jan. 1977.

[Cousot & Cousot 77b] P. Cousot and R. Cousot. Static deter-

mination of dynamic properties of generalized type unions.
SIGPLAN Notices, 12(3):77-94, Mar. 1977,

[Cousot & Cousot 79] P. Cousot and R. Cousot. Systematic de-
sign of program analysis frameworks. In 6th Annual ACM
Symposium on Principles of Programming Languages, pages 269
282, 1979.

[Cousot 78] P. Cousot. Méthodes itératives de construction et
d'approzimation de poinis fizes d'opérateurs monotonee sur un trei-
lis, analyse s¢mantique de programmes. These d'état, Mar. 1978.
Université scientifique et médicale de Grenoble.

[Cousot 81} P. Cousot. Program Flow Analysis: Theory and Apphi-
cations, chapter Semantic foundations of program analysis,
pages 303-342. Prentice-Hall, 1981.

[Coutant 86] D. Coutant. Retargetable high-level alias analysis.
In 13th Annual ACM Symposum on Principles of Programming
Languages, pages 110-118, Jan. 1986.

[Deutsch 89] A. Deutsch. On determining lifetime and aliasing of
dynamically allocated data in higher-order functional specifications
(extended version). Research Report LIX/RR/89/(to appear),
Ecole Polytechnique, 91128 Palaiseau, France, 1989.

[Fairbairn & Wray 86} J. Fairbairn and S.C. Wray. Code genera-
tion techniques for functional languages. In Conference Record
of the 1986 ACM symposium on LISP and Functional Programming,
pages 94-104, Aug. 1986.

[Goldberg 87] B. Goldberg. Detecting sharing of partial applica-
tions in functional programs. In G. Kahn, editor, Functional
Programming Languages and Computer Architecture, pages 408-
425, Springer Verlag, Sep. 1987. Volume 274 of Lecture Notes
on Computer Science.

[Haynes & Friedman 87] C.T. Haynes and D.P. Friedman. Em-
beding continuations in procedural objects. ACM Transac-
tions on Programming Languages and Systems, 9(4):582-598, Oct.
1987.

[Hecht 77] M.S. Hecht. Flow Analysis of Computer Programs. Else-
vier North-Holland, New York, 1977.

{Horwite, Pfeiffer & Reps 89] S. Horwite, P. Pfeiffer, and T.
Repe. Dependence analysis for pointer variables. In Con-
ference on Programming Language Design and Implementation,
pages 2840, Jun. 1989. Volume 24 of SIGPLAN Notices.

[Hudak 86] P. Hudak. A semantic model of reference counting
and its abetraction. In Conference Record of the 1986 ACM sym-
posium on LISP and Functional Programming, pages 351-363,
Aug. 1986.

[Hughes 87] J. Hughes. Backward analysis of functional pro-
grams. In D. Bjorner, A.P. Ershov, and N.D Jones, edi-
tors, Proc. Workshop on Partial Evaluation and Mized Computa-
tion, pages 156-169, North-Holland, Denmark, Oct. 1987.

{Inoue, Seki & Yagi 88] K. Inoue, H. Seki, and H. Yagi. Analysis
of functional programs to detect run-time garbage cells. ACM
Transactions on Prograrnming Languages and Systems, 10(4):555—
578, Oct. 1988.

[Jones & Le Metayer 89] S.B. Jones and D. Le Métayer.
Compile-time garbage collection by sharing analysis. In Con-
ference on Functional Programming Languages and Computer Ar-
chitecture, pages 54-74, ACM Press, London, Sep. 1989.

[Jones & Muchnick 81] N.D. Jones and S. Muchnick. Program
Flow Analyris: Theory and Applications, chapter Flow Analy-
sis and Optimization of Lisp-like structures, pages 102-131.
Prentice-Hall, New Jersey, 1981.

[Jones & Muchnick 82] N.D. Jones and S. Muchnick. A flexible
approach to interprocedural data flow analysis and programs
with recursive data structures. In %A Annual ACM Sympo-
ssum on Principles of Programming Languages, pages 6674, ACM
Press, 1982.

[Jones 81] N.D. Jones. Flow analysis of lambda expressions. In
Symposium on Functional Languages and Computer Architecture,
pages 376-401, Chalmers University of Technology, Gote-
borg,Sweden, Jun. 1981.

[Jouvelot & Gifford 89] P.Jouvelot and D.K. Gifford. Reasoning
about continuations with control effects. In Conference on
Programming Language Design and Implementation, pages 218~
226, ACM Press, Jun. 1989.

[Kastens & Schmidt 86] U. Kastens and M. Schmidt. Lifetime
analysis for procedure parameters. In G. Goos and J. Hart-
manis, editors, European Symposium on Programming, pages 53—
69, Springer Verlag, Mar. 1986. Volume 213 of Lecture Notes
on Computer Seience.

[Kennedy 76] K.W. Kennedy. Node listings applied to data flow
analysis. In 3th Annual ACM Symposium on Principles of Pro-
grammung Languages, pages 10-21, Jan. 1976.

[Landin 64] J. Landin. The Mechanical Evaluation of Ezpressions.
Volume 6, Computer Journal, Jan. 1964.

(Larus & Hilfinger 88] J.R. Larus and P.N. Hilfinger. Detect-
ing conflicts between structure accesses. In SIGPLAN’S8
Conference on Programming Language Design and Implementation,
pages 21-34, ACM, Jun. 1988.

[Launchbury 87] J. Launchbury. Projections for specialisation.
In D. Bjgrner, A.P. Ershov, and N.D. Jones, editors, Work-
shop on Partial Evaluation and Mized Compulation, pages 209—
315, North Holland, Oct. 1987.

[Mogensen 87] T.E. Mogensen. Partially static structures in a
self-applicable partial evaluator. In D. Bjgrner, A.P. Ershov,
and N.D. Jones, editors, Workshop on Partial Evaluation and
Mized Computation, pages 325-347, North Holland, Oct. 1987.

[Mogensen 89] T.ZE. Mogensen. Binding time analysis for poly-
morphically typed higher-order languages. In Proc. TAP-
SOFT, pages 298-312, Springer Verlag, 1989. Volume 352
of Lecture Notes on Computer Science.

{[Neirynck, Panangaden & Demers 87] A. Neirynck, P. Panan-
gaden, and A.J. Demers. Computation of aliases and support
sets. In 14th Annual ACM Symposium on Principles of Program-
ming Languages, pages 274283, 1987.

[Nielson & Nielson 86] H.R. Nielson and F. Nielson. Semantics
directed compiling for functional languages. In Annual ACM
Conference on Lisp and Functional Programming, pages 249-257,
Aug. 1986.

168

[Nielson & Nielson 88] F. Nielson and H.R. Nielson. Two-level
semantics and code generation. Theoretical Computer Science,
56(1):59-133, Jan. 1988.

{Nielson 85] F. Nielson. Expected forms of data flow analyses. In
H. Ganziger and N.D. Jones, editors, Programs as Data Objects,
pages 172-191, Springer Verlag, 1985. Volume 217 of Lecture
Notes on Computer Science.

[Raoult & Sethi 84] J.C.Raoult and R. Sethi. The global storage
needs of a subcomputation. In 11th Annual ACM Symposium
on Principles of Programming Languages, pages 149-1587, ACM
Press, 1984.

{Racult & Sethi 85] J.C. Raoult and R. Sethi. On Finding Stacked
Atiributes. Technical Report 206, LRI, Université Paris-Sud,
91405 Orsay, France, Feb. 1985.

[Rees & Clinger 86] J. Rees and W Clinger.
on the algorithmic language scheme.
21(12):37-79, Dec. 1986.

[Ruggieri & Murtagh 88] C. Ruggieri and T. Murtagh. Lifetime
analysis of dynamically allocated objects. In 15th Annual ACM
Sympossum on Principles of Programming Languages, pages 285
293, 1988.

[Schmidt 85] D. Schmidt. Detecting global variables in denota-
tional specifications. ACM Transactions on Programming Lan-
guages and Systems, 7(2):299-310, Apr. 1985.

[Schwartr 78] J. Schwartz. Verifying the safe use of destructive
operations in applicative programs. In B. Robinet, editor,
Transformations de programmes : 3° collogque international sur la
programmation, pages 394-410, Dunod, Paris, mar. 1978.

Revised® report
SIGPLAN Notices,

[Sestoft 89] P. Sestoft. Replacing function parameters by global
variables. In Conference on Functional Programming Languages
and Computer Archstecture, pages 39-53, ACM Press, London,
Sep. 1989.

[Sharir & Pnueli 81} M. Sharir and A. Pnueli. Program Flow Anal-
ysis: Theory and Applications, chapter Two approaches to inter-
procedural data flow analysis, pages 189-234. Prentice-Hall,
1981.

[Shivers 88] O. Shivers. Control flow analysis in scheme. In
Conference on Programming Language Design and Implementation,
pages 164-174, Jun. 1988.

{Stransky 88] I. Stransky. Analyse sémantique de structures de
données dynamiques avec application au cas particulier de langages
LISFiens. PhD thesis, Université de Paris-Sud, Orsay, France,
Jun. 1988.

[Wadler 88] P. Wadler. Deforestation: transforming programs
to eliminate trees. In European Symposium On Programming,
Springer Verlag, 1988. Volume 300 of Lecture Notes on Com-
puter Science.

[Weihl 80] W.E. Weihl. Interprocedural data flow analysis in the
presence of pointers, procedure variables, and label variables.
In 7th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 83-94, 1980.

