
Abstract Interpretation: Handin for week 5

Note: you are allowed to do this handin in groups of 2.

May 8, 2012

1. Implement the Parity analysis of the 3 counter machine in OCaml, includ-
ing pretty printing of the analysis result, e.g., as an annotated program:1

1: inc y {x:top, y:top, z:even}
2: zero y 1 else 1 {x:top, y:top, z:even}
3: stop {x:bot, y:bot, z:bot}

2. Run the analysis on your program from handin 2 and discuss the result.

3. Which invariant does your implementation discover for line 3 of the fol-
lowing program:

1: inc z
2: zero z 3 else 4
3: inc y
4: dec z
5: stop

How does that influence the predicted result at line 5? Can you do better
(using the tools of abstract interpretation)?

Bonus question
Why is

(<bot,bot,bot>. [pc’ -> [x==0]#(S#(pc))])
U. (<bot,bot,bot>. [pc’’ -> [x<>0]#(S#(pc))])

not the same as:

(<bot,bot,bot>. [pc’ -> [x==0]#(S#(pc))][pc’’ -> [x<>0]#(S#(pc))])

in the zero x pc’ else pc’’ case?

Write a program which reveals the difference.
1Printf.printf accepts optional width parameters which helps align things under each

other. For example ’Printf.printf "%3i: %-20s" i s’ will reserve 3 characters for the
integer i and 20 characters for the string s. Furthermore i will be right aligned, whereas s
will be left aligned.

1

