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ABSTRACT

‘We present a method to certify a subset of the Java byte-
code, with respect to security. The method is based on
abstract interpretation of the operational semantics of the
language. We define a concrete small-step enhanced seman-
tics of the language, able to keep information on the flow
of data and control during execution. A main point of this
semantics is the handling of the influence of the informa-
tion flow on the operand stack. We then define an abstract
semantics, keeping only the security information and for-
getting the actual values. This semantics can be used as a
static analysis tool to check security of programs. The use of
abstract interpretation allows, on one side, being semantics
based, to accept as secure a wide class of programs, and, on
the other side, being rule based, to be fully automated.
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1. INTRODUCTION

The problem of security leakages for Java bytecode is of
great importance since programs compiled into the Java Vir-
tual Machine bytecode language, JVML [21], can be down-
loaded by the Internet and executed by a Java-compatible
web browser. Assume that a downloaded program needs to
access to the user private data to compute some informa-
tion. If the program also needs to access over the Internet,
the private data could be leaked. We want to be sure that,
given a program that accesses private information, it will be
unable to leak such data. Of course, users have the option
to forbid downloaded code from accessing any local file, but
useful programs need to access to private files in order to
perform their tasks.
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The classical formulation of the secure information flow
property [10, 11, 2] requires that information at a given secu-
rity level does not flow to lower levels. The problem has been
extensively studied for programs written in structured high
level languages. Given a program in which every variable
is assigned a security level, it has secure information flow
if, when the program terminates, the value of each variable
does not depend on the initial value of the variables with
higher security level. Let us suppose that variable y has
security level higher than that of variable x. Examples of
violation of secure information flow in high level languages
are: x:=y and if y=0 then x:=1 else x:=0. In the
first case, there is an ezplicit information flow from y to x,
while, in the second case there is an implicit information
flow: in both cases, checking the final value of x reveals
information on the value of the higher security variable y.
Other security leakages occur when high level information is
revealed not only by the value of the variables, but by the
behavior of the program [22]. Consider the program while
(y > 0) do skip. This is an example of security leakage
due to nontermination, since it loops indefinitely when the
high security variable is greater than zero.

JVML is a stack based assembly language. When con-
sidering information flow in assembly code, some specific
aspects must be taken into account:

e ezplicit flow. In a high level language ezplicit flow
of information occurs with the assignment statement.
Thus, the security level of the flowing information can
be deduced by the expression on the right-hand side
of the assignment. In machine code, instead, values
are pushed onto and popped off the stack, and a pop
instruction does not syntactically reveal the source of
the value.

e implicit flow. In high level languages, the scope of the
implicit flow caused by the condition of conditional
or repetitive commands can be easily derived, since it
coincides with the scope of the command itself. Since
assembly languages are unstructured, jumps may go to
any program point, making more complicated to find
the scope of implicit lows. Moreover, also the operand
stack is influenced by the implicit flow, because the
stack may be manipulated in different ways by the
branches of a branching instruction: they can perform
a different number of pop and push operations, and



with a different order.

e machine state. Since an assembly language defines an
abstract machine on which programs are executed, also
modifications of the state of the machine caused by
high level information must be taken into account, like
as the contents of the operand stack and the contents
of the program counter when the program terminates.

We present a method to certify security of programs in
a subset of JVML. The method is based on abstract inter-
pretation of operational semantics [8, 9, 19]. We define a
concrete operational semantics of the language, able to keep
information flow during execution. The basic ideas on which
the semantics is based are: i) values carry a security level
which changes dynamically, depending on how the values
are manipulated, and ii) implicit flow is modeled by an en-
vironment, which records the security level of the implicit
flow. The environment is updated when an implicit flow
begins (when a branching instruction is executed), and it is
restored on termination of the implicit flow. A main point
is handling this environment, and in particular its influence
on the operand stack. We then introduce an abstract oper-
ational semantics that disregards the numerical part of the
values, and operates only on their security levels. We show
that the abstract semantics can be used to check security of
programs. The use of abstract interpretation allows, on one
side, being semantics based, to accept as secure a wide class
of programs, and, on the other side, being rule based, to be
fully automated.

The remainder of the paper is organised as follows: Sec-
tion 2 presents the language. Section 3 introduces the secu-
rity model. Section 4 and 5 define the concrete and abstract
semantics, respectively. Section 6 compares our approach
with other ones. The proofs of theorems are only sketched.
The complete proofs can be found in [7]. .

2. THE LANGUAGE

This section presents the language and its semantics. With
N we denote the natural numbers. Given a set A, A" de-
notes the set of finite sequences of elements of A; A indicates
the empty sequence; if w is a finite sequence, jw denotes the
length of w, i.e. the number of elements of w; - denotes both
the concatenation of a value to a sequence and the standard
concatenation operation between sequences, i.e. if w,u € A*
and k € A, k- w is the sequence obtained prepending k to
w, and w - u is obtained by appending u to wj; finally, if
i €{1,...,lw}, with w[i] we denote the i-th element of w,
ie. if w=w;---w,, w[i] = wi. We represent stacks by se-
quences, with the convention that, if w is a nonempty stack,
w[1] is the top element.

Our language is the subset of JVML [21] called JVMLO
in [20). It has an operand stack, a memory containing the
local variables, simple arithmetic instructions and condi-
tional/unconditional jumps. The instructions are reported
in Figure 1, where = ranges over a set var of local variables
and op over a set of binary arithmetic operations {add, sub,
..). Note that the language supports subroutine calls via
the jsxr j and ret z instructions.

A program is a sequence c of instructions, numbered start-
ing from address 1; Vi € {1,-:- ,llc}, c[i] is the instruction
at address i. In the following, given a sequence of instruc-
tions ¢, we denote by Var(c) the variable names occurring
in ¢. We assume that programs respect the following static
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op pop two operands off the stack, perform the
operation, and push the result onto the stack

POP discard the top value from the stack

push k  push the constant k onto the stack

load x push the value of the variable z onto the stack

store z pop Off the stack and store the value into =

if j pop off the stack and jump to j if non-zero

goto j jump to j

jer j at address p, jump to address j and push
return address p + 1 onto the operand stack

ret z jump to the address stored in z

halt stop

Figure 1: Instruction set.

constraints, generally checkable using the code verifier: no
stack overflow and underflow occur, and executions will not
jump to undefined addresses.

We give the semantics of the program in terms of a tran-
sition system, whose paths represent execution traces and
whose nodes display the program's changing states.

Definition 1. A transition system T is a triple (S, —, s0),
where S is a set of states, so € S is the initial state, and
—C S x S is the transition relation. We say that there is a
transition from s to s’ if and only if (s,s’) €—, usually we
write 8 — 5'. We denote by — the reflexive and transitive
closure of —. Moreover, we say that s € S is a final state
of the transition system (denoted by s /) if and only if no
&' exists such that s = 5.

The standard semantics of the language, defined as a set of
inference rules, is reported in Figure 2. The semantics uses
a domain V* of constant values, ranged over by k, k1, ka,---,
including both data and addresses (ranged over by i,7,---);
a domain of functions M*® : var — V* of memories from vari-
able identifiers to values, ranged over by m,m’,m1,--- and
a domain §° = (V°)* (finite sequences over V) of stacks,
ranged over by s,5',81,---. In the following, given a mem-
ory m, we denote by D(m) C var the domain of m, i.e. the
variables stored in m.

We model a state of the program execution as a tuple,
(i, m, 5), where i is the address held by the program counter,
m is the memory representing the current state of the local
variables and s is the current state of the operand stack.
We assume that a program is always executed starting from
the instruction c[1] and with an empty operand stack. We
denote as C° the domain of states.

The rules of the standard semantics define a relation —*C
C® > C°. The notation m[k / z] is used to indicate the mem-
ory m' which agrees with mn for all variables, except for z,
for which it is m/(z) = k. :

Given a program c¢ and a memory m € M°F, the standard
semantics of the program is the transition system defined
as (C%, —*, (1,m, X)), where the initial state consists of the
address of the first instruction, the given memory and the
empty operand stack. Since the program is deterministic,
the corresponding transition system has only one, possibly
infinite, path. The final state, if it exists, is unique and
it has the form (i, m’,s) with c[i] = halt, for some s and
m’. We do not require that the operand stack is empty on
program termination.



op cli] = op
(i, m, k1 -ka-8) —° [+ 1,m, (k. op k2) - 3)

pop (i,m,k - acf[']—=>°p{l?+ 1,m,s)
c[i] = push k
push 09 H» z'+ 1,m, k- a)
cli] = load x =k
load (i,[:Jn, Ny —° G +T('m )
store c[i] = store x
(i, m,k-8) —° (i+1,mlk [ x],8)
- cli] =if j
ratse (i,m,0- .s)[ E-)° (I'J+ 1,m,s)
if, cli] = if j
™ ,mEk#0-5) —° (1,m,s)
cfi] = goto j
goto (i, m, s) —* (4, m, 5)
jor cli] = jer j

(i,m,s) —° (j,m,(1+1)-3)
cli] = ret x

rek G, 8y —° (m(z),m, )

Figure 2: Standard semantics rules.

We now recall the notion of control flow graph of a pro-
gram, containing the control dependencies among the in-
structions of the program, and the notion of postdomination
and immediate postdomination in directed graphs [4].

Definition 2. Given a program ¢ composed of n instruc-
tions (lic = n), the control flow graph of the program is the
directed graph (V, F), where V = {1,..,n + 1} is the set of
nodes and E C V x V contains the edge (i, j) if and only if
the instruction at address j can be immediately executed af-
ter that at address i; moreover it contains the edge (i,n+1)
from each address i such that c[i] = halt.

Definition 3. Let i and j be nodes of a control flow graph
of a program with n instructions. We say that node j post-
domninates i, denoted by j pd i, if j # i and j is on every
path starting from i. We say that node j immediate post-
domainates i, denoted by j ipd 4, if j pd i and there is no node
r such that j pd r pd i. We also use the notation 7 = ipd().
For each node i # n + 1 such that ipd(i) does not exists, we
put ipd(i) = n + 1.

The control flow graph is built by statically examining the
program. It has one and only one initial node, the node 1,
and one and only one final node, n + 1. Moreover, ipd(3)
exists for each node z € {1,--- ,n}. We use the control flow
graph and the notion of immediate postdomination to han-
dle implicit information flows. Each branching instruction
if j or ret z causes the beginning of an implicit flow: if the
instruction is at address i, then the implicit flow affects all
instructions belonging to a path from : to ipd(i); ipd(4) is
the first instruction not affected by the implicit flow, since
it represents the point in which the different branches join.
Note that ipd(i) = n+1 for each node i belonging to a cycle.
Thus the implicit flow holding on entering a cycle affects all
successive instructions.
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3. THE SECURITY MODEL

We assume a finite lattice (£,C), where £ is a set of se-
curity levels, ranged over by o, 7, .., partially ordered by C.
Given 0,7 € L, o U 7 denotes the least upper bound of o
andT;0CT(or7Jc)meansoc Crand o # 7.

To model security, we consider annotated programs, where
each variable is associated with a security level. A program
P is a pair (c,A) where c is a sequence of instructions, and
A is a partition of the variables in Var(c): A = {As]|o € L}
where Yo € £ : A, C Var(c) is the set of variables with
security level o.

Given a program P = (c,A) and o € £, we denote by
Ac. = U.caAr the variables of P with level C o and by
Ag. the other variables.

The notion of security we are going to introduce, denoted
as o-security, is parametric with respect to a security level
o, and describes the fact that information with security level
¥ o is kept secret. o-security guarantees the absence of dif-
ferent possible leakages: it assures that the initial values of
the variables in Ag, do not affect the final value of the vari-
ables in Ar, and that information on such values cannot be
retrieved in the machine state looking at the operand stack
elements or at the address of the last instruction executed.
Moreover, it guarantees that high level information is not
revealed by observation on the termination of the program.

Definition 4. Let P = {c,A) and o0 € L. We say that P
is o-secure if, for each assignment of values to the variables
in Ac,, it holds that: for each pair of memories m; and
mg, such that D(m;) = D(mz) = Var(c) and Vz € A, :
mi(z) = ma(z),

(1| my, A) _.-)E(ilm'h 8) 7‘*

implies

3m}, such that (1,mz,\) =" (i, m}, 8) A with Vz € Ac, :
mi(z) = mj(z)

The notion of o-security does not exclude that the final
value of a variable z € Ar, is influenced by the value of
some other variable y € Ac, with security level higher than
that of z. In fact o-security partitions the security levels
into two groups: those lower than or equal to o, and those
higher than or not related to o, and ensures only that there
is no flow of information from the second group to the first
one, while variables in Ac, can depend from each other in
any way. As a consequence, o-security does not guarantee
o’ —security for ¢’ C 0.

Let (£,C), with £L = {¢,7} and o0 C 7. Assume y € A,
and z € A,. Examples of non-o-secure programs are shown
in figure 3. Program 3 (a) corresponds to if y=0 then
x:=1 else x:=0. Program 3(b) shows an assembly code
which jumps to different points depending on the value of
y (instruction ret y at address 7), and then z is assigned
a different value. The program in Figure 3(c) terminates or
does not terminate depending on the value zero or non-zero
of y. Figures 3(d) ( 3(e) ) reports a program which termi-
nates with different stacks (respectively at different program

_points) according to the value zero or non-zero of y.

4. THE CONCRETE SEMANTICS

This section presents an enhanced concrete operational se-
mantics of the language in Figure 1, able to check violations
of o-security in a program. The semantics



1 loady 1 load y 1
2 ifb 2 if 6 2
3 pushli 3 push 8 3
4 goto6 4 goto 6
6 pushO 5 push 10
6 ©storex 6 Etore y
7 halt 7 ret y
8 push 1
9 goto 11
10 push O
11 storex
12 halt
(a) (b)

load y 1 1loady 1 1loady
if1 2 ifs 2 if4
halt 3 pushi 3 halt
4 goto 6 4 halt
6 pushO
6 halt
(c) (d) (e

Figure 3: Not o-secure programs.

s Handles values enriched with a security level. During
the execution of a program, the security level of a value
indicates the least upper bound of the security levels
of the information flows, both explicit and implicit, on
which the value depends.

e Executes instructions under a security environment,
which is a security level. At each moment during
the execution, the security environment represents the
least upper bound of the security levels of the open
implicit lows. The security environment can be up-
graded by a branching instruction (if and ret) and
can be downgraded when an implicit flow terminates.

The semantics uses the control flow graph of a program te
handle implicit flows (see section 2). The implicit flow of an
if or ret instruction at address i terminates at the instruc-
tion with address ipd(i). On executing the if or ret instruc-
tion within a security environment o, the semantics records
the pair (ipd(:), o), and then the security environment is
(possibly) upgraded to consider: i) for the if instruction,
the security level of the condition, i.e. the top value on the
operand stack and ii) for the ret z instruction, the security
level of the address stored into x. When the implicit infor-
mation flow terminates, i.e. when the instruction at address
ipd(i) is reached, the environment is reset to o, i.e. the
environment holding when the instruction which originated
the implicit low was executed. To model nested branching
instructions, the semantics records the pairs (ipd(i), o)’s in
a stack, since, in presence of nested branching instructions,
the innermost implicit flow terminates first. The stack is
called ipd stack.

We now introduce the domains of the concrete semantics.
Enriched values are pairs v = (k, o), where k € V* (denoted
as the numericel part of v), is a constant, and ¢ € L is
denoted as the security level of v. Given ¢ € L, (k,0) is
called o-value and V, is the set of o-values. V = (V* x £) is
the domain of concrete values, ranged over by v,v’,v1,---.
M : var = V is the domain of concrete memories, ranged
over by M, M’ ,M,,---. 8§ = V* are the concrete operand
stacks, ranged over by §,5',51,---, and R = (N x L£)*,
ranged over by p,p’,--- are the ipd stacks. Given M € M,
D(M) denotes the domain of M.

The rules of the operational semantics are shown in Fig-
ure 4. The rules define a relation —C C x C, where C is
a set of concrete states. Each state has the structure o |
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(i, M, S, p), where o € L is the environment, i € {1, .., fic} is
the contents of the program counter, M € M is a concrete
memory, S € S represents the concrete operand stack and
p € R is the ipd stack. There is a one to one correspondence
between the standard and the concrete semantics rules, ex-
cept for the ipd rule, which is new. When this rule is appli-
cable, no other rule is so. The rules ensure that the elements
present in the operand stack have security level higher than
or equal to the security level of the environment (see Lemma
1).

To keep the security level of a value equal to the security
level of the information on which it depends, the semantics
modifies the security level of each value pushed onto the
operand stack according to the present environment. Rule
push assigns to the constant the security level of the envi-
ronment (a not yet used constant can be thought as having
the minimum security level). Rule load, if the instruction
is load x, assigns to the value pushed onto the stack the
least upper bound between the security level of M(z) and
the environment. The meaning of the rules op, pop, store
and goto is straightforward. Rule jsr associates the return
address pushed onto the stack with the security level of the
environment.

An implicit flow is entered when an if or a ret instruction
is executed. Consider Rules if¢rue and ifyq1se applied to
an if instruction at address i: if the value on top of the
operand stack is (k, 7), the selected branch of the instruction
is executed under the 7 security environment. Moreover
(ipd(i), o) is pushed onto the ipd stack ((ipd(i), o) ®p), from
which it will be taken on termination of the implicit flow.
‘We assume that © avoids pushing an address i onto the ipd
stack if i is already on the top of the stack. In fact, if two or
more nested branching instructions terminate at the same
ipd, on termination of the implicit lows the environment
must be the one bholding on entering the outermost one.

The rules for if upgrade the security level of each value
held by a variable assigned by a store instruction in at least
one of the two branches: let W = {z|c[j] = store z and j
belongs to a path of the control flow graph starting at i
and ending at ipd(i), excluding ipd(i)}. For each z € W,
if M(z) = (k, o), then upgradep(M,i,7)(z) = (k,0 U T).
The security level of the variables not in W is not changed
by upgraden (M, i, 7). Upgrading the memory in this way
takes into account the fact that a variable may be modified
in one branch and not in the other one.



. = (i,7)-p
ipd S EGM S —=rEGMSP)

clil]=0p inotinp
® TEGM ) (k1) 5,6 — 0 F (i +1,M, (ks op k2, i Umy) - 5, 5)
clil] =pop inotinp
PP CEGM (k7 S,/ — o F G+1LM35,7)
cfij=push k i notinp
Push LM S5 — o F (i +1, M, (k5) 5.)
load ci]=loadz M(z)=(k,7) inotinp
cEMSp) —ockE{i+1,M(k,rU0) S p)
ate cfi] = store z i not_in p
ore SEGMED S — o FELMED TS
oto cU =gotoj i not_.rn P
8 oF (i, M,5,0) — o F G, M,5,p)
T c[:] =ifj i not_:'rl P _
alae g h ('.! M, (01 T) N S, p) i I=T' +1, “pgradeM(Ml 'l‘r)lupgrades(sl T)! (l.pd('jl 0) OP)
f cli] =ifj imnotinp
True "G, M, (k £0,7)- 5, p) — T [= (J, upgraden (M, 3, ﬂ upgrades(S, ), (ipd(i), o) © p)
, cfij]=jsrj inotinp
¥ TFGM5 — oF G M (G+1),9)-5,5)
ret cij]=retz M(x)=(j,7) inotinp

o E (G, M,5,p) — oUTt E (5,upgradem (M, i,0 U 7),upgrades(S,o U ), (ipd(3),0) © p}

Figure 4: Concrete semantics rules.

Also the operand stack may be influenced by the implicit
flows. The rules in fact modify also the security level of each
value present in the operand stack by applying the function
upgrades(S, T): it upgrades the security level of each value
v in § to the least upper bound of 7 and the security level
of v. The ret z instruction, handled similarly, sets the new
environment to the least upper bound between the present
one and the security level of z, and upgrades the memory
and the stack accordingly.

Upgrading the operand stack on entering an implicit flow
is an abstraction to take into account the fact that the stack
may be manipulated in different ways by different branches.
The branches can perform a different number of pop and
push operations, and with a different order. Thus also ele-
ments used in no branch may change their position within
the stack, due to the implicit flow. These elements can be
used after the termination of the implicit flow, i.e. when the
previous environment is restored. Thus they must record
the fact that they were affected by the implicit flow. Qur
choice is to upgrade all elements of the stack on entering
an implicit flow. As an example, consider the program in
Figure 5. When instruction c[6] = store x is executed, the
top of the stack is 0 or 1, depending on the branch chosen
at the if instruction at address 4, testing the value of the
high variable y. On the other hand, instruction c[6] does
not belong to the scope of the high implicit flow generated
by instruction c[4), and thus it is executed under the low
environment holding before entering the implicit flow. The
non-secure flow is detected by upgrading the operand stack
on entering the implicit low, which causes a high value to
be assigned to x by instruction c[6).

The ipd rule updates the security environment when an
implicit flow terminates, i.e. when the instruction which
is the ipd of a previously executed branching instruction
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push 1
push 0
load y
if 6
Pop
store X
halt

~Nooh N

Figure 5: Need of upgrading the stack.

is reached. The rule is applied only if the contents of the
program counter is present on top of p, i.e. if the contents
of the program counter is s and p[1] = (i, 7) for some 7. The
rule does not change the program counter, but only modifies
the environment, which is set to 7.

Given a program P = (c,A) and a memory M € M, the
concrete semantics of P is the transition system C(P, M) =
(C,—,00 E (1, M, A\, 7)), where ¢ is the lowest security
level and the initial state consists of the address of the first
instruction, the given memory and the empty operand stack
and ipd stack.

Note that, if we ignore information on security, the con-
crete semantics coincides with the standard semantics of the
language. Thus it can be used safely to execute the program.

We give now some definitions and results. With V, =
Urco V- we denote the values with security level lower than
or equal to . We use also Va, = Ur3sVr, Vgo = UrgoVs.
With R, = {(i,7) : 7 C o} we denote the couples (i,7)
with security level lower than or equal to o.

The following lemma states some properties of the con-
crete semantics concerning the operand and the ipd stacks.



Lemma 1. Given P = (c,A) and Mo € M, in each state
o |= (i, M, S, p) belonging to C(P, Mg),

1. S € (Va.)*
2. pe (Rco)*
3. Vie {1,..,lp—1} : pli] = (4, 7) implies p[i +1] € R~

The lemma ensures that in each state with security envi-
ronment o the elements in the operand stack have security
level higher than or equal to &, while the elements in the ipd
stack have security level lower than or equal to o and are
ordered in decreasing security from the top to the bottom.

We now define the notion of oc—safeness. Informally, a
memory is o—safe for P if each variable associated in P
with a security level lower than or equal to o, -holds in M
a security level lower than or equal to o. Moreover, an
operand stack is o—safe for P if it contains only values with
security level lower than or equal to o.

Definition 5. Let P = (c, A).

A concrete memory M with D(M) = Var(c) is o —safe
for P if and only if Vz € Ace : M(z) € VLo

A concrete stack S is o—safe for P if and only if § €
(Vo))"

The following theorem states the adequacy of the concrete
semantics to characterize secure information flows. Given
P = (c, A), consider a concrete memory M with D(M) =
Var(c) in which, for each 7 € £, the variables with level 7
hold a 7—value. We call this memory A-consistent.

THEOREM 1. Let P = (c,A) be a program and o € L. If
every terminating execution of P starting form a A-consistent
memory ends with a state v |= (i, M, S, p) /4 such that M
and S are o—safe for P and v C o, then P is o—secure.

Proof Sketch. Consider a terminating execution C(P, Mo),
where My is a A-consistent memory. In each state, the value
(k,T) associated to a varigble in the memory or present in
the operand stack captures the lesst upper bound of the ez-
plicit and implicit flows on which this value depends (), and
this occurs also for the final state. Thus, the o—safeness of
the memory and the operand stack in the final state ensures
that the contents of the variables in Ac, s not affected by
the information with level L o. Moreover, if the final en-
vironment is less than or equal to o, this means that all
branches belonging to an implicit flow £ o have been com-
pletely ezecuted until the respective ipds. Thus, under the
condition of the theorem, the address of the final instruction
is not affected by the information with level [Z o. Moreover,
if the final environment is C o, no cycle has been executed
under an environment £ o: in fact no cycle reaches its ipd,
that i3 the node lic + 1 of the control graph, which does not
correspond to any instruction of the program. Since the final
environment is C o for all terminating ezecutions, the ter-
mination of the program does not depend on the information
with level L o. -

5. THE ABSTRACT SEMANTICS

The concrete semantics cannot be used as static analysis
tool for o-security, because it shows the information flow
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of a particular execution, while o-security concerns all exe-
cutions. Moreover, the concrete transition system could be
infinite. The purpose of abstract interpretation (or abstract
semantics) [8, 9] is to correctly approximate the concrete
semantics of all executions in a finite way, in order to be
used to build a tool useful in practice. In this section we
present an abstract operational semantics able to check o-
security. The semantics is an abstraction of the concrete
semantics presented in the previous section: concrete values
are abstracted by keeping their security level and disregard-
ing their numerical part. All other structures are abstracted
consequently.

The abstract domains are the following: V' = £, M =
var — Vi, 8! = (V). The domain of ipd stacks is the
same of that of the concrete semantics. The abstract states,
CY, are analogous to the concrete ones but with the memory
M substituted by an abstract memory M' € M! and the
operand stack S substituted by an abstract stack S' € S" .

The abstraction function on values, av : ¥V — L, is such
that av ((k, o)) = o. The abstraction function on memories,
am : M — M! is such that (am(M))(z) = av(M(z))
for each £ € D(M). The abstraction function on stacks,
as : § = 8 is such that (as(S))[i] = av(S[i]), for each
i € {1,---,i1S}. The abstraction function on states, ac :
C — C" is as follows:
ac(o k (i, M, S,p) = o |= (i, am(M), 2s(S), p)-

The rules of the abstract semantics are the same as those
of the concrete one, but defined on the new domains, except
for the rules of if and ret. These rules are defined in Figure
6, where F is the set of edges of the control flow graph of the
program. Consider the if rule. In the abstract semantics,
both branches are explored for every condition. Similarly,
the ret rules explore every branch. As a consequence, the
abstract transition system may contain multiple paths. The
functions upgrading the memory and the stack are the same
as those of the concrete semantics defined on the abstract
domains. The transition relation of the abstract semantics
is denoted by —". Given a program P and an abstract
memory M!, the abstract transition sg'st.em defined by the
abstract rules is denoted by A(P,M") = (C',—"%,00 &
(1, M, ), )\)).

THEOREM 2. Let P = (c,A) be a program and Mg EM
be the A—consistent abstract memory. Consider the final
states of A(P, MY), i.e. the states T |= (i, M1, Sb, p) A». If,
for each of these states it holds that M" and S' are o-safe
Jor P and T € o, then P is o-secure.

Proof Sketch. By definition of the concrete and abstract
rules, for each path Cog — C1 — ... in C(P, M) there
ezists a path ac(Co) —h ac(C1) —f __.in A(P, apm(M)).
Moreover, a concrete memory M € M and a concrete stack
S € 8§ are o—safe for P if and only if ap(M) and as(S)
are o—safe for P. Thus the proof follows from Theorem 1.

The above theorem is the basis of our security checking
methodology: proving o-safety of a program P = (c, A) can
be done by building the abstract tramsition system starting
from an initial state with the lowest environment in £ and in
which each variable of the program is assigned its security
level as specified by A. After, final states are examined
for o-safety of memories and operand stacks and for the
value of the environments. Note that the abstract transition
system is finite. In fact, since security levels, environments
and abstract values are finite, then abstract memories are



- ci]=ifj (i,7/)€E inoting
b ok (i, M", 7.8, p) —" 7 |= (j', upgrade; (M, i, T), upgrade¥ (5%, 1), (ipd(i), o) © p)
ot clij=retz Mi(z)=7 (i,j)€EE inotinp
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Figure 6: Abstract semantics rules

finite too. Moreover, ipd stacks are finite since they contain
at most all addresses. Abstract operand stacks are finite
because we assume stack boundedness.

6. RELATED WORK

The secure information flow property of programs was first
formulated in [10]. In (11, 2], and successively [5]), program
certification was addressed, which statically checks secure
information flow by inspecting the dependencies among the
variables of the program. Successive works give the problem
a more formal and precise basis. These works can be divided
into two categories: type-based approaches and semantics-
based approaches, to which our method belongs.

In type-based approaches, the security information of any
variable belongs to its type and secure information flow is
checked by means of a type system. The first works be-
longing to this approaches are [23, 22], concerning imper-
ative high level languages. They use the notion of non-
interference , which states that the final value of each vari-
able does not depend on the initial value of variables at
higher or not related security levels. In its stronger version
non-interference includes also the absence of non-secure flow
due to non-termination. In our setting, this property holds
if the program is o-secure for every ¢. Non-interference can
be inspected by checking that in the final states of the ab-
stract trapsition system every variable in A, has a level C o.
Recent works following the type-based approach are [12, 1,
17], where functional languages are considered and complex
object and higher order programs are given a type system
for security, and [16], where an extension to the Java lan-
guage is presented that adds to programs information flow
annotations. In semantics-based approaches, the work [14]
defines an abstract interpretation approach for checking se-
cure information flow in a high level imperative language.
The method is based on the denotational semantics of the
language. It defines a concrete enhanced semantics, and ab-
stracts it to obtain a static tool for the analysis. In [13]
a semantic approach is described, based on an axiomatic
semantics, by means of which many secure programs con-
sidered insecure by other methods are accepted. Another
semantic approach is defined in [18], based on partial equiv-
alence relations. The disadvantage of these approaches is
that they are not easily made fully automated.

Our approach is semantics-based and consider secure in-
formation flow for stack based assembly languages. Its ap-
plication to high level languages has been described in [6].
Similarly to [14], we build an abstract semantics to stati-
cally check secure information flow. A difference is that we
use an operational semantics instead of a denotational se-
mantics. The advantage of using an operational semantics
is that it defines an abstract machine and thus naturally
allows keeping also information which is not related to the
input-output behaviour of the program, but concerns the
state of the machine during the execution. The advantage
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of the semantic approaches over the type-based ones is that,
in general, they are able to certify a wider class of secure
programs. On the other hand, since any semantic method
executes the program, even if abstractly, a drawback may be
the complexity of the analysis, in terms of space and time,
which may be high for large programs. Instead, a typing
system can in general handle larger programs, since it keeps
less information.

‘We remark that, while all above works concern structured
high level languages, we concentrate on assembly code. It
could be interesting to define a secure typing system for
stack based assembly language, starting, for example, from
the work [15], which defines a typed stack based assembly
language, or starting from [20], where a type system for java
bytecode is defined. Semantics-based methods are defined
in the literature to check safety of machine code. In [3]
the proof carrying code approach is defined, where safety is
proved using a high order logic. In [24] the machine program
is annotated with some initial information on the machine on
which the code must be executed and correctness properties
are derived by means of an abstract execution of the pro-
gram. An extension of these methods to cope with security
properties could be developed. Since we are concerned with
a non-structured languages, we use the notion of postdomi-
nation to handle implicit flows. An alternative approach is
[25], which follows a continuation-passing style.

Security leaks not dealt with in the paper are those aris-
ing from partial operations that can raise exceptions or from
timing leaks [22]. As future work, we plan to extend the pro-
posed method to deal with these covert flows. Moreover, we
intend to extend the approach to the whole Java bytecode.
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