
Abstract debugging of
higher-order imperative languages

François Bourdoncle

DIGITAL Paris Research Laboratory Centre de Mathématiques Appliquées
85, avenue Victor Hugo Ecole des Mines de Paris

92500 Rueil-Malmaison — France Sophia-Antipolis
Tel: +33 (1) 47 14 28 22 06560 Valbonne — France

bourdoncle@prl.dec.com

Abstract

Abstract interpretation is a formal method that enables the
static determination (i.e. at compile-time) of the dynamic
properties (i.e. at run-time) of programs. We present an
abstract interpretation-based method, called abstract debug-
ging, which enables the static and formal debugging of pro-
grams, prior to their execution, by finding the origin of po-
tential bugs as well as necessary conditions for these bugs
not to occur at run-time. We show how invariant asser-
tions and intermittent assertions, such as termination, can be
used to formally debug programs. Finally, we show how ab-
stract debugging can be effectively and efficiently applied to
higher-order imperative programs with exceptions and jumps
to non-local labels, and present the Syntox system that en-
ables the abstract debugging of the Pascal language by the
determination of the range of the scalar variables of programs.

1 Introduction

Even though software quality is becoming more and more im-
portant, relatively few methods have been proposed to help
programmers debug their programs, and debugging is typi-
cally done “post-mortem”, that is, after a bug has occurred.
The main drawback of this approach is that it is often very
difficult, if not impossible, to find the origin of a bug just by
looking at the memory state after the abortion of a program.
Methods have been proposed to allow the reverse execution
of higher-order functional languages such as ML [24], but
these methods do not seem to be quite applicable to imper-

0

ative languages such as Pascal, Modula-2, Modula-3, C or
C , since they have to keep track of every variable as-
signment. Even more important, post-mortem debugging can
fail to detect bugs when programs are not extensively tested,
since some parts of the code may have never been executed.

Abstract interpretation, as defined by Patrick and Radhia
Cousot [8, 11, 13], is a formal method that enables the static
determination of the run-time properties of programs. So
far, abstract interpretation has only been applied to fairly
simple languages (first-order imperative, functional, logic
or parallel languages) and has been used to build sophis-
ticated optimizing compilers. In this paper, we propose a
novel, semantic-based approach to the debugging of pro-
grams, called abstract debugging, which combines several
traditional, although rarely used, abstract interpretation tech-
niques to allow the static and formal determination of the
origin of certain bugs in higher-order imperative programs.

This method enables the programmer to insert assertions
into the source-code of the program being debugged, and vio-
lations of these assertions are treated as run-time errors by the
debugger. There are two kinds of assertions. Invariant asser-
tions are properties which must always hold at a given control
point, and are similar to the classical assert statement in C
programs. Intermittent assertions are properties which must
eventually hold at a given control point. Differently stated,
intermittent assertions are inevitable properties of programs,
that is, properties such that every execution of the program
inevitably leads to the control point with a memory state sat-
isfying the intermittent property.

For instance, the invariant assertion “false” can be used to
specify that a particular control point should not be reached,
whereas the intermittent assertion “true” at the end of a pro-
gram specifies the termination of the program. Invariant and
intermittent assertions can be freely mixed and give the pro-
grammer a great flexibility to express correctness conditions
of programs.

Abstract debugging differs from traditional abstract in-
terpretation techniques in that a very precise interprocedural

analysis of programs is needed in order to locate bugs. There-
fore, many traditional approximations, which are acceptable
for optimizing compilers, cannot be used here. In particular,
aliasing cannot be approximated if one wants to compute a
precise information about the value of the scalar variables
of programs, and methods [2, 7, 14, 15, 16, 20, 22] used to
determine the set of possible “alias pairs” of programs, that
is, pairs of distinct variables for which there exists at least a
procedure activation in which both variables have the same
address, are inappropriate here, since they do not describe the
simultaneous aliasing of three or more variables, and would
lead to a very unprecise “abstract assignment” primitive.

This paper is organized as follows. In the first section,
we give several examples of the kind of bugs that can be
found by an abstract debugger. Then, in sections 3 and 4, we
describe the basic techniques of abstract debugging, and show
how they can be combined to effectively debug programs. In
section 5, we address the problem of the abstract interpretation
of higher-order, Pascal-like imperative languages, and briefly
sketch a non-standard, copy-in/copy-out semantics of these
languages that is well suited to abstract debugging. Finally, in
section 6, we present the prototype Syntox system that enables
the abstract debugging of first-order Pascal programs by the
determination of the range of scalar variables. We discuss
implementation and complexity issues, show that even very
simple properties such as the range of variables enable the
determination of non-trivial bugs, and show how this system
can also be used to safely suppress most array bound checks
during the execution of Pascal programs.

2 Examples

The programs of figure 1 exemplify several common pro-
gramming mistakes that can typically be discovered and re-
ported by an abstract debugger.

For instance, program “For” will obviously exit on a run-
time error when accessing T[0], unless n 0 at point 1 .
Moreover, if the index i ranges from 1 to n instead of 0 to
n, then the program will exit when accessing T[101] unless
n 100 at point 1 . Similarly, program “While” will loop
unless b false at point 1 , and program “Fact” will loop
unless x 0 at point 1 .

It might seem quite difficult to automatically discover
these kinds of bugs. However, our abstract debugger Syntox,
described in section 6, will automatically discover and report
the above necessary conditions of correctness.

A compiler could use these conditions to issue a warning
or generate a call to a specific error handler to do some clean-
up and exit safely, or else could enter a special debugging
mode to do a step-by-step execution of the program until
the error actually occurs. The interesting fact about abstract
debugging is that it predicts bugs before they actually happen,
which permits a safe handling of these bugs.

Whenever possible, an abstract debugger finds the origin
of bugs, rather than their occurrences, and back-propagates

necessary conditions of correctness as far as possible in or-
der to minimize the amount of information delivered to the
programmer. This feature makes abstract debugging much
more useful than traditional methods and global flow analyz-
ers such as Lint for instance, which is well known for the
large number of warnings it generates.

For example, it is much more interesting to know that
variable n of program “For” must be lower than 100 at point
1 than to know that i must be less than 100 at point 2 since
the former test can be done once and for all after n has been
read, whereas the latter must be done for every access to “T”.
Moreover, if n 100 at point 1 , then it is certain that the
program will either loop or exit on a run-time error later on.

As we shall see in the next section, backward propagation
is an essential component of abstract debugging, since it is
responsible for the “discovery” and the “factorization” of the
correctness conditions of programs. As an example, consider
the following sequence of Pascal statements, where “T” is an
array of 100 integers:

read(i);
1 j := i + 1;
2 k := j;
3 read(T[k])

Starting from the end of the sequence, a backward analysis
will determine that k 1 100 at point 3 , j 1 100
at point 2 , and finally that i 0 99 at point 1 . This
information can then be combined with the forward data flow,
which shows that the post-condition i ZZ of the first call to
“read”does not imply the pre-condition i 0 99 determined
by the backward analysis. Hence, a warning can be issued to
inform the programmer that if i 0 99 at point 1 , then his
program will certainly fail later on.

As stated in the introduction, an important feature of ab-
stract debugging is that programmers can freely insert invari-
ant assertions and intermittent assertions into their programs
to either statically check that important invariance properties,
such as calling conditions of library functions, are satisfied, or
check under which conditions a program eventually reaches
a control point while satisfying a given property.

Intermittent assertions allow for a very powerful form
of debugging. As an example, if the intermittent assertion
i 10 is inserted at point 2 of program “Intermittent”, then
Syntox shows that a necessary condition for the program to
eventually reach control point 2 with i 10 is that i 10
at point 1 .

It is thus possible to determine the set of program states
(and, in particular, of input states) from which a program
eventually reaches a given control point, by simply inserting
the intermittent assertion “true” at this point. So for instance,
if the intermittent assertion “true” is inserted at point 2 of
program “Select”, then Syntox shows that a necessary condi-
tion for the program to terminate is that n 10 at point 1 .
Differently stated, if n 10, then the program will certainly
loop or exit on a run-time error.

Further more, if the invariant assertion “false” is inserted
at point 3 , then Syntox shows that n 10 at point 1 is
a necessary condition for the program to terminate without
control ever reaching point 3 .

Now, if the intermittent assertion s 1 is inserted at point
2 , Syntox shows that a necessary condition for this assertion
to eventually hold is that n 10 10 at point 1 .

To conclude this section, we can remark that invariant as-
sertions are normally used to express “normal” conditions of
the execution of a program, whereas intermittent assertions
are either used to enforce termination or to determine nec-
essary conditions for the failure of invariant assertions. For
instance, if a necessary condition of correctness is reported
for a given program, then it is interesting to negate, one after
the other, every invariant assertion inserted into the source
code and determine necessary conditions for control to reach
the corresponding point and satisfy the negated assertion, i.e.
necessary conditions for the assertion to be surely violated.

Finally, it should be clear that although the standard ab-
stract interpretation framework determines flow-insensitive
program properties, invariant assertions such as “false” can
be used to restrict the control flow and examine the behavior
of a program along specific execution paths.

3 Static debugging

In this section, we shall explain the mathematical framework
behind abstract debugging, leaving decidability and com-
putability issues to the next section. We shall refer to this
mathematical framework as static debugging, reserving the
term abstract debugging for its tractable counterpart. Static
debugging is a combination of several different techniques,
namely:

Forward propagation
Backward propagation
Least fixed point computation
Greatest fixed point computation

Forward propagation is the most classical technique. It has
been used for a long time in data-flow analysis to propagate
program properties by following the normal flow of programs.
Backward propagation does the same as forward propagation
but reflects the “backwards” execution of programs. Note
that, contrary to a common belief, the backward semantics of
a program is not more complex nor very different from the
forward semantics, the only real difference being that it is not
deterministic.

Static debugging uses the abstract interpretation frame-
work pioneered by the Cousots in which the operational se-
mantics of a program is defined by a transition relation over
a set of program states S. This framework aims at computing
safe approximations of fixed points of continuous functions
over complete lattices, such as the lattice P S S
of the subsets of S. In what follows, we shall denote by X

the set y S x X : x y of descendants of states
in X S, and by Y the set x S y Y : x y
of ancestors of states in Y S. Moreover, we shall assume
that every state s has a unique descendant, i.e. s 1,
which is the case for classical imperative languages, and that
every output state s Sout and every error state s Serr is
stable, i.e. s s.

Note that denotational semanticscannot be used here since
the backward semantics of a program in this framework is not
definable from the forward semantics.

Finally, we shall implicitly identify a property over S with
the set of states for which this property holds.

It is now well known [13] that the set of descendants of
a set of states S by a finite number of program steps is
the least fixed point (w.r.t. the subset ordering) of function
defined by:

X X

that is, the function which takes a set of states X and returns
the union of and the set of descendants of states in X. This
fixed point always exists and can be iteratively computed as
the following limit:

i 0

i

Similarly, the set of ancestors of a set of states is the least
fixed point of:

X X

Finally, the set of states which do not lead to an error is the
greatest fixed point of:

X X Serr

More generally, let be a property (i.e. a set of states S)
that one wishes to prove about a program. Two sets are of
interest for static debugging:

The set always of states whose descendants satisfy
.

The set eventually of states for which there exists
at least one descendant satisfying .

It can be shown that:

always gfp X X

eventually lfp X X

where lfp and gfp respectively denote the least fixed point
and the greatest fixed point operators. Intuitively, since the
least fixed point of a continuous function over a lattice can
be computed by an increasing iterative computation starting
from the least element , then:

eventually 2

is the set of ancestors of the states satisfying . Similarly,
since a greatest fixed point can be computed by a decreasing

program Select;
var n, s : integer;
function Select(n : integer) : integer;
begin

if n 10 then
Select := Select(n 1)

else if n 10 then
Select := Select(n 1)

else if n 10 then
3 Select := 1
else

Select := 1
end;

begin
read(n);

1 s := Select(n);
writeln(s); 2

end.

program Fact;
var x, y : integer;
function F(n : integer) : integer;
begin

if n 0 then
F := 1

else
F := n * F(n 1)

end;
begin

read(x); 1
y := F(x) 2

end.

program McCarthy;
var m, n : integer;
function MC(n : integer) : integer;
begin

if (n 100) then
MC := n 10

else
MC := MC(MC(MC(MC(

MC(MC(MC(MC(
MC (n + 81)))))))))

end;
begin

read(n); 1
m := MC(n);
writeln(m) 2

end.

program While;
var i : integer;

b : boolean;
begin

i := 0;
read(b); 1
while b and (i 100) do
2 i := i 1

end.

program Intermittent;
var i : integer;

begin
0 read(i); 1

while (i 100) do
2 i := i 1 3

4
end.

program For;
var i, n : integer;

T : array [1..100] of integer;
begin

read(n); 1
for i := 0 to n do
2 read(T[i])

end.

Figure 1: Examples

iterative computation starting from the maximum element S,
then:

always
2

is the set of states satisfying whose ancestors satisfy . So
for instance, eventually Sout is the set of states for which
the program terminates, eventually Serr is the set of states
leading to a run-time error, always S Sout is the set of
states which either cause the program to loop or to exit on a
run-time error, and always S Serr is the set of states which
do not lead to a run-time error.

Note that under the assumption that s 1 for
every s S, it can be shown that:

always eventually

where denotes the negation (or complement) of . How-
ever, since approximate lattices used to finitely compute safe
approximations of program properties are usually not com-
plemented, this equality is of no practical use. For instance,
the complement of an interval, say 1 5 , is not an interval in
general.

The two sets always and eventually can be used to
perform the static debugging of programs as follows. Suppose

for instance that a programmer wants to prove that a set of
properties k k Ka always hold at control points ck k Ka .
We shall assume that every state other than an error state
consists in a pair c m of a control point c and a memory
state m. Then, the global invariant assertion to prove is:

a c m S k Ka : c ck m k

that is, a enforces k at point ck Ka and is “true” ev-
erywhere else. Similarly, if the programmer wants to prove
that at least one control point of a set ck k Ke , Ka Ke ,
will be eventually reached at run-time with a memory state
satisfying k k Ke , then the global intermittent assertion to
prove is:

e c m S k Ke : c ck m k

that is, e enforces k at point ck Ke and is “false” ev-
erywhere else. The program invariant, which represents the
set of program states that can be reached during program
executions that are correct with respect to the programmer’s
specifications, is then the limit I of the decreasing chain Ik

defined by I0 S and iteratively computed by applying the
following steps in sequence:

1) Compute the set Ik 1 of descendants of the states in Ik

by computing the least fixed point of:

X Ik Sin X

where Sin is the set of input states.

2) Compute the set Ik 2 of states in Ik 1 whose descen-
dants satisfy a by computing the greatest fixed point
of:

X Ik 1 a X

3) Compute the set Ik 3 of states in Ik 2 for which there
exists at least one descendant satisfying e by comput-
ing the least fixed point of:

X Ik 2 e X

Step 1 is a forward analysis, whereas steps 2 and 3 are back-
ward analyses. Note that the chain Ik k 0 can be infinitely
strictly decreasing, since each step can refine the previous
one. For instance, steps 2 and 3 can back-propagate a condi-
tion on the input states (i.e. “remove” a few input states) that
will be then propagated forward by step 1, etc.

When the invariant I has been reached, it is very easy to
determine the source of potential bugs in the program and
issue warnings to the programmer.

First, every input state s that is not in I is an “erroneous”
state and any execution starting from this state will lead to
a violation of at least one of the programmer’s invariants.
Moreover, it is easy to see that every state s I that is a
descendant of a state s I is erroneous, since it follows from
the forward data flow but is not part of the backward flow
(section 2).

The characterization of this set of erroneous “frontier
states” is the negation of the correctness condition reported
to the programmer.

Finally, note that in real programming languages, the hy-
pothesis s 1 for every state s S does not hold,
and some states can have several descendants. This is the
case, for instance, for input statements and procedure calls
(since local variables have undefined values upon procedure
entry), but the same property holds for logic programs, which
are intrinsically non-deterministic. It can be shown that the
framework remains valid but that the invariant I becomes a
necessarycondition of correctness and is no longer a sufficient
condition.

4 Abstract debugging

Since each invariant Ik is not computable in general, abstract
interpretation techniques must be used to finitely compute a
safe approximation of I. The standard framework, defined in
Cousot [8], consists in defining a Galois connection
between the exact lattice P S S and a finitely
represented approximate lattice P# S used
to represent safely approximated program properties.

The abstraction function : P S P# S maps sets
of states to their best approximation in the abstract lattice,
whereas the concretization or meaning function : P# S
P S maps every abstract property to its “meaning”, i.e. the
set of states satisfying the property. Note that loses infor-
mation, whereas does not, that is:

1P S and 1P# S

The advantage of using Galois connections is that if a function
is a safe approximation:

#

of a semantic function , e.g. X Sin X , then
the least fixed point (for instance) of # is automatically a
safe approximation of the least fixed point of , that is:

lfp # lfp

Note that and are never actually implemented and only
serve the purpose of establishing the semantic correctness
of #. Also, note that the semantic functions and #

depend on the program. However, it is easy to see that # is
built-up on a standard way from “abstract primitives” which
are program independent and are the only semantic functions
actually implemented in an abstract debugger.

For instance, program “Intermittent” of figure 1 is asso-
ciated with the forward system of semantic equations, corre-
sponding to the least fixed point equation X # X :

x0

x1 read i x0

x2 i 100 x1 i 100 x3

x3 i : i 1 x2

x4 i 100 x1 i 100 x3

where, for example, i 100 denotes the “abstract test”
primitive, which must satisfy, for every x P# S :

i 100 x i x : i 100

Similarly, when the intermittent assertion i 10 is inserted
at point 2 , the backward system of semantic equations to be
solved iteratively, starting from , is:

x0 read i 1 x1

x1 i 100 x2 i 100 x4

x2 10 i : i 1 1 x3

x3 i 100 x2 i 100 x4

x4 x4

where i : i 1 1 denotes the “backward abstract assign-
ment” primitive which, in this particular case, is equivalent
to the i : i 1 forward primitive. Finally, if the invariant
assertion “i 0” is inserted at point 2 , the backward system
of semantic equations to be solved, starting from , becomes:

x0 read i 1 x1

x1 i 100 x2 i 100 x4

x2 0 1 2 3 i : i 1 1 x3

x3 i 100 x2 i 100 x4

x4 x4

Note that the last two systems are obtained by a trivial in-
version of the forward system and by adding the appropri-
ate unions (resp. intersections) to the right-hand sides of the
equations, e.g. “ 10 ”, to take into account the pro-
grammer’s intermittent (resp. invariant) assertions.

When the approximate lattice is of finite height, iterative
computations of solutions of these systems always terminate,
but when the lattice is of infinite height, or when its height is
finite but very large, speed-up techniques must be used.

These techniques, known as widening and narrowing [4,
5, 8, 11, 13], allow the determination of safe approximations
of approximate fixed points, while enforcing finite iterative
computations. They allow trade-offs to be made between
computation time and precision. We recall that a widening
operator is a safe approximation of the union, that is:

x y P# S : x y x y

and is such that for every increasing chain xi i 0, the chain
xi i 0 defined by:

x0 x0 and xi 1 xi xi 1 i 0

is always eventually stable. A narrowing operator satisfies:

x y P# S : x y x x y y

and is such that for every decreasing chain xi i 0, the chain
xi i 0 defined by:

x0 x0 and xi 1 xi xi 1 i 0

is always eventually stable. For every continuous semantic
function #, it can be shown that the increasing chain:

x0 and xi 1 xi
xi i 0

is eventually stable and that its limit # is a post-fixed point of
(i.e. # # #) and, therefore, a safe approximation

of the least fixed point of #. Similarly, it can be shown that
the decreasing chain:

x0
and xi 1 xi

xi i 0

starting from any post-fixed point # of # is always a safe
approximation of the least fixed point of # and, choosing

, that this limit is a safe approximation of the greatest
fixed point of #.

These properties show that safe approximations of least
fixed points of continuous functions can be finitely computed
by a combination of a widening phase starting from , fol-
lowed by a narrowing phase starting from the result of the
previous phase, and that safe approximations of greatest fixed
points can be computed by a single narrowing phase starting
from .

Note that, when working with systems of equations, it is
not necessary to apply widening operators to each equation,
but only to a set W of equations such that every cycle in the

dependency graph of the system is cut by at least an element
w W, called a widening point. For instance, for the first
system above, only the third equation needs to be replaced
by:

x2 x2 i 100 x1 i 100 x3

Of course, since widening operators lead to a loss of precision,
the smaller the cardinal of W, the better, but since the problem
of finding minimum sets W is NP-complete, safe heuristics
have to be developed to select “good” sets of widening points
and iteration strategies (section 6.3).

Finally, note that the approximation of I implies that the
correctness conditions determined by an abstract debugger
are necessary, but not always sufficient.

5 Higher-order languages

As stated in the introduction, one of the constraints of ab-
stract debugging is to efficiently determine precise informa-
tions about the dynamic behavior of programs in order to be
able to detect bugs. It is thus desirable that the abstraction
used to approximate program invariants be highly “tunable”
and arbitrarily precise. Earlier works [13] show that this is
the case for “simple”, first-order languages without reference
parameters. However, reference parameters and procedure
parameters are the source of two distinct problems: aliasing
and environment sharing, which both lead to very unprecise
and expensive abstract interpretations.

Intuitively,environment sharing, i.e. the fact that the same
variable can be accessible, at the same time, to different pro-
cedure activations in the run-time stack of a block-structured
program with local procedures, implies that the abstract as-
signment of non-local variables, to be safe, must be “additive”
rather than “destructive” as is normally the case ([5], p. 105).

Similarly, if the partition of the set of identifiers accessi-
ble to a given procedure activation into subsets of identifiers
having the same address is not known exactly, then the ab-
stract assignment primitive has an exponential complexity,
since the assignment must be simulated for every possible
partition, and is also very unprecise ([5], p. 106).

We have thus designed a non-standard, copy-in/copy-out
semantics of higher-order imperative languages, and shown
that this semantics is equivalent to the standard, stack-based
semantics (as can be found for instance in Aho et al. [1])
of second-order Pascal programs with jumps to local and
non-local labels.

An early version of this semantics for first-order Pascal
programs can be found in Bourdoncle [3] and the version for
higher-order imperative languages can be found in Bourdon-
cle [5], p. 113–196.

We have shown that this semantics is also equivalent to
the standard semantics for an undecidable sub-class of higher-
order programs containing, in particular, programs with ex-
ceptions but without local procedures (which allows for the
treatment of the setjmp and longjmp primitives of C).

Figure 2: The Syntox system

Moreover, we have shown that for programs for which the
two semantics coincide, it is possible to determine variable
aliasing exactly, that is, it is possible to determine, for every
procedure, all the possible run-time partitions of the local and
global variables of this procedure into subsets of variables
having the same address. The knowledge of these partitions
is much richer than what can be found for instance in Banning
[2] since there may be a procedure activation where x and y
are aliases and another activation where y and z are aliases, but
no activation where x, y and z are aliases simultaneously. As
a matter of fact, the classical problem of finding all possible
alias pairs of a program is an abstraction (namely, graph union
and transitive closure) of the “real” aliasing information.

6 The Syntox system

The Syntox system is an interprocedural abstract debugger
that implements the ideas of section 3 and 4, and the non-
standard semantics of section 5 for a subset of Pascal. This
system, which is only a research prototype, can be used to find
bugs which are related to the range of scalar variables, such as
array indexing, range sub-types, etc. The lattice of program
properties used is thus non-relational, but we have shown
([5], p. 197–216) that any relational lattice can be chosen,
and that results can be arbitrarily precise, even in the presence
of aliasing, local procedures passed as parameters, jumps to
non-local labels and exceptions (which do not exist in Pascal).

Relational lattices can be used to determine properties, such
as linear inequalities of the form i 2 j 1, that exist
between different variables of a program [10]. Even though
the interval lattice is quite simple, we shall see in section 6.5
that it allows to determine non-trivial bugs.

6.1 Interval lattice

The interval lattice I ZZb used by Syntox is a safe approxima-
tion of P ZZb where ZZb denotes the set of integers between

2b 1 and 2b 1 1. This lattice being of height
2b, fixed point computations can require up to 2b iterations.
Therefore, we use the standard widening and narrowing op-
erators of Cousot [8, 13] defined, for every x I ZZb , by:

x x x x x

and, for every a1 b1 a2 b2 I ZZb , by:

a1 b1 a2 b2

if a2 a1 then else a1

if b2 b1 then else b1

a1 b1 a2 b2

if a1 then a2 else min a1 a2

if b1 then b2 else max b1 b2

It is easy to see that these operators enforce the convergence
of iterative computations of least fixed points in four steps at
most. For instance, the values taken by x2 during the iterative
computation of the solution of the first system of section 4
are:

0 0 0 0 0 0 1 1 0

for the widening phase and:

0 0 0 0 0 100 0 100

for the narrowing phase, which gives the optimum results:
x2 0 100 and x4 10 10 . Therefore, the approximate
computation of a least fixed point over I ZZb using a widening
phase and a narrowing phase is only four times more complex
than constant propagation!

Finally, note that more sophisticated widening and nar-
rowing operators can be easily designed [4] to integrate ad-
hoc heuristics which are appropriate for the class of programs
considered, as long as they satisfy the generic requirements
stated above.

6.2 Language restrictions

For historical reasons, Syntox does not yet allow procedures to
be passed as parameters to other procedures, but the theoret-
ical results of section 5 show that this feature could be added
without major problems. Variant records and the “with” con-
struct are not allowed in programs. Only the most standard
Pascal library functions are predefined. Programs with point-
ers to heap-allocated objects are accepted, but are not always

handled safely with respect to aliasing; other works on the
abstract interpretation of heap-allocated data structures such
as Deutsch [15, 16] could be used to handle pointer-induced
aliasing. Records are accepted, but no information is given
on their fields. This decision was made to simplify the de-
sign of the debugger, but records can be handled without
much trouble. Jumps to local and non-local labels are fully
supported.

6.3 Algorithms and complexity

Two different fixed point computation algorithms, described
in Bourdoncle [6], are used by Syntox. Both algorithms are
based on a “weak topological ordering” decomposition of
the dependency graph of the system of equations which gen-
eralizes topological ordering to directed graphs containing
cycles. In particular, we have shown that the hierarchical de-
composition of a reducible graph [1] obtained by computing
its limit graph is a weak topological ordering, and that any
weak topological ordering of a dependency graph gives an
admissible set of widening points (section 4) as well as two
“good” iteration strategies, that is, algorithms for iteratively
and asynchronously solving the system of equations [9].

The first strategy is used to compute intraprocedural fixed
points and takes advantage of the fact that the intraproce-
dural dependency graph is known in advance to achieve an
excellent complexity. Theoretical results [5, 6] show that the
complexity of this strategy is the product of the height h of
the abstract lattice by the sum of the individual depths of the
n nodes in the decomposition of the graph. The maximum
complexity is thus n when the graph is acyclic, and is at most:

h n n 1
2

Note that the use of widening and narrowing operators over
the lattice of intervals leads to the same complexity with
h 4v, where v is the number of variables, and that h 4 is
a good approximation of the empirical “average” complexity.

The second strategy is used during the interprocedural
analysis, for which the dependency graph is not known in
advance, and is based on a depth-first visit of the interproce-
dural call graph. We have shown that the overall complexity
of a fixed point computation over a program with n control
points, c procedure calls, p procedures and l intraprocedural
loops is at most:

h n c p l h n2

where 1 is the sum l n c n of the densities of intrapro-
cedural loops and procedure calls in the program, and of the
inverse of the average size n p of procedures. However,
practice shows that complexity is rarely quadratic, except for
programs which consist in tightly coupled mutually recursive
procedures or ad-hoc programs such as program “McCarthy”
of figure 1, which is equivalent, in terms of complexity, to a
program with 10 mutually recursive procedures or to a linear
program 100 times longuer.

program BinarySearch;
type index = 1..100;
var n : index; key : integer;

T : array [index] of integer;
function Find(key : integer) : boolean;

var m, left, right : integer;
begin

left := 1; right := n;
repeat

m := (left + right) div 2;
if (key T[m]) then

right := m 1
else

left := m 1
until (key = T[m]) or (left right);
Find := (key = T[m])

end;
begin

read(n, key); writeln("Found = ", Find(key))
end.

Figure 3: Binary search

6.4 Implementation

Syntox consists of approximately 20.000 lines of C, 4.000
of which implement a user-friendly interface under the X
Window system. The system has its own integrated editor
shown in figure 2. Once a program has been successfully
parsed and analyzed, the user can click on any statement
and the debugger pops up a window displaying the abstract
memory state right after the execution of this statement. If
needed, the window can be dragged to a permanent position
on the screen. When a procedure has reference parameters,
Syntox gives a description of all the possible “alias sets” of
this procedure [3]. Intermittent and invariant assertions can
be inserted before any statement.

The analysis of a program is done in several steps. The
first step consists in writing the intraprocedural semantic
equations associated with each procedure of the program.
The forward system of equations directly follows from the
syntax of the program, and the backward equations are built
by a trivial inversion of the forward system as described in
section 4.

The debugger then repeatedly performs a forward analysis
and two backward analyses (one for each kind of assertion)
and stops after a user-selectablenumber of passes. Thedefault
is to perform a forward analysis, two backward analyses and a
final forward analysis. Each analysis consists of a fixed point
computation (either a least fixed point or a greatest fixed
point) with a widening phase and a narrowing phase, which
implies that a complete analysis is, in practice, 4 4 16
times more complex than constant propagation.

Note that when the program has recursive procedures, the
interprocedural call graph is dynamically unfolded during the
analysis, and each procedure activation is duplicated accord-

ing to the value of its token [3, 4, 5, 19, 23] which consists
in the static calling site of the activation and the set of all its
aliases. When this duplication is too costly in terms of time
and memory, it is possible to avoid it, at the cost of a loss of
precision.

6.5 Results

Although the lattice of intervals used by Syntox is rather
simple, the use of tokens to unfold the interprocedural call
graph and the use of widening and narrowing techniques
allow for the discovery of very subtle and non-trivial bugs.
As an example, consider program “McCarthy” of figure 1.
This program implements, for k 9, a generalization MCk

of McCarthy’s 91 function defined by:

MCk n
n 10 if n 100
MCk

k n 10k 9 if n 100

It can be shown that this function has the following meaning:

MCk n
n 10 if n 100
91 if n 100

If the invariant assertion n 101 is inserted at point 1 ,
Syntox proves that m 91 at point 2 , which shows that if
a call MC9 n terminates and n 101, then MC9 n 91.
Even more interesting, if the intermittent assertion m 91
is inserted at point 2 , then Syntox shows that a necessary
condition for this property to hold is that n 101 at point 1 .
Finally, if the correct value 81 is replaced by any value less
than 80, for instance 71, and that the intermittent assertion
“true” is inserted at point 2 , then Syntox shows that a neces-
sary condition for the program to terminate is that n 101 at
point 1 . Experimentally, it can be shown that this erroneous
program loops for every value n 100 by calling MC9 with a
finite set of arguments n. For instance, the call MC9 0 leads
to a cycle of length 81. Interestingly, this bug was effec-
tively discovered while attempting to generalize McCarthy’s
91 function with an incorrect formula.

Another use of Syntox is to prove that every array access
in a program is statically correct, so that a compiler need not
generate code to check that array indices are correct at run-
time. We have been able to show automatically that every
array access is statically correct in particular implementa-
tions of HeapSort and BinarySearch (figure 3), and that most
accesses (i.e. all but one or two) are also correct in other
implementations of various sorting algorithms. The exper-
imental comparison between these programs compiled with
and without array bound checking shows a speed-up ranging
from 30% to 40%.

These results are clearly superior to previous ones. For in-
stance, Harrison [17] computes the greatest fixed point of the
forward system of semantic equations, which has no seman-
tic justification and gives poor results (section 3). Moreover,
since he does not use a narrowing operator, his analysis can
be extremely costly. More recently, Markstein et al. [21] use

Program Size Memory Time

Fact 24 44 kb 0.5 sec
Select 61 64 kb 0.9 sec
Ackermann 72 99 kb 1.9 sec
QuickSort 92 98 kb 2.1 sec
HeapSort 96 108 kb 2.4 sec
McCarthy9 176 230 kb 5.4 sec
McCarthy30 1184 3387 kb 153.3 sec

Figure 4: Statistics

strength reduction, code motion and subexpression elimina-
tion to move range checks outside loops, and Gupta [18] uses
“monotonicity” to improve their results. These works are par-
tial attempts to perform backward analyses, but they are not
semantically founded, and rely on ad-hoc heuristics related to
the way induction variables are computed. On the contrary,
our method works without such assumptions, can be applied
to arbitrary recursive procedures, back-propagates assertions
much further, and gives better results. For instance, every ar-
ray access in programs “Matrix” and “Shuttle” of Markstein
et al. [21] is statically proven correct by Syntox.

Finally, note that Syntox can be used to statically check
that variables having range sub-types, such as 1 100, are
used consistently. As a matter of fact, range sub-types act as
“permanent invariant assertions” and have proven to be very
useful for abstract debugging.

The time and memory requirements for the abstract de-
bugging of programs are reasonable. The table in figure 4
shows the size of differents examples (i.e. the total number of
control points after having unfolded the interprocedural call
graph), the allocated memory in kbytes, and the analysis time
in seconds for a DEC 5000/200 Ultrix workstation.

These results show that, in practice, the amount of time
and memory required is closer to the linear case than the
quadratic case, except for very complex programs, and there-
fore invalidate a common belief according to which static
analysis of programs would be exponential.

7 Conclusions and future work

We have presented a new static, semantic-based approach
to the debugging of programs, called “abstract debugging”,
that allows programmers to use invariant and intermittent
assertions to statically and formally check the validity of a
program, test its behavior along certain execution paths, and
find the origin of bugs rather than their occurrences.

This method is based on the operational abstract interpre-
tation framework and cannot be translated to the denotational
framework used by systems such as SPARE [25].

We have shown that abstract debugging can be efficiently
implemented with a worst-case quadratic complexity, and
shown that non-trivial bugs can be automatically discovered
even when the lattice of abstract properties is fairly simple.

Finally, we have presented the prototype abstract debug-
ger Syntox which can be used to debug first-order Pascal
programs. The methods we have developed are not restricted
to Pascal, and could be easily applied to other “safe” imper-
ative languages such as Modula-3 or safe subsets of C ,
and to functional or logic programming languages.

Although we have not tried to debug large, real-life pro-
grams with Syntox, all experiments done to date indicate that
the time and space complexity of abstract debugging lies
somewhere between linear and quadratic, and that only in-
trinsically complex programs tend to be complex to analyze.
We are therefore confident that this technique can be effec-
tively applied to reasonably sized, real-life programs.

8 Acknowledgements

I wish to thank Patrick and Radhia Cousot for their support
and helpful comments on this work.

References
[1] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman: “Compilers

— Principles, Techniques and Tools”, Addison-Wesley Pub-
lishing Company (1986)

[2] John P. Banning: “An Efficient Way to Find the Side Effects
of Procedure Calls and the Aliases of Variables”, Proc. of the
6th ACM Symp. on POPL (1979) 29–41

[3] François Bourdoncle: “Interprocedural Abstract Interpreta-
tion of Block Structured Languages with Nested Procedures,
Aliasing and Recursivity”, Proc. of the International Workshop
PLILP’90, Lecture Notes in Computer Science 456, Springer-
Verlag (1990) 307–323

[4] François Bourdoncle: “Abstract Interpretation By Dynamic
Partitioning”, Journal of Functional Programming, Vol. 2, No.
4 (1992) 407–435

[5] François Bourdoncle: “Sémantiques des langages impératifs
d’ordre supérieur et interprétation abstraite”, Ph.D. disserta-
tion, Ecole Polytechnique (1992)

[6] François Bourdoncle: “Efficient Chaotic Iteration Strategies
with Widenings”, Proc. of the International Conf. on For-
mal Methods in Programming and their Applications, Lecture
Notes in Computer Science, Springer-Verlag (1993) to appear

[7] Keith D. Cooper: “Analyzing Aliases of Reference Formal
Parameters”, Proc. of the 12th ACM Symp. on POPL (1985)
281–290

[8] Patrick and Radhia Cousot: “Abstract Interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints”, Proc. of the 4th ACM Symp. on
POPL (1977) 238–252

[9] Patrick Cousot: “Asynchronous iterative methods for solving
a fixpoint system of monotone equations”, Research Report
IMAG-RR-88, Université Scientifique et Médicale de Greno-
ble (1977)

[10] Patrick Cousot and Nicolas Halbwachs: “Automatic discovery
of linear constraints among variables of a program”, Proc. of
the 5th ACM Symp. on POPL (1978) 84–97

[11] Patrick Cousot: “Méthodes itératives de construction et
d’approximation de points fixes d’opérateurs monotones sur
un treillis. Analyse sémantique de programmes”, Ph.D. disser-
tation, Université Scientifique et Médicale de Grenoble (1978)

[12] Patrick and Radhia Cousot: “Static determination of dynamic
properties of recursive procedures”, Formal Description of
Programming Concepts, North Holland Publishing Company
(1978) 237–277

[13] Patrick Cousot: “Semantic foundations of program analysis”
in Muchnick and Jones Eds., Program Flow Analysis, Theory
and Applications, Prentice-Hall (1981) 303–343

[14] Alan J. Demers, Anne Neirynck and Prakash Panangaden:
“Computation of Aliases and Support Sets”, Proc. of the 14th
ACM Symp. on POPL (1987) 274–283

[15] Alain Deutsch: “On determining lifetime and aliasing of dy-
namically allocated data in higher-order functional specifica-
tions”, Proc. of the 17th ACM Symp. on POPL (1990)

[16] Alain Deutsch: “A Storeless Model of Aliasing and its
Abstractions using Finite Representations of Right-Regular
Equivalence Relations”, Proc. of the IEEE’92 International
Conf. on Computer Languages, IEEE Press (1992)

[17] William H. Harrison: “Compiler Analysis of the Value Ranges
for Variables”, IEEE Transactions on software engineering,
Vol. SE-3, No. 3, (1977) 243–250

[18] Rajiv Gupta: “A Fresh Look at Optimizing Array Bound
Checking”, Proc. of SIGPLAN ’90 Conf. on Programming
Language Design and Implementation (1990) 272–282

[19] Neil D. Jones and Steven Muchnick: “A Flexible Approach
to Interprocedural Data Flow Analysis and Programs with Re-
cursive Data Structures”, in Proc. of the 9th ACM Symp. on
POPL (1982)

[20] William Landi and Barbara G. Ryder: “Pointer-induced Alias-
ing: A Problem Classification”, Proc. of the 18th ACM Symp.
on POPL (1991) 93–103

[21] Victoria Markstein, John Cocke and Peter Markstein: “Opti-
mization of Range Checking”, Proc. of the SIGPLAN’82 Symp.
on Compiler Construction (1982) 114–119

[22] Jan Stransky: “A lattice for Abstract Interpretation of Dy-
namic (Lisp-like) Structures”, Information and Computation
101 (1992) 70–102

[23] Micha Sharir and Amir Pnueli: “Two Approaches to Inter-
procedural Data Flow Analysis” in Muchnick and Jones Eds.,
Program Flow Analysis, Theory and Applications, Prentice-
Hall (1981) 189–233

[24] Andrew P. Tolmach and Andrew W. Appel: “Debugging Stan-
dard ML Without Reverse Engineering”, Proc. 1990 ACM
Conf. on Lisp and Functional Programming, ACM Press
(1990) 1–12

[25] G.A. Venkatesh and Charles N. Fisher: “SPARE: A Develop-
ment Environment For Program Analysis Algorithms”, IEEE
Transactions on software engineering, Vol. 18, No. 4, (1992)
304–318

