
Assertion-based debugging of imperative
programs by abstract interpretation

Bourdoncle

DIGITAL Paris Research Laboratory Centre de
85, avenue Victor Hugo Ecole des Mines de Paris, BP 207

92500 Rueil-Malmaison — France 06560 Sophia-Antipolis Cedex
Tel: +33 (1) 47 14 28 22 France

bourdoncle@prl.dec.com

Abstract. Abstract interpretation is a formal method that enables the static determination
(i.e. at compile-time) of the dynamic properties (i.e. at run-time) of programs. So far,
this method has mainly been used to build sophisticated, optimizing compilers. In this
paper, we show how abstract interpretation techniques can be used to perform, prior
to their execution, a static and automatic debugging of imperative programs. This
novel approach, which we call abstract debugging, lets programmers use assertions
to express invariance properties as well as inevitable properties of programs, such as
termination. We show how such assertions can be used to find the origin of bugs, rather
than their occurrences, and determine necessary conditions of program correctness,
that is, necessary conditions for programs to be bug-free and correct with respect to
the programmer’s assertions. We also show that assertions can be used to restrict the
control-flow of a program and examine its behavior along specific execution paths
and find necessary conditions for the program to reach a particular point in a given
state. Finally, we present the Syntox system that enables the abstract debugging of
Pascal programs by the determination of the range of scalar variables, and discuss
implementation, algorithmic and complexity issues.

1 Introduction

Since most, if not all, programmers are unable to write bug-free programs,debugging has
always been an important part of software engineering. The most common approach for
debugging a program is to run this program on a well chosen set of examples and check
that each run is bug-free, that is, that the program “behaves as expected”. However, this
approach has several severe shortcomings.

For instance, even with an extensive and carefully chosen set of examples, the
method offers absolutely no guaranty that every part of the program’s code has been
tested under all possible conditions, which is unacceptable for mission-critical systems.
Moreover, it is sometimes very difficult, with “post-mortem” debuggers such as adb or
dbx, to find the origin of a bug just by looking at the current memory state right after
the bug has occured.

Methods have been proposed to help programmers at this stage by allowing the
reverse execution of programs, but these methods require that every assignment en-
countered during the execution of the program be memorized, which makes them only
applicable to functional programs with few side-effects [21]. It would thus be desirable
to have a framework allowing the static, formal and automatic debugging of programs.
Even though this might seem impossible at first glance, since the general problem of
finding all the bugs in a program is undecidable, we introduce in this paper an assertion-
based framework that enables the static and automatic discovery of certain categories
of bugs.

This framework is based on abstract interpretation, which is a formal method,
pioneered by Patrick and Radhia Cousot [7, 10, 12], that enables the static and au-
tomatic determination of safe and approximate run-time properties of programs. So
far, abstract interpretation has mainly been used in compilers to optimize, vectorize,
determine the lifetime of dynamically allocated data structures (compile-time garbage
collection), etc. The emphasis has thus been put on the efficient determination of general
properties of correct executions of programs rather than on the determination of cor-
rectness conditions, and abstract interpretation has always been considered as a batch,
optimization-oriented method, that should not be made accessible to the programmer.

In this paper, we propose a method where the programmer is allowed to insert
assertions in the source-code of the program being debugged, and where violations of
these assertions are treated as run-time errors. Two kinds of assertions can be used.
Invariant assertions are properties which must always hold at a given control point, and
are similar to the classical assert statement in C programs. Intermittent assertions
are properties which must eventually hold at a given control point. Differently stated,
intermittent assertions are inevitable properties of programs, that is, properties such that
every execution of the program inevitably leads to the specified control point with a
memory state satisfying the intermittent property.

For instance, the invariant assertion false can be used to specify that a particular
control point should not be reached, whereas the intermittent assertion true can be used
to specify that a particular control point should be reached. In particular, the termination
of a program can be specified by inserting the intermittent assertion true at the end of
the program. Invariant and intermittent assertions can be freely mixed, which gives the
programmer a great flexibility to express correctness conditions of a program and test
its behavior along certain execution paths.

This paper is organized as follows. In section 2, we give several examples of
the categories of bugs that can be automatically discovered by abstract debugging and
describe how a programmer can interact with an abstract debugger to locate these bugs.
Then, in section 3 we give an intuitive presentation of the basic ideas and techniques
of abstract debugging, and explain why and how they can be used to debug programs.
Finally, in section 4, we present the prototype Syntox system that enables the abstract
debugging of Pascal programs without procedure parameters by the determination of
the range of scalar variables. We discuss implementation, algorithmic and complexity
issues, show that even very simple properties such as the range of variables enable
the determination of non-trivial bugs, and show that this system can be used to safely
suppress most array bound checks during the execution of Pascal programs.

2 Examples

In this section, we exemplify the concept of abstract debugging on a few erroneous
programs. A very common programming error consists in using out-of-bounds array
indices in loops. For instance, the “For” program of figure 1 will obviously exit on a
run-time error when accessing T[0], unless at point 1 . Moreover, if the index
ranges from to instead of to , then the program will abort when accessing T[101]
unless at point 1 . Similarly, program “While” will loop unless is at
point 1 , and program “Fact” will loop unless at point 1 .

It might seem quite difficult to discover these bugs automatically. However, an
abstract debugger such a Syntox, described in section 4, will automatically discover
and report the above necessary conditions of correctness. A compiler could use these
conditions to issue a warning or generate a call to a specific error handler to do some
clean-up and exit safely, or else could enter a special debugging mode to do a step-by-
step execution of the program until the bug actually occurs.

The interesting fact about abstract debugging is that it predicts bugs before they
actually happen, which permits a safe handling of these bugs. Further more, an abstract
debugger always attempts to find the origin of bugs, rather than their occurrences,
and back-propagates necessary conditions of correctness as far as possible in order to
minimize the amount of information delivered to the programmer. Consequently, this
feature makes abstract debugging much more useful than traditional methods and global
flow analyzers such as Lint for instance, which is well known for the large number of
warnings it generates.

For example, it is much more interesting to know that variable of program “For”
must be lower than at point 1 than to know that must be less than at point
2 since the former test can be done once and for all after has been read, whereas the
latter must be done for every access to T. Moreover, if at point 1 , then it is
certain that the program will either loop or exit on a run-time error in the future.

As we shall see in the next section, abstract debugging is a combination of forward
and backward analyses of programs. Forward analyses mimic the forward (i.e. regular)
execution of programs, whereas backward analyses mimic the reverse execution of pro-
grams and are responsible for the “discovery” and the “factorization” of the correctness
conditions of programs.

As an example, consider program “BackwardAnalysis” of figure 1. Starting from
the beginning of the program, a forward analysis will find 1) that at point 3
and that unless , a run-time error will occur when reading T , and 2) that

at point 4 and that unless , a run-time error will occur when reading
T . A forward analysis thus determines potential occurrences of bugs in a program.
However, a backward analysis of the same program will successively show that in order
for the program not to abort on a run-time error, the following properties must hold:

at point 4 , at point 3 , at point 2 , and finally
at point 1 .

This last information can then be combined with the forward data flow, which
shows that the post-condition of the “read” procedure call does not imply the
pre-condition determined by the backward analysis. Hence, a warning can
be issued to inform the programmer that if at point 1 , then his program

program While;
var i : integer;

b : boolean;
begin

i := 0; read(b); 1
while b and (i 100) do
2 i := i 1

end.

program For;
var i, n : integer;

T : array [1..100] of integer;
begin

read(n); 1
for i := 0 to n do
2 read(T[i])

end.

program Intermittent;
var i : integer;
begin

read(i); 1
while (i 100) do
2 i := i 1 3

4
end.

program Select;
var n, s : integer;
function Select(n : integer) : integer;
begin

if (n 10) then
Select := Select(n)

else if (n) then
Select := Select(n)

else if (n) then
3 Select :=
else

Select :=
end;

begin
read(n); 1
s := Select(n);
writeln(s); 2

end.

program Shuttle;
label 1;
const N=100;
var i, j, tmp : integer;

T : array [1..N] of integer;
begin

for i := 1 to N 1 do
begin

for j := i downto 1 do
if (T[j] T[j+1]) then begin

tmp := T[j];
T[j] := T[j 1];
T[j 1] := tmp

end else
goto 1;

1:
end

end.

program Fact;
var x, y : integer;
function F(n : integer) : integer;
begin

if (n 0) then
F := 1

else F := n * F(n 1)
end;

begin
read(x); 1 y := F(x) 2

end.

program BackwardAnalysis;
var i, j : integer;

T : array [1..100] of integer;
begin

read(i, b); 1 j := 2 * i + 1;
2 if (j = 3) then

3 read(T[j + 2])
else
4 read(T[j])

5
end.

Figure 1: Examples

will certainly fail later on. Hence the origin of the bugs, i.e. the fact that the program
does not test variable after reading it, has been found, and a necessary condition of
correctness, which is also sufficient in this particular case, has thus been discovered.
Also, note that a further forward analysis would show that holds at point
4 for any correct execution of this program, which refines the property
determined by the backward analysis.

As stated in the introduction, an important feature of abstract debugging is that
programmers can freely insert invariant assertions and intermittent assertions in their
programs to either statically check that important invariance properties are satisfied
or check under which conditions a program eventually reaches a control point while
satisfying a given property.

Intermittent assertions allow for a very powerful form of debugging. As an example,
if the intermittent assertion is inserted at point 2 of program “Intermittent” of
figure 1, then Syntox shows that a necessary condition for the program to eventually
reach control point 2 with is that at point 1 .

The way intermittent assertions are handled bottom-up is easy to understand. In this
particular case, an abstract debugger would start from the set 2 representing
the program state at point 2 , and compute all the possible ancestors, namely
1 , 3 , 1 , 3 , 1 , adding them one by one to the set of “correct

states”.
It is thus possible to determine the set of program states (and, in particular, of

input states) from which a program eventually reaches a given control point, by simply
inserting the intermittent assertion true, representing all the possible states, at this
point. So for instance, if the intermittent assertion true is inserted at point 2 of program
“Select” of figure 1, Syntox shows that a necessary condition for the program to terminate
is that at point 1 . Differently stated, if , then the program will certainly
loop or exit on a run-time error.

Further more, if the invariant assertion false is inserted at point 3 , Syntox shows
that at point 1 is a necessary condition for the program to terminate without
control ever reaching point 3 . And finally, if the intermittent assertion is inserted
at point 2 , Syntox shows that a necessary condition for this assertion to eventually hold
is that at point 1 .

Invariant assertions can therefore be used to restrict the control flow and examine
the behavior of a program along specific execution paths, and contrary to intermittent
assertions, invariant assertions are handled top-down, that is, states which violate the
invariants assertions, as well as all their ancestors, are removed, rather than added, from
the set of correct states.

3 Abstract debugging

As stated in the introduction, abstract interpretation aims at computing safe approxima-
tions of flow-insensitive run-time properties of programs, that is, properties which hold
at a given control point independently of the path followed to reach it. These properties,
which are not limited to boolean properties, can be for instance the range or congruence

properties [15] of integer variables, or relational properties such as linear inequalities
of the form between the variables of a program.

The method is based on a characterization of program properties as fixed points of
monotonic functions over complete lattices. For instance, if is a predicate transformer
describing the operational semantics of a program, then for every program property ,

is a property characterizing the set of states reached after one program step
executed from states satisfying , and the program invariant, which characterizes the
set of descendants of a set of input states satisfying a property is known to be the
least fixed point, with respect to implication, of the function:

or, equivalently, the least solution of the equation:

This equation simply states that program states reached during executions of the pro-
gram started from an input state satisfying are either input states satisfying or
descendants of other reachable states.

The previous equation reflects the forward execution of the program. However,
forward execution is not sufficient for the purpose of abstract debugging. To see why,
let us consider an invariant assertion and an intermittent assertion that one
wishes to prove about the program. Two properties are of interest:

The property which characterizes the set of states whose descendants
satisfy .

The property which characterizes the set of states for which there
exists at least one descendant satisfying .

For instance, if there are input states which do not satisfy or, worse, if
no input state satisfy , then it is sure that the program is not correct with
respect to , that is, every execution starting from an input state which does not satisfy

will certainly lead to a state which does not satisfy .
Similarly, if there are input states which do not satisfy , then every

execution starting from an input state which does not satisfy will never
reach a state satisfying .

So for instance, let and respectively characterize the sets of output
states and the set of error states, and let denote the negation of property . Then

characterizes the set of states for which the program terminates,
characterizesthe set of states leading to a run-time error,

characterizes the set of states which either cause the program to loop or to exit on a
run-time error, and characterizes the set of states which do not lead to a
run-time error.

It can be shown [12] that if the program is deterministic, as it is the case for
imperative languages, then is the greatest solution (w.r.t. implication) of
the equation:

and is the least solution of the equation:

where is the predicate transformer describing the backward semantics of the pro-
gram, that is, if is a program property, then is the property which characterizes
the set of direct ancestors of the states satisfying . Note that, for technical reasons, we
make the assumption that output states are fixed points of the transition relation defining
the operational semantics of the program. We can see that the two properties of interest
are defined in terms of the backward semantics of the program. The abstract debugging
of a program can then be performed as follows.

a) Compute the program invariant I which represents the set of program states that
can be reached during program executions which are correct with respect to the
programmer’s specifications and (see below).

b) Signal to the programmer every input state which does not satisfy I and every
state satisfying I whose direct descendant does not satisfy I.

Step b thus determines a minimum set of “frontier” states that certainly lead to an
incorrect execution of the program. These states are produced by the forward data
flow but their descendants are not part of the backward flow. As illustrated in section
2, frontier states typically correspond to “read” statements or to entry points of loops.
Hence, step b determines, as expected, the origin of bugs, rather than their occurrences.

As shown with program “BackwardAnalysis” in section 2, the program invariant I
can be computed as the limit of the decreasing chain (w.r.t. implication) defined
by and iteratively computed by applying the following steps in sequence:

1) Compute the characterization of the set of descendants of input states satis-
fying as the least solution of the forward equation:

2) Compute the characterization of the set of states satisfying whose
descendants satisfy as the greatest solution of the backward equation:

3) Compute the characterization of the set of states satisfying for which
there exists at least one descendant satisfying as the least solution of the
backward equation:

Note that if the programmer only specifies one of the two assertions or , then
only one of the two steps 2 or 3 has to be applied. Also, note that in practice, it is often
sufficient to apply steps 1-2-3-1, although, in general, the chain can be infinitely

strictly decreasing, i.e. , since each step can refine the previous one.
For instance, if a backward propagation “removes” several erroneous input states, then
the next forward propagation will eliminate the descendants of these input states, etc.

For example, if the intermittent assertion is inserted at point 2 of program
“Fact”, to determine if it is possible for the program to terminate with , Syntox
shows after steps 1-3-1 that a necessary condition for this property to hold is that
at point 1 . But if step 3 is applied once more, then Syntox shows that no correct
program execution can satisfy this property. Therefore, it is proven that the invariant
assertion holds at point 2 , that is, if control ever reaches point 2 , then .

So far, we have assumed that programs are deterministic, but most programs are
not deterministic. For instance, programs with “read” statements or logic programs
are not deterministic, and program states can have several descendants. However, it
can be shown that the above method remains valid, that is, that the condition stating
that frontier states are incorrect is still a necessary condition of correctness, but is not
sufficient in general.

For instance, if the statement “i := i + 1” of program “Intermittent” is replaced by
“read(i)” then the conditions at points 1 and 3 and the condition
at point 4 are necessary conditions for property to eventually hold at the end
of the program, but these conditions are not sufficient, since the program might loop
forever if the values read for variable are always less than 100.

Of course, the method we have described is interesting from a mathematical point
of view, but is not directly implementable, since fixed points over infinite domains are
not computable in general. This is why abstract interpretation defines standard methods
[3, 4, 5, 6, 7, 10, 11, 12] for finitely and iteratively computing safe approximations of I.
These approximate invariants describe true properties about the run-time behavior
of the program, that is , but are not necessarily optimal.

Note that if the approximation of the program invariant I is necessaryfor the approach
to be tractable, this approximation implies that the correctness conditions determined
by an abstract debugger are necessary but not always sufficient, even for deterministic
programs. For example, if a necessary and sufficient condition of correctness is that an
integer variable be such that , and the interval lattice is used to represent
approximate properties, then is only a necessary condition for the program to
be correct.

4 The Syntox system

The Syntox system is a prototype interprocedural abstract debugger that implements the
ideas of section 3 for a subset of Pascal. This debugger can be used to find bugs that
are related to the range of scalar variables, such as array indexing, range sub-types,
etc. The interval lattice used to represent program properties is thus non-relational,
but we have shown [4] that any relational lattice can be chosen, and that the results
can be arbitrarily precise, even in the presence of aliasing, local procedures passed as
parameters, non-local gotos and exceptions (which do not exist in Pascal).

Even though the interval lattice is quite simple, we shall see in section 4.5 that it
allows to determine non-trivial bugs and program properties.

Figure 2: The Syntox system

4.1 Semantic issues

A problem that has to be solved to allow the abstract interpretation of Pascal-like
languages is the aliasing induced by the formal reference parameters of procedures
and functions, which create different variables with the same actual address. In order
to increase the precision and reduce the complexity of the analysis, Syntox uses a
non-standard, copy-in/copy-out semantics of first-order Pascal programs (i.e. programs
without procedures passed as parameters) with jumps to local and non-local labels.
This semantics, which is described in Bourdoncle [2, 4], determines the exact aliasing
of programs, and is very well suited to abstract interpretation. We have shown that it is
equivalent to the standard, stack-based semantics of Pascal [1]. We have also designed
a version of this semantics for higher-order imperative languages that can be found in
Bourdoncle [4], and shown that it is also equivalent to the standard semantics of the
following classes of higher-order imperative programs with jumps to local and non-local
labels:

Second-order programs, i.e. programs where procedures which are passed as
parameters to other procedures have non-procedural parameters only. Every
Wirth-Pascal program [22] is second-order, but ISO-Pascal programs [18] can be
higher-order.

Higher-order programs with exceptions but without local procedures.

These classes can be shown to be sufficiently general to allow the abstract debugging
of C programs with setjmp and longjmp statements (not considering the pointer-
induced aliasing problems). As a matter of fact, exception handlers can be emulated by
local procedure passed as parameter, and a longjmp statement is no more than a call
to the exception handler which restores the setjmp context and branches to a local
label of its enclosing procedure.

4.2 Language restrictions

Although the above theoretical results show that this could be done without any major
problem, Syntox does not yet allow procedures to be passed as parameters to other
procedures. Variant records and the “with” construct are not allowed in programs. Only
the most standard Pascal library functions are predefined. Programs with pointers to
heap-allocated objects are accepted, but are not always handled safely with respect to
aliasing; other works on the abstract interpretation of heap-allocated data structures
such as Deutsch [13, 14] could be used to handle pointer-induced aliasing. Records are
accepted, but no information is given on their fields. This decision was made to simplify
the design of the debugger, but records can be handled without much trouble. Jumps to
local and non-local labels are fully supported. It should be emphasized that although
this system is efficient, it is only a research prototype and a test-bed for new ideas.

4.3 Implementation

Syntox consists of approximately 20.000 lines of C, 4.000 of which implement a user-
friendly interface under the X Window system, with its own integrated editor. Once a
program has been analyzed, the user can click on any statement and the debugger pops
up a window displaying run-time properties holding after the execution of the selected
statement (fig. 2). If needed, the window can be dragged to a permanent position on the
screen. When a procedure has reference parameters, Syntox gives a description of all
the possible “alias sets” of this procedure [2], that is, all the subsets of variables having
the same address in each procedure activation. Intermittent and invariant assertions can
be inserted before every statement.

The analysis of a program is done in several steps. The first step consists in writing
the intraprocedural semantic equations associated with each procedure of the program.
The forward system of equations directly follows from the syntax of the program, and
the backward equations are built by a trivial inversion of the forward system [4, 6].

The debugger then repeatedly performs a forward analysis and two backward anal-
yses (one for each kind of assertion) and stops after a user-selectable number of passes.
The default is to perform a forward analysis, two backward analyses and a final forward
analysis, which is sufficient, in practice, to find most interesting bugs. However, the
example given at the end of section 3 shows that this is not always the case, and it is
sometimes necessary to continue the analysis one or several steps further.

Each analysis consists of a fixed point computation (either a least fixed point or
a greatest fixed point) with a widening phase and a narrowing phase. Widening and
narrowing [3, 4, 7, 10, 12] are standard speed-up techniques of abstract interpretation
that can be used to compute safe approximations of fixed points when the height of

the lattice of program properties is infinite or very large, as for the interval lattice.
These techniques transform possibly infinite, but exact, iterative computations of least
or greatest fixed points into finite, but approximated ones. For instance, the computation
of a fixed point over the lattice of intervals, which can require up to iterations when
integers are coded on bits, is reduced to at most four iterations, which makes an entire
analysis only sixteen times more complex than constant propagation.

Note that when the program has recursive procedures, the interprocedural call graph
is dynamically unfolded during the analysis, and each procedure activation is “dupli-
cated” according to the value of its token [2, 3, 4, 19] which consists of the static calling
site of the activation and the set of all its aliases. For instance, the analysis of program
“Fact” would create two instances of function “F”.

The duplication of procedures according to their calling sites has proven to be very
useful since calling sites tend to be associated to well-defined contexts and analysing
the behavior of a procedure for each context separately leads to very precise results. Of
course, when this duplication is too costly in terms of time and memory, it is possible
to avoid it, at the cost of a loss of precision.

4.4 Algorithms and complexity

Two fixed point computation algorithms are used by Syntox. Each algorithm is based
on a hierarchical decomposition of the control flow-graph into strongly connected
components and sub-components, described in Bourdoncle [4, 5], which defines two
chaotic iteration strategies [5, 8] as well as admissible sets of widening points, that is,
control points were “generalizations” take place to avoid infinite computations when
working with lattices of infinite height [6, 12].

The first algorithm is used for intraprocedural analysis, for which the control flow
graph is known in advance, and attempts to “stabilize” sub-components each time a
component is stabilized. When the graph is acyclic, the complexity of this algorithm
is linear, and when the graph is strongly connected, its worst-case complexity is the
product of the height of the abstract lattice by the sum of the individual depths of the

nodes in the decomposition of the graph, which is always bounded by:

Note that the use of widening and narrowing techniques over the lattice of intervals
leads to the same complexity with , where is the number of variables of
the program. The second algorithm is used for interprocedural analysis and is based
on a depth-first visit of the (dynamically unfolded) interprocedural control flow graph.
Its worst-case complexity for a program with control points, procedure calls,
procedures and intraprocedural loops is at most:

where is the sum of the densities of intraprocedural loops and procedure
calls in the program, and of the inverse of the average size of procedures. However,
practice shows that this quadratic bound is rarely reached, except for programs which

program BinarySearch;
type index = 1..100;
var n : index; key : integer;

T : array [index] of integer;
function Find(key : integer) : boolean;

var m, left, right : integer;
begin

left := 1;
right := n;
repeat
1 m := (left + right) div 2;

if (key T[m]) then
right := m

else
left := m

until (key = T[m]) or (left right);
Find := (key = T[m])

end;
begin

read(n, key);
writeln("Found = ", Find(key))

end.

program QuickSort;
var n : integer;

T : array [1..100] of integer;
procedure QSort(l, r : integer);

var i, m, v, x : integer;
begin

if l r then begin
v := T[l]; m := l;
for i := l to r do

if T[i] v then
begin
2 m := m + 1; x := T[m];

T[m] := T[i]; T[i] := x
end;

x := T[m]; T[m] := T[l]; T[l] := x;
QSort(l, m);
QSort(m , r)

end
end;

begin
readln(n); 1 QSort(, n);

end.

Figure 3: Examples

consist of tightly coupled mutually recursive procedures. The average complexity of
interprocedural analyses of real-life imperative programs should thus be almost linear,
since large programs are generally linear programs with local loops and relatively small
groups of mutually recursive procedures.

4.5 Results

Apart from abstract debugging, another interesting use of Syntox is to prove that array
accesses in a program are statically correct, so that a compiler need not generate the
code to check that array indices are correct at run-time.

Classical methods used to perform compile-time array bound checking are always
based on forward data-flow analyses [16, 17]. Indeed, it is not be obvious that backward
propagation is interesting in this context. However, it is easy to see that every reference

to the -th element of an array T of elements in a program is an implicit invariant
assertion . Therefore, when the program is incorrect, the back-propagation of
these assertions gathers the correctness conditions on a few program points and gives
better results everywhere else.

For instance, Syntox automatically shows that every array access is statically correct
in an implementation of HeapSort, and that most accesses (i.e., all but one or two) are
also correct in other implementations of various sorting algorithms. In particular, Syntox
shows that if the conditions at point 1 and at point 2 are satisfied at
run-time, then every array access in program “QuickSort” of figure 3 is guaranteed to

Program Size Memory Time

BinarySearch 17 44 kB 0.5 sec
Fact 24 44 kB 0.5 sec
Select 61 64 kB 0.9 sec
Ackermann 72 99 kB 1.9 sec
QuickSort 92 98 kB 2.1 sec
HeapSort 96 108 kB 2.4 sec

Figure 4: Statistics

be correct. Without back-propagation, six tests instead of two must be done at run-time.
Finally, if the main call to procedure “QSort” is replaced by the erroneous call “QSort(0,
n)”, Syntox shows that a necessary condition of correctness is that at point 1 .

Similarly, every array access is statically proven correct in program “Shuttle” of
figure 1, which is taken from Markstein et al. [17], and in program “BinarySearch” of
figure 3. Although this last program is fairly simple, the result is non-trivial since the
test of the “repeat” loop does not make an explicit reference to the bounds and .

It is important to remark that there is absolutely no magic behind this and the above
results, and the properties at point 1 of program “Bina-
rySearch” have been automatically inferred by the abstract debugger during the fixed
point computation. These properties are thus the results of the fixed point computation,
and definitely not “guessed” properties proven by a theorem prover. Also, remark that
Syntox is not based on symbolic execution, since this method does not allow the auto-
matic, i.e. non-interactive, determination of program invariants. The beauty of abstract
interpretation is that program invariants are synthesized rather than simply proven [3].

The experimental comparison between the above programs compiled with and with-
out run-time array bound checking shows a speed-up ranging from 30% to 40%.

Finally, note that the time and memory requirements for the abstract debugging
of programs are reasonable. Figure 4 shows the size of differents examples (i.e. the
total number of control points after having unfolded the interprocedural call graph),
the allocated memory in kbytes, and the analysis time in seconds for a DEC 5000/200
Ultrix workstation. These results show that, in practice, the amount of time and memory
required is almost linear in the size of the program, and therefore invalidate a common
belief according to which static analysis of programs would be exponential.

5 Conclusions and future work

We have presented a new static, semantic-based approach to the debugging of programs
that allows programmers to use invariant and intermittent assertions to statically and
formally check the validity of a program, test its behavior along certain execution paths,
and find the origin of bugs rather than their occurrences. We have shown that this
method can be efficiently implemented with a worst-case quadratic complexity, and

shown that non-trivial bugs can be automatically discovered even when the lattice of
abstract properties is fairly simple. Finally, we have presented the prototype abstract
debugger Syntox which can be used to debug a subset of first-order Pascal programs.

The techniques we have developed can be directly applied to most “safe” imperative
languages such as Modula-2, safe subsets of Modula-3 or , but they are also easily
applicable to functional or logic programming languages.

Although we have not tried to debug large, real-life programs with Syntox, all experi-
ments done to date indicate that the time and space complexity of abstract debugging lies
somewhere between linear and quadratic, and that only intrinsically complex programs
tend to be complex to analyze. We are therefore confident that this technique can be
effectively applied to reasonably sized programs, but only experiments on the abstract
debugging of real-life programs and languages will demonstrate the effectiveness of the
approach.

Future work will be to implement abstract debugging in a real-world programming
environment and give the programmer the ability to determine different categories of
“standard” program properties (e.g. nil pointers, parity of integer variables, congruence
relations [15], intervals, linear inequalities between variables [9], etc).

References

[1] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman: “Compilers — Principles,
Techniques and Tools”, Addison-Wesley Publishing Company (1986)

[2] Bourdoncle: “Interprocedural Abstract Interpretation of Block Struc-
tured Languages with Nested Procedures, Aliasing and Recursivity”, Proc. of
the International Workshop PLILP’90, Lecture Notes in Computer Science 456,
Springer-Verlag (1990)

[3] Bourdoncle: “Abstract Interpretation By Dynamic Partitioning”, Journal
of Functional Programming, Vol. 2, No. 4 (1992)

[4] Bourdoncle: des langages d’ordre et
abstraite”, Ph. D. dissertation, Ecole Polytechnique (1992)

[5] Bourdoncle: “Efficient Chaotic Iteration Strategies with Widenings”,
Proc. of the International Conf. on Formal Methods in Programming and their
Applications, Lecture Notes in Computer Science, Springer-Verlag (1993) to ap-
pear

[6] Bourdoncle: “Abstract Debugging of Higher-Order Imperative Lan-
guages”, Proc. of SIGPLAN ’93 Conference on Programming Language Design
and Implementation (1993)

[7] Patrick and Radhia Cousot: “Abstract Interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints”, Proc.
of the 4th ACM Symp. on POPL (1977) 238–252

[8] Patrick Cousot: “Asynchronous iterative methods for solving a fixpoint system of
monotone equations”, Research Report IMAG-RR-88, Scientifique et

de Grenoble (1977)

[9] Patrick Cousot and Nicolas Halbwachs: “Automatic discovery of linear constraints
among variables of a program”, Proc. of the 5th ACM Symp. on POPL (1978) 84–
97

[10] Patrick Cousot: de construction et d’approximation de points
fixes monotones sur un treillis. Analyse de programmes”,
Ph. D. dissertation, Scientifique et de Grenoble (1978)

[11] Patrick and Radhia Cousot: “Static determination of dynamic properties of recur-
sive procedures”, Formal Description of Programming Concepts, North Holland
Publishing Company (1978) 237–277

[12] Patrick Cousot: “Semantic foundations of program analysis”, in Muchnick and
Jones Eds., Program Flow Analysis, Theoryand Applications, Prentice-Hall (1981)
303–343

[13] Alain Deutsch: “On determining lifetime and aliasing of dynamically allocated
data in higher-order functional specifications”, Proc. of the 17th ACM Symp. on
POPL (1990)

[14] Alain Deutsch: “A Storeless Model of Aliasing and its Abstractions using Finite
Representations of Right-Regular Equivalence Relations”, Proc. of the IEEE’92
International Conference on Computer Languages, IEEE Press (1992)

[15] Philippe Granger: “Static analysis of arithmetical congruences”, International
Journal of Computer Mathematics (1989) 165–190

[16] Rajiv Gupta: “A Fresh Look at Optimizing Array Bound Checking”, Proc. of SIG-
PLAN ’90 Conf. on Programming Language Design and Implementation (1990)
272–282

[17] Victoria Markstein, John Cocke and Peter Markstein: “Optimization of Range
Checking”, Proc. of the SIGPLAN’82 Symp. on Compiler Construction (1982)
114–119

[18] ISO/IEC 7185: “Information technology — Programming languages — Pascal”,
Revised 1983, Second edition (1990)

[19] Micha Sharir and Amir Pnueli: “Two Approaches to Interprocedural Data Flow
Analysis” in Muchnick and Jones Eds., Program Flow Analysis, Theory and
Applications, Prentice-Hall (1981) 189–233

[20] R.E. Tarjan: “Depth-first search and linear graph algorithms”, SIAM J. Comput.,
1 (1972) 146–160

[21] Andrew P. Tolmach and Andrew W. Appel: “Debugging Standard ML Without Re-
verse Engineering”, Proc. 1990 ACM Conf. on Lisp and Functional Programming,
ACM Press (1990) 1–12

[22] Niklaus Wirth and Kathleen Jensen: “Pascal user manual and report” (Second
Ed.), Springer-Verlag (1978)

