
Abstract Interpretation
Project Report

—
Abstract Debugging of the Three Counter Machine using Forward

and Backward Analysis over the Interval Domain

Pierre Chatelain
–

Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Århus N, Denmark

June 10, 2011

1 Introduction

Abstract debugging, as introduced in [1], consists in the static debugging of programs using
the tools of abstract interpretation. One can with this technique predict certain run-time
errors and their source at compile-time.

The goal of this project is to apply abstract debugging to Plotkin’s three counter ma-
chine [2], using the domain of intervals over the natural numbers as abstraction.

We will look for several classes of bugs (termination, reachability, invalid argument), and
try to give a precise informations about their nature and the input values for wich they can
occur.

2 Definitions

2.1 The three counter machine

One can find various definitions of the three counter machine in the litterature. We will use
here Plotkin’s three counter machine [2], defined as follows by:

• three variables var ∈ Var = {x, y, z};

• a program counter pc ∈ PC = N∗;

• a set of instruction Inst = inc var | dec var | zero var pc′ else pc′′ | stop
where var ∈ Var and (pc′, pc′′) ∈ PC2;

1

• the set of configurations States = PC×N×N×N

where N is the set of positive integers and N∗ = N \ {0}.

A three counter machine program is then P ∈ InstPC of instructions, such that for pc ∈
PC, Ppc ∈ Inst, and PPC = stop.

This program defines a transition system, with the initial states S0 = {〈1, x0, 0, 0〉 | i ∈N},
the final states S f = {〈pc, 0, y f , 0〉 | Ppc = stop ∧ y f ∈ N}, and the following transition
relation:

T(〈pc, xv, yv, zv〉)→



〈pc + 1, xv + 1, yv, zv〉 if Ppc = inc x
〈pc + 1, xv, yv + 1, zv〉 if Ppc = inc y
〈pc + 1, xv, yv, zv + 1〉 if Ppc = inc z
〈pc + 1, xv− 1, yv, zv〉 if Ppc = dec x ∧ xv > 0
〈pc + 1, xv, yv− 1, zv〉 if Ppc = dec y ∧ yv > 0
〈pc + 1, xv, yv, zv− 1〉 if Ppc = dec z ∧ zv > 0
〈pc′, xv, yv, zv〉 if Ppc = zero x pc′ else pc′′ ∧ xv = 0
〈pc′′, xv, yv, zv〉 if Ppc = zero x pc′ else pc′′ ∧ xv 6= 0
〈pc′, xv, yv, zv〉 if Ppc = zero y pc′ else pc′′ ∧ yv = 0
〈pc′′, xv, yv, zv〉 if Ppc = zero y pc′ else pc′′ ∧ yv 6= 0
〈pc′, xv, yv, zv〉 if Ppc = zero z pc′ else pc′′ ∧ zv = 0
〈pc′′, xv, yv, zv〉 if Ppc = zero z pc′ else pc′′x ∧ zv 6= 0

(1)

An execution of the program, given an input value x0, is the sequence of states obtained
when starting from 〈1, x0, 0, 0〉 and applying successively the transition relation. This se-
quence is unique as the transition system is deterministic. We say that the program termi-
nates if this execution is finite and ends in a state 〈pc, x f , y f , z f 〉 ∈ S f with Ppc = stop. If the
program terminates and the last state is 〈pc, 0, y f , 0〉 ∈ S f , then the result is y f .

2.2 The Abstract Interval Domain

We define the abstract interval domain in the same way as in Miné’s thesis [3], but consider-
ing only intervals over N:

Interval = {⊥} ∪ {[l, u] | l ∈N∧ u ∈N∪ {+∞} ∧ l ≤ u} (2)

This set is partially ordered using the following order relation:

∀I ∈ Interval ⊥ v I (3)
∀l, u, l′, u′ ∈N | l ≥ l′ ∧ u ≤ u′ [l, u] v [l′, u′] (4)

The union t and disjonction u are then defined as:

∀I ∈ Interval I t⊥ = ⊥t I = I (5)
∀l, u, l′, u′ ∈N [l, u] t [l′, u′] = [min(l, l′), max(u, u′)] (6)
∀I ∈ Interval I u⊥ = ⊥u I = ⊥ (7)

∀l, u, l′, u′ ∈N [l, u] u [l′, u′]
{

[max(l, l′), min(u, u′)] if max(l, l′) ≤ min(u, u′)
⊥ otherwise

(8)

2

As the interval domain contains infinite strictly increasing chains, we will also need to
define widening operator:

∀I ∈ Interval I∇⊥ = ⊥∇I = I (9)

∀l, u, l′, u′ ∈N [l, u]∇[l′, u′] =
[

min(l, l′),
{

+∞ if u′ > u
u if u′ ≤ u

]
(10)

3 Abstracting the three counter machine

3.1 Construction of the Galois connection

In order to analyse the three counter machine programs, we will abstract the reachable states
collecting semantics with the interval domain, using the following Galois connection:

〈℘(N);⊆〉 −−−→−→←−−−−
αint

γint 〈Interval;v〉 (11)

where

γint(⊥) = ∅ (12)
γint([a, b]) = {n ∈N | a ≤ n ≤ b} (13)

αint(∅) = ⊥ (14)
αint(S) = [min S, max S] (15)

As the machine has three registers, we need to abstract ℘(N×N×N). Therefore we
compose the two following Galois connections:

〈℘(N×N×N);⊆〉 −−→−→←−−−−
α1

γ1 〈℘(N)× ℘(N)× ℘(N); ⊆̇〉 (16)

〈℘(N)× ℘(N)× ℘(N); ⊆̇〉 −−→←−−α2

γ2 〈Interval × Interval × Interval; v̇〉 (17)

where ⊆̇ and v̇ are the respective pointwise versions of ⊆̇ and v̇, and the abstractions and
concretization functions are defined as follows:

α1(T) = 〈π1(T), π2(T), π3(T)〉 (18)
γ1(〈X, Y, Z〉) = X×Y× Z (19)
α2(〈X, Y, Z〉) = 〈αint(X), αint(Y), αint(Z)〉 (20)

γ2(〈X#, Y#, Z#〉) = 〈γint(X#), γint(Y#), γint(Z#)〉 (21)
(22)

This composition gives a new Galois connection:

〈℘(N×N×N);⊆〉 −−→←−−α
γ
〈Interval × Interval × Interval; v̇〉 (23)

which we use in a final step to abstract PC −→ ℘(N×N×N):

〈PC −→ ℘(N×N×N);⊆〉 −−→←−−
α̇

γ̇
〈PC −→ Interval × Interval × Interval; v̇〉 (24)

where α̇ and γ̇ are the respective pointwise versions of α and γ.

3

3.2 Abstract operations

The execution of the three counter machine involves the following operations on ℘(N):

: ℘(N)→ ℘(N) (25)
=0 = λS.{s|s ∈ S ∧ s = 0}

<>0 = λS.{s|s ∈ S ∧ s 6= 0}
+1 = λS.{s + 1|s ∈ S}
-1 = λS.{s− 1|s ∈ S ∧ s > 0}

In order to derive the abstract transition function, we need to abstract this four operators.
We get optimal abstractions by composing this operators with αint and γint:

• Abstraction of =0:

=0int = λa.αint ◦ =0 ◦ γint(a)
= λa.αint ◦ λS.{s|s ∈ S ∧ s = 0} ◦ γint(a)
= λa.αint({s|s ∈ γint(a) ∧ s = 0})

= λa.
{

αint({s|s ∈ ∅ ∧ s = 0}) if a = ⊥
αint({s|l ≤ s ≤ u ∧ s = 0}) if a = [l, u]

= λa.
{

αint(∅) if a = ⊥∨ (a = [l, u] ∧ l > 0)
αint({0}) if a = [0, u]

= λa.
{
⊥ if a = ⊥∨ (a = [l, u] ∧ l > 0)
[0, 0] if a = [0, u]

• Abstraction of <>0:

<>0int = λa.αint ◦ <>0 ◦ γint(a)
= λa.αint ◦ λS.{s|s ∈ S ∧ s 6= 0} ◦ γint(a)
= λa.αint({s|s ∈ γint(a) ∧ s 6= 0})

= λa.
{

αint({s|s ∈ ∅ ∧ s 6= 0}) if a = ⊥
αint({s|l ≤ s ≤ u ∧ s 6= 0}) if a = [l, u]

= λa.


αint(∅) if a = ⊥∨ a = [0, 0]
αint({s|1 ≤ s ≤ u}) if a = [0, u]
αint({s|l ≤ s ≤ u}) if a = [l, u] ∧ l > 0

= λa.


⊥ if a = ⊥∨ a = [0, 0]
[1, u] if a = [0, u]
[l, u] if a = [l, u] ∧ l > 0

4

• Abstraction of +1:

+1int = λa.αint ◦ +1 ◦ γint(a)
= λa.αint ◦ λS.{s + 1|s ∈ S} ◦ γint(a)
= λa.αint({s + 1|s ∈ γint(a)})

= λa.
{

αint({s + 1|s ∈ ∅) if a = ⊥
αint({s + 1|l ≤ s ≤ u) if a = [l, u]

= λa.


αint(∅) if a = ⊥
αint({s|l + 1 ≤ s ≤ u + 1}) if a = [l, u] ∧ u < +∞
αint({s|l + 1 ≤ s}) if a = [l,+∞]

= λa.


⊥ if a = ⊥
[l + 1, u + 1] if a = [l, u] ∧ u < +∞
[l + 1,+∞] if a = [l,+∞]

• Abstraction of -1:

-1int = λa.αint ◦ -1 ◦ γint(a)
= λa.αint ◦ λS.{s− 1|s ∈ S ∧ s > 0} ◦ γint(a)
= λa.αint({s− 1|s ∈ γint(a) ∧ s > 0})

= λa.
{

αint({s− 1|s ∈ ∅ ∧ s > 0) if a = ⊥
αint({s− 1|l ≤ s ≤ u ∧ s > 0) if a = [l, u]

= λa.


αint(∅) if a = ⊥∨ a = [0, 0]
αint({s|0 ≤ s ≤ u− 1}) if a = [0, u] ∧ u > 0
αint({s|l − 1 ≤ s ≤ u− 1}) if a = [l, u] ∧ l > 0

= λa.


⊥ if a = ⊥∨ a = [x, x]
[0, u− 1] if a = [0, u] ∧ u > 0
[l − 1, u− 1] if a = [l, u] ∧ u > l > 0

We can now use this operators to abstract the following operations on the triplets (with
similar definitions for y and z):

: ℘(N×N×N)→ ℘(N×N×N) (26)
[x++] = λS.{〈xv + 1, yv, zv〉|〈xv, yv, zv〉 ∈ S}

[x–] = λS.{〈xv− 1, yv, zv〉|〈xv, yv, zv〉 ∈ S ∧ xv > 0}
[x=0] = λS.{〈xv, yv, zv〉|〈xv, yv, zv〉 ∈ S ∧ xv = 0}

[x<>0] = λS.{〈xv, yv, zv〉|〈xv, yv, zv〉 ∈ S ∧ xv > 0}

The optimal abstract versions are once again computed by composition with the abstrac-
tion and concretization functions. The calculations are straightforward and give the follow-

5

ing abstract operators:

: Interval × Interval × Interval → Interval × Interval × Interval (27)
[x++]int = λ〈xv, yv, zv〉.〈+1int(xv), yv, zv〉

[x–]int = λ〈xv, yv, zv〉.〈−1int(xv), yv, zv〉
[x=0]int = λ〈xv, yv, zv〉.〈= 0int(xv), yv, zv〉

[x<>0]int = λ〈xv, yv, zv〉.〈<> 0int(xv), yv, zv〉

and same for y and z.

3.3 Abstract transition functions

Using the method of pushing alphas, we can now derive the transition function on the interval
domain. The complete calculation is not shown in this report because quite long, and similar
to the abstraction of the transition function over the Parity domain calculated in class. The
resulting function is:

Fint(Sint) = ⊥. [1→ 〈[0,+∞], [0, 0], [0, 0]〉]
∪̇ ⋃̇ pc ∈ Dom(Sint)

Ppc = inc var
var ∈ Var

⊥. [pc + 1→ [var ++]int ◦ Sint(pc)]

∪̇ ⋃̇ pc ∈ Dom(Sint)
Ppc = dec var

var ∈ Var

⊥. [pc + 1→ [var−−]int ◦ Sint(pc)]

∪̇ ⋃̇ pc ∈ Dom(Sint)
Ppc = zero var pc′ else pc′′

var ∈ Var

⊥. [pc′ → [var = 0]int ◦ Sint(pc)]
∪̇ ⊥. [pc′′ → [var <> 0]int ◦ Sint(pc)]

(28)

Similarly, the abstract backward transition function can be written as:

Bint(Sint) = ⊥.
∪̇ ⋃̇ pc ∈ Dom(Sint)

Ppc = inc var
var ∈ Var

⊥. [pc→ [var−−]int ◦ Sint(pc + 1)]

∪̇ ⋃̇ pc ∈ Dom(Sint)
Ppc = dec var

var ∈ Var

⊥. [pc→ [var ++]int ◦ Sint(pc + 1)]

∪̇ ⋃̇ pc ∈ Dom(Sint)
Ppc = zero var pc′ else pc′′

var ∈ Var

⊥. [pc→ [var = 0]int ◦ Sint(pc′)]
∪̇ ⊥. [pc→ [var <> 0]int ◦ Sint(pc′′)]

(29)

6

Once again, the complete calculation is not detailed in the report, because it seems more
interesting to look at the meaning of this definition, and see how the backward operations
can be intuitively deduced from the forward operations.

4 Debugging

4.1 Reachability

The easiest bug we can look for is dead code, ie. parts of the program that are not reachable.
This can indeed be done by computing a simple forward analysis l f p(Fint), by kleen iteration
with widening. Then, for pc ∈ PC, the pcth line of the program is not reachable if:

l f p(Fint)(pc) = 〈XV, YV, ZV〉 ∧ (XV = ⊥∨YV = ⊥∨ ZV = ⊥) (30)

This computation can be improved by quotienting in the interval triplets domain all the
triplets with at least one element equal to ⊥, into the new bottom ⊥3 = 〈⊥,⊥,⊥〉 of this
domain. This gives a more precise analysis, as shows table 4.1.

1: inc x 〈[0, ∞], [0, 0], [0, 0]〉 〈[0, ∞], [0, 0], [0, 0]〉
2: zero x 3 else 4 〈[1, ∞], [0, 0], [0, 0]〉 〈[1, ∞], [0, 0], [0, 0]〉
3: inc y 〈⊥, [0, 0], [0, 0]〉 ⊥3
4: stop 〈[1, ∞], [0, 1], [0, 0]〉 〈[1, ∞], [0, 0], [0, 0]〉

Table 1: forward analysis with the complete interval triplet domain (second column) and the
improved one (third column)

With this modification, the forward analysis finds the exact set of unreachable lines.

4.2 Termination

A special case of reachability is when the last line is not reachable, and therefore the program
does not terminate. As this can occur either for any input or only for certain input values,
we would like to report an approximation of the input values for which the program will
not terminate.

To compute such a non-trivial approximation, we need to perform a forward/backward
analysis, as proposed in [1]. For pc such that Ppc = stop, we define the intermittent assertion
Πstop = ⊥3. [pc− > 〈[0, ∞], [0, ∞], [0, ∞]〉], and we compute the analysis as the limit of the
sequence:

I0 = l f p(Fint) (31)
I3k+1 = g f p(λX. I3k ∩ Bint) (32)
I3k+2 = l f p(λX. I3k+1 ∩ (Πstop ∪ Bint(X))) (33)

I3k+3 = l f p(λX. I3k+2 ∩ Fint(X)) (34)

7

Noting I∞ the limit of this sequence and 〈Xstop, Ystop, Zstop〉 = I∞(1), γint(Xstop) approxi-
mates the set of input values for which the program terminates.

We also check if the program ends in a final state, using, for Ppc = stop the invariant
assertion Π f inal = 〈[0, ∞], [0, ∞], [0, ∞]〉. [pc− > 〈[0, 0], [0, ∞], [0, 0]〉], and computing the
limit J∞ of the following sequence:

J0 = l f p(Fint) (35)
J3k+1 = g f p(λX. J3k ∩Π f inal ∩ Bint(X))) (36)

J3k+2 = l f p(λX. J3k+1 ∩ Bint(X))) (37)
J3k+3 = l f p(λX. J3k+2 ∩ Fint(X)) (38)

If we note J∞ = 〈X f inal , Yf inal , Z f inal〉, then γint(X f inal) approximates the set of input val-
ues for which the program ends in a final state.

4.3 Decrement operations

To check that the decrement operations are not performed on registers with value 0, we
define the invariant assertion:

Πdec = 〈[0, ∞], [0, ∞], [0, ∞]〉.
∩̇

⋂̇
Ppc=dec x

〈[0, ∞], [0, ∞], [0, ∞]〉. [pc− > 〈[1, ∞], [0, ∞], [0, ∞]〉]

∩̇
⋂̇

Ppc=dec y
〈[0, ∞], [0, ∞], [0, ∞]〉. [pc− > 〈[0, ∞], [1, ∞], [0, ∞]〉]

∩̇
⋂̇

Ppc=dec z
〈[0, ∞], [0, ∞], [0, ∞]〉. [pc− > 〈[0, ∞], [0, ∞], [1, ∞]〉] (39)

and we compute the forward/backward analysis as the limit J∞ of the sequence:

K0 = l f p(Fint) (40)
K3k+1 = g f p(λX. K3k ∩Πdec ∩ Bint(X))) (41)
K3k+2 = l f p(λX. K3k+1 ∩ ∩Bint(X))) (42)
K3k+3 = l f p(λX. K3k+2 ∩ Fint(X)) (43)

If K∞ = 〈Xdec, Ydec, Zdec〉, then γint(Xdec) approximates the set of input values for which the
program does not contain any invalid decrement operation.

5 Experiments and conclusion

The algorithms described above have been implemented in OCaml (building on the initial
three counter machine source code provided by Jan Midtgaard), and tested on a benchmark
of 3cm programs covering the different kinds of errors 1.

1the complete source code and the test files are available at http://www.pierre.chatelain.eu/au/absint/project

8

The results are for most of the cases satisfying, as they give the most precise information
we could have using intervals. It succefully discovers infinite loops, invalid decrements
operations and unreachable lines as long as these errors are localized in a single register.

An error can be undetected if it involves involves dependences between two registers.
The program test9.3cm (table 5) illustrates this, as it involves an invalid decrement operation
if and only if the input value is smaller than 2. The abstract debugger fails to detect this error
because the following operation looses information:

〈X, Y, Z〉 t3 〈X′, Y′, Z′〉 = 〈X t X′, Y tY′, Z t Z′〉 (44)

1: zero x 5 else 2
2: inc y
3: dec x
4: zero x 5 else 2
5: dec y
6: dec y
7: stop

Table 2: test9.3cm

This problem is however inherent to the abstraction of triplets we used, and besides this
our abstract debugger seems to work well.

The determination of the source of the bugs is satisfying, although for some cases where
several potential sources of errors interact it is difficult to give a precise description of the
problem. A more thorough design of the assertions and analysis could give more precise
information.

References

[1] F. Bourdoncle, “Abstract debugging of higher-order imperative languages,” SIGPLAN
Not., vol. 28, pp. 46–55, June 1993. [Online]. Available: http://doi.acm.org/10.1145/
173262.155095

[2] G. D. Plotkin, A Structural Approach to Operational Semantics. Journal of Logic
and Algebraic Programming, 2004. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.163.4722&rep=rep1&type=pdf

[3] A. Miné, “Weakly relational numerical abstract domains,” Ph.D. dissertation, École
Polytechnique, Palaiseau, France, December 2004, http://www.di.ens.fr/~mine/these/
these-color.pdf.

9

