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Abstract

A method for context-sensitive analysis of binaries thay rhave
obfuscated procedure call and return operations is predeBuch
binaries may use operators to directly manipulate stadiedusof
using nativecall andretinstructions to achieve equivalent behavior.
Since definition of context-sensitivity and algorithms tmntext-
sensitive analysis have thus far been based on the specifanse
tics associated to procedure call and return operatioassid in-
terprocedural analyses cannot be used reliably for anaygro-
grams in which these operations cannot be discerned. A new no
tion of context-sensitivity is introduced that is based ba state
of the stack at any instruction. While changes in ‘callicghtext
are associated with transfer of control, and hence can [s®nea
in terms of paths in an interprocedural control flow graphHG),
the same is not true of changes in ‘stack’-context. An absira
terpretation based framework is developed to reason atiack-s
contexts and to derive analogues of call-strings basedadstfor
the context-sensitive analysis using stack-context. Téghau pre-
sented is used to create a context-sensitive version ofteea
al.’s algorithm for detecting obfuscated calls. Experimengsults
show that the context-sensitive version of the algorithmegates
more precise results and is also computationally more efft¢than
its context-insensitive counterpart.

Categories and Subject Descriptors K.6.5 [Security and Pro-
tectior]: Invasive software (e.g., viruses, worms, Trojan horses)
D.2.0 [Software Engineering—GenelalProtection mechanisms;
D.2.7 Distribution, Maintenance, and EnhancemjeiiRestructur-
ing, reverse engineering, and reengineering; F.8énjantics of
Programming LanguagégsProgram analysis

General Terms Languages, Security, Theory, Verification

Keywords Analysis of binaries, Context-sensitive analysis, Ob-
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1. Introduction

Recent years have seen an increase in research activitg sréla
of binary analysis [1, 2, 8, 10, 13, 16, 22, 24, 28]. For thpatty
programs where the source code is not available to the apahy-
ysis for malicious (hidden) behavior can reliably be peried only
on binaries. Even when the code is available, analyzing itteryp
is the only true way to detect hidden capabilities, as detnatesi
by Thompson in his Turing Award Lecture [27]. Lest Thompson’
paper be considered theoretical, a variation of his ideasbean
put into practice by the malware W32.Induc.A [20].

Current methods of analyzing binaries are modeled on method
for analysis of source code. A program is decomposed intd-a co
lection of procedures, and the program is analyzed usirgsidal
interprocedural analysis [25]. Since a binary, albeit sigsmbled,
is not syntactically rich, the identification of procedur@uidaries,
parameters, procedure calls, and returns is done by makswgep-
tions, such as the sequence of instructions used at a pnecedu
try (prologue), at a procedure exit (epilogue), the paramgassing
convention, and the conventions to make a procedure caké hs-
sumptions are often referred, by researchers, as a ‘stadanpi-
lation model.” However, the ‘standards’ are compiler sfiecthey
are not industry standards. Even for a given compiler thedstals
may vary depending on the optimization scheme selected.

We consider a binary to useall obfuscationif it does not
follow any particular convention for the layout of the prdcee
code in memory or if it does not usell or ret instructions to
make procedure calls. Binaries may not adhere to acceptegco
tions/assumptions because its creator, whether a congpiepro-
grammer, wishes to deter others from analyzing it. Suctbdedite
violation of assumptions, conventions, or for that mattendards,
to make the binary harder is termed as obfuscation. It is ibeco
ing increasingly common to obfuscate code to protect ietlial
property [3, 19]. However, the code may also be obfuscatéitie
malicious intent [2, 15]. Most malwares today use a varidtgln
fuscations to deter its disassembly, its reverse engingedr its
analysis.

Figure 1 presents an example to help visualize the problem
space. Consider the sample program of Figure 1(a). The gmogr
simplified only to highlight its call and return structureggre 1(c)
shows an obfuscated version of this program. It is genenased)

a naive obfuscation: replace evarll instruction by a sequence
of two pushinstructions and &et instruction, where the firgiush
pushes the address of the instruction afterdak instruction (the
return address of the procedure call), the secpushpushes the
target address of the call, and the instruction causes execution
to jump to the target address of the call.

Figure 1(b) shows the control flow graph (CFG) of the sample
program of Figure 1(a) created by assuming that the target of
call instruction represents the entry point of a procedure aret a
instruction returns from call to the closest preceding yeint.



Ll: push L2
Lla: push L4
L2b: ret
L2: push L3
L2a: push L4
L2b: ret
L3: ret
L4: push L5
Ll: call 14 L4a: push L7
L2: call L4 L4b: ret
L3: ret L5: push L6
L4: call L7 L5a: push L7
L5: call L7 L5b: ret
L6: ret L6: ret
L7: ret L7: ret
@ Sample (b) CFG. (c) Obfuscated
code. version.

Figure 1. Example motivating context-sensitive analysis of obfus-
cated code.

The edges in this graph represent call and return edgesegtent
sensitive interprocedural analysis algorithms requiréimg the
edges such that information flowing from one call node is not
propagated to another call node [25] via a mismatched retdge.

Since the program of Figure 1(c) does not have aal in-
struction, it does not provide any clues for finding procedentry
points. Current technologies may infer that this progrars dialy
one procedure consisting of the entire code [11]. Furtheemmoost
works on analysis of binaries will assume that eastinstruction
returns to the caller of this single procedure, thus geiregatn in-
correct CFG. As a result, any resulting analysis based anGRIG
will also be incorrect.

The obfuscation shown in Figure 1(c) is naive and presented

to demonstrate the concept. More obfuscations, althoutjhrist

ial, may be performed by shuffling the tyoishinstructions among
other code. More complex obfuscations may be achieved bysiot
ing pushandret instructions; instead one may use move, increment,
and decrement operations directly on the stack pointer timpe
equivalent behavior [16].

This paper presents a method for performing context-deesit
analyses of binaries that obfuscate procedure calls anchegtsuch
as the program in Figure 1(c). Unlike current methods for per
forming context-sensitive interprocedural analysis afdsies, our
method does not require the use of explicatl and ret instruc-
tions. Our method depends only on the knowledge of how thak sta
pointer and the instruction pointer are represented, thecton of
stack growth, and the static identification of operators imaat-
ing the stack pointer. Our method requires only that thestegior
memory location used to represent a stack pointer must be&rkno
statically prior to the analysis. Similarly, even thoughiost archi-
tectures stack grows towards lower memory addresses, tiveco
tion can be altered if a programmer is representing his owokst
Our analysis assumes the knowledge of this convention.

The main contributions of this paper may be summarized as
follows:

e |t introduces the concept of stack-context, udedlieu of
calling-context, to perform context-sensitive analysisadi-
nary that uses call obfuscation.

e |t presents a systematic development of generic conteditbee
analysis using Galois connection based abstractions afda tr
tional trace-based semantics. The context-abstractidiesives
are generic in that they dependent only on the LIFO nature of
creation and deletion of contexts. These abstractionslenab
derivation of stack-based context-sensitive analysischyhun-

like calling-context based analysis of prior work, do nopelisd
upon transfer of control semantics.

It systematically derives generic versions of Sharir andefits
k-suffix call-strings abstractions [25] and Emaetial.'s strat-
egy of abstracting calling-contexts (referred to in thipgaas
¢-contexts [9]. Prior work on these abstractions was depgnde
upon the control flow semantics oéll andret instructions.

It proposes a general methodology for deriving sound cantex
sensitive analysis from context-insensitive one. As anliapp
cation, a context-sensitive version of Venalde al's algo-
rithm [28] is derived. The resulting analysis is shown to be
sound.

It presents empirical results comparing the context-sigesi
and insensitive versions of Venaltdeal's algorithm. The em-
pirical results show that the context-sensitive analystires
significantly less time and also yields more precise results

Section 2 discusses the related works. Section 3 providds ba
ground in domain theory and abstract interpretation. 8actl in-
troduces context-trace semantics, a trace semantics ichvdoin-
text is made explicit. Section 5 presents generalizatio udirir
and Pnueli's [25] and Emaneit als context abstractions. Section 6
presents our algorithm derives context-sensitive versfdrenable
et al’s algorithm. Section 7 presents empirical evaluation & th
method presented and is followed by our concluding remarks.

2. Related Works

Prior research related to this paper may be broadly grouptd i
the following categories: interprocedural analysis (imgel), in-
terprocedural analysis of binary programs, and analysimali-
cious/obfuscated programs.

Precise and efficient context-sensitive interproceduaitd-dlow
analysis of high-level languages has been an active areaedrch.
The general strategies fall within the two approaches mego
by Sharir and Pnueli [25], namely the call-string approacthe
procedure summaries approach. A good summary of these works
may be found in [12].

The classic interprocedural control flow graph (ICFG) baaled
gorithms for computing function summary requiaepriori iden-
tification of procedure entries and exits. These methodsatan
directly be adapted for our needs because call obfuscaposs
vent determination of the procedures and their boundatties, vi-
olating a pre-requisite. Repet al's weighted pushdown system
based interprocedural analysis, which also computesifumstim-
maries [23], does not use ICFGs. Indeed our representatioone
text using the state of stack is analogous to Refpal’s use of
stack of a pushdown automata [17, 23]. However, a pushdogm sy
tem implicitly depends upon the the transfer of control setica
of call and return instructions, and thus may not be gereatle to
programs with arbirtrary stack operations.

Might and Shivers [21] framestrings for-based languages is
similar to our stack-string abstraction in that the coniexdefined
in terms of push and pop stack operations. Their work alsodes
modeling environments, with the intent of enabling certaiin-
ing optimizations. Use of their environment theory in ountaxt
would be a valuable direction for future work.

The call-string approach follows the execution of a prograin
gorithms based on this approach have classically been enbde|
determine a change of context based on the semantics ofjenece
call/return and are described using ICFG. We generalizéegbn
abstraction such that it does not depend on the semanticoof p
cedure invocation. As is done for context-sensitive pefatanal-
ysis, the call-graph used for the call-string approach magdm-
puted on the fly [9, 31-33]. Determining transfer of contraked



on contents of memory or register is analogous to computieg t
points-to relation for higher-level languages. Howevirce mem-
ory addresses are linearly ordered, the resulting “pdioitsets in
our problem context can be abstracted using a linear fumctibus,
our method is analogous in spirit, though not in letter, totegt-
sensitive points-to analysis.

Interprocedural analysis of binaries has also receivezhtitin
for post-compile time optimization [26] and for analyzingpéries
with the intent to detect vulnerabilities not visible in teeurce
code, such as those due to memory mapping of variables [bdGo
win uses the procedure summary approach to interprocednedd
ysis to aid link-time optimization [10]. Balakrishnan [1}es the
call-string approach. As mentioned earlier, these metlzsdsime
a certain compiler model to identify code segments relabgukt-
forming procedure calls, such as that supported by IDA Pig.[1
In contrast, we split the semantics adll andret instructions. We
model their affect on the “context” separate from their efffen the
“transfer of control.” The context is represented by theestd the
stack and is modeled by an instruction’s affect on the stadhter.
The transfer of control is analyzed using Balakrishnan argsR
Value-Set Analysis (VSA) [1].

Like us, Kinderet al. have developed abstract interpretation
framework for contructing control flow of binaries contaigiindi-
rect transfer of control [13]. Their analysis, unlike ousscontext-
insensitive since it does not model contexts of any kindsétsucon-
stant propagation to determine values in memory and regaste
thus is likely to generate greater over-approximations ttreose
resulting from our use of VSA [1].

There has been significant work in obfuscation of programs
with the intent to thwart static analysis [3, 19]. The obfatszn
techniques are targeted at defeating specific phases iméhgsis
of a binary [15]. On the other hand a metamorphic malware, a
malware that transforms its own code as it propagates, may us
procedure call obfuscations simply to help its own transfation
algorithm, as is the case with the Win32.Evol virus, a metghic
virus [30]. It has the side-effect of defeating any inteqadural
analysis that depends on a traditional compiler model [15].

There has also been efforts in the use of other semanticsl base
methods for detecting malware [2, 7]. Term-rewriting hagrbe
proposed to normalize variants of a metamorphic malwarg. [29
None of these works specifically addresses analysis of cafed
programs that do not conform to the standard compilationehod
The foundations of the approach presented in this paper &ame
previous work of our research group in analyzing programth wi
obfuscated calls [16, 28].

3. Preliminaries
3.1 Domain Theory

A binary relationCc: C' x C'is apartial order upon a set iff
Cc is reflexive, transitive and antisymmetric. For a Eepartially
ordered byC ¢ and a subseX of C, | | X denotes the element
of C (if it exists) that satisfies the following conditions: i} €
X,z Ceo || X;and (i)Vye C,Vz e X,z Coy = || X Ce .
The element | X is called the least upper bountlilf) of X. Its
dual, the greatest lower boundllf) of X, is denoted by ] X.
When operating on a set of two elements, the operations pre re
resented by the binary operatarsandr, respectively. A partially
ordered setC, C¢) is alatticeiff Vz,y € C, bothz Uy andz My
exist. A partially ordered s€C, C¢) is acomplete latticéff for all
subsetsX of C, both| | X and[] X exist. For any se, (p(X),
C) is a lattice under the usual subset ordering

Let X* denote the Kleene closure of the S€t i.e, the set
of finite sequences ovekK. Let ¢ € X* denote the sequence
of length 0. Let(z i) denote thei*" element of the sequence

r € X*. Let': X x X* — X* be thecons operator that
inserts an element at the head of a sequence, defined forazally
az =y < (y0) =aAVi >0 (yi+1) = (z9). If (X,
Cx) is alattice, theq X ™, Cx~) is a lattice wheré_ x - is defined
as follows:
Va1, z2 € X;s,51,52 € X~
elxxs
r1.51 Ex* 2.52 & 71 Ex 22 A sy Cxx s2

The order resulting fromC_x+ is called strong ordering for it
defines a sequence to be smaller than another sequencedff all
its elements are smaller than the corresponding elementiseof
other sequence. We introduce some operators on sequernces fo
syntactic convenience. We assume two polymorphic extaasid
the cons operator “.”, one to insert element at the end of aessg:
X* x X — X", and the other to concatenate two sequences:
X* x X* — X™. We also define the functiorest operating on
X* as follows:(rest a.xz) = x. When convenient, we also use the
notation Y| X to denote theX'th element of the paiy”.

Two complete lattices and A, form a Galois connectioriff
there exists an adjunction betwe€rand A4, i.e, 3o : ¢ — A and
v:A— Csuchthatta € A,ce C:acCaa<scCeya A
Galois connection is denoted WY, o, v, A) where a(v) is the
left (right) adjoint of y(«). It is enough to specify eithes or
~v map because in any Galois connection the left adjoint map
uniquely determines the right adjoint mapand vice versa. Given
the left adjointo, the right adjoint is determined asa = | | {c €
C | ¢ Ca a}; or given the right adjointy, the left adjoint is
determined asv ¢ = [],{a € A | ¢ C¢ v a}. Two complete
lattices,C' and A, form a Galois connectiofC, «, v, A) iff a is
additive or iffy is coadditive. A Galois connection is call&hlois
insertionwhenq is surjective (or, equivalentlyy is injective).

Given a Galois connectiofC, «, v, A), a functionf# : A —

A is a sound approximatiorof a function f : C — C when
aof Ca f#oa, orequivalently,f o v Co v o f#. When
the abstraction and concretization maps are obvious framegg
we denoteC' C A to mean thaBa, v such that(C, «, v, A) is a
Galois connection. We calll; C A, C ... C A, achainof
Galois connections.

3.2 Abstract interpretation

Abstract interpretation is a unified framework for designiap-
proximate semantics of programs [5, 6]. It allows the systmn
derivation of data flow analyses and provides methods togtosir
correctness and termination.

An analysis may be derived in stages, starting from conaete
mantics to abstracted semantics that satisfies compugapowper-
ties. Soundness of the analysis is demonstrated by cre@tims
connections between the domains of the successive stagkss G
connections may also be used to order two or more analyses by
their precision.

Following [4], a program may be formalized as a graph or
a transition systemr = (X,%;,t), whereX is a set of states,
¥:; C X denotes the set of initial states ahdC > x X defines
the transition relation between states. A finite partiatéa € X~
is a sequence of program statgs..s,, such thatsp € ¥; and for
alli € [0,n) : (si,si+1) € t. The set of all such finite partial
traces is called thzace semanticef the program and is given by
the least fixpoint of the semantic transfornfer

FT=3%;U{oss |ose€TA(ss)et}
whereT is a set of finite partial traces. The domain of this trace

semantics isp(X*). Hence, the least fixpointfp) of F is as
follows:

Ips F=| |7 L

n>0



Let (p(X%), o, v, Abs) be a Galois connection, thef* : Abs —
Abs is soundw.r.t F when F# satisfies the above mentioned re-
quirements (in Sec. 3.1). It can be shown tAdt reaches a fixpoint
by the well knowrfixpoint transfertheorem [6]. The precision and
cost of the approximated fixpoint is related with the choitéhe
wideningoperator [5].

The derivation of the static analyzer using abstract imgtion
may be summarized as follows. The program state is clagsical
represented by the domaih= I x Store, wherel is the domain
of instructions andStore is the domain of stores. The analysis is
derived from a chain of Galois connections linking the setigan
domainp((I x Store)*) to the analysis domaifi — Abstore,
whereAbstore is an abstraction of stores. The derivation may have
the following stages:

1. The setp((I x Store)™), called set of traces, is approximated
to trace of sets, represented @gy(/ x Store))™.

2. The trace of sets is equivalent {6 — p(Store))*. This
sequence of mapping of instructions to set of stores can be
approximated by — p(Store).

3. Finally, a Galois connection betweet{Store) and Abstore
completes the analysis.

4. Context-trace semantics

Context-sensitivity is presented in the literature cleaky in terms

of paths of an ICFG, a graph that encodes the transfer of aontr
component of semantics of instructions. An ICFG consisGlBs
for individual procedures, and edges between these CFGss@qut
interprocedural control flow, typically represented &gll edges
andreturn edges. A path, starting from the entry node, in an indi-
vidual CFG represents a valid sequence of flow of control. &{lo
sensitive analysis propagates data over paths of a CFG.\dovee
path that starts from the entry of the program and traversegs

in multiple CFGs may not always represent a valid flow of colntr
For such a path to be valid thell and theret edges in the path
should be paired, meeting certain constraints, the detéiléhich
may be found elsewhere in the literature [12].

Since the prior definition of context-sensitivity is tieddeman-
tics of procedure call and return statements of high-lemejlages,
and thereforecall andret instructions of assembly language, it is
not directly applicable for context-sensitive analysidiofaries that
are obfuscated.

In this section we use the machinery of abstract interpgoetat
develop a generalized notion of context-sensitive ans|lywshere
contexts are maintained in LIFO order. The concept is gérniera
that it only requires the knowledge of the set of instrucsidhat
create contexts and those that delete contexts. This deneeraon-
cept of context-sensitivity does not depend on whether simuio-
tion transfers control. The primary constraint requiredhat the
most recently created context be destroyed first.

Let ( € I denote the set of instructions (of a language) that
open contexts, and C I denote the set of instructions that close
contexts. Acontext stringis the sequence of context opening in-
structions belonging to th§ C I*. The functionr represents the
effect of an individual state, an elementf on the accumulated
context string.

D (R

A
’TI'SV:{

wherei = s | 1. If the instruction in the state given by | 1
belongs to the se, it is pushed on the current context string. If
the instruction belongs tp it pops the topmost context from the
context string. Otherwise, the context string is left unded.

1.V
(restv)

if i e
ifie)

Now given a tracer we can map it to its current context =
I o, wherell is defined as follows:

I: 3" — (*

Mo 2(II' o)
HI:E*H(]**}G*

Dev £

'sov 211 o (xsv))

The functionlT maps a trace to its context string—the list of contexts
that are open-by applying repeatedly on successive elements of
o. Let v; represent the context string from ti& application of

m. The functionII (using IT’) establishes the following relation
v; = (7 (0 4) vi—1), Wwhereyy = ¢, for1 < i < |o|.

Consider, for example, the sequence of instructiond cya b a
resulting from projecting out only the instructions fronrade. Let
a,b,c € (andz,y € ). The context string associated with each
prefix of the projected trace sequence is given as follows:

{(a) = (a),(ax) — €(axbd) — (b),(azbc) —
(cb),(axbcy)— (b),(axbcya)— (ab),(axbcyab)—
(bab),(axbcyaba)— (abab)}.

A context tracas a pair of a context string and a trageg o) €
((*xX*). Not all elements of the s¢{*xX~") are meaningful. We
define a context-trace in which the context string represdéme
context associated with the trace ad-aalid context trace.

Definition 1. A context-trace(v,o) € ((*xX*) is II-valid iff
v=IIo.

A TI-valid context trace is equivalent to a valid-interprocedu
path in the ICFG of a program when the sg¢&nd| represent the
set of call and return instructions, respectively, of thatgpam.

We denote the set of all finite partifl-valid context traces as

p(("xX")n = (]*l p(X*). This forms the semantic domain for
the context-trace semantics. The following lemma showsttiia
semantic domain is equivalent gg>*), the semantic domain for
the trace semantics.

LEMMA 4.1. ("5 o(2%) = p(3%)
Proof Follows from the definition ofI-valid context trace. |

This then gives us the framework needed to develop context-
sensitive analyses, where context is made explicit. Iniqaar,
it gives the framework to derive context-sensitive coupder of
context insensitive analysis.

Assume that an analysis — Abstore derived from the trace
semanticg((I x Store))* is context-insensitive. Its context sensi-
tive counterpart may be derived using the following chaiGafois
connections:

( p((I x Store)™)
q*
(

(I x Store))*
I — p(Store))*

c

Il
—
RN

E*L(

C qAbsL

I — Abstore

where (4% is an abstraction of the concrete contgkt In the

following section we describe two context abstractionsegelized
from analogous abstractions used for calling-contexts.

5. Context abstractions

Due to recursion the set of all finite length calling-conteit a
program may be infinite. Even when a program does not have re-
cursion, the number of calling-contexts it has can be exptialéy
large [18]. So while a full call-string analysis may yieldetmost
precise results, it may not be practical to compute it. To enak



analysis scalable for large programs, it is common to redbee
space of calling-contexts by using certain abstractions.

The literature contains two significant classes of abstrastfor
calling-contexts. The first one, introduced by Sharir andd#irj25],
abstracts a call string by mapping it to #dength suffix. The sec-
ond abstraction, introduced by Emat al. [9], effectively ab-
stracts a call string by reducing recursive paths in it byraylei
node. We say ‘effectively’ because the method is not staseahna
abstraction over call-strings but can be mapped to such stnaab
tion. There are a few later works whose calling-contextralasions
may also be mapped to this second abstraction [31, 33].

What is true of calling-contexts will also be true for any etin-
stantiation of our generalized notion of context. Hencks, fituitful
to develop generalized context abstractions for use in anyext-
sensitive analysis. Since the abstractions for callingeods have
been defined in terms of paths over ICFG, the original defingi
cannot be directly mapped to generalized contexts thatefipedi
independent of control flow.

In the following subsections we derive the two abstractiogis
ing the machinery of abstract interpretation. We call theegaliza-
tion of Sharir and Pnueli'¢-suffix approach ag-context abstrac-
tion and Emamiet al’s reduction of recursive loops ascontext
abstraction. While Sharir and Pnueli usetengthsuffixesour ab-
straction useg lengthprefixesbecause in our stack the most recent
element is inserted on the head of the sequence. Mappingduom
method to Emamet al.s is not that straightforward. Emaret al.
define a context as a node in an “invocation graph.” @aontext
strings correspond to paths in Emaatial.s invocation graph.

Itis apparent that there is no significant algorithmic ob¥adje in
generalizing the abstractions from calling-contexts toegalized
contexts. However, the real issue in developing the alifdrais in
how one would prove that an analysis using that abstractibmev
sound. When used for abstracting calling-context suchraegis
are made by reasoning over paths of an ICFG. Since the gexsetal
context does not have the benefit of an ICFG, albeit by degtign,
arguments about soundness must be developed.

Thus, the most significant component of the generalizatien w
perform is the derivation of Galois connections, for theeraec-
essary to prove the soundness of any analysis derived freseth
context abstractions.

5.1 k-Context

Context 3-Context  ¢-Context
abe abe abe
aaaaa aaaT at

abca abcT at
abcaaaaaabe abcT abet
abeeba abcT at
aaabbbaaabbbcbbb aaaT atvt

Table 1. Examples of contexts and abstract contexts

5.2 /-Context

LetB represent the sdftl, +}, wherel C +. The set(*C ((xB)*
is defined as:

Definition 2. (* is the smallest set contained (ifixB)* satisfying:

lee(
2V e(tice((VrEB:
(c;x) ¢ ve = (¢, 1)vp € (A (¢, +)vp € (¢

Assume( = {a, b, c}, the notationz denotes(z,1), andz™
denotes(z, +). The following strings are some examples of se-
quences in(’: ¢, a, ab, a™, ab™, aTbTcT. Some examples of se-
quences in((xB)*, but not in(*, are:aa, abba, aTa’t, ababT.
The following lemma gives the bound on the size of string§ in

LEMMA 5.2. Vi, € (“: |ve| < (-

Proof For any element € (, eitherc or ¢™ may be inv,, and each
element can occur at most once.|j

The elementz™ represents the set of all contexts that start at
the opening context followed by a sequence of contexts and then
terminates on the opening contextTable 1 provides examples of
contexts and their correspondidecontexts. Consider the context
“abcaaaaaabe,” which when read right-to-left gives the order in
which the contexts were pushed. It is abstractegbto”. The term
¢’ represents the set of all non-zero length sequences gtavitn
¢ and ending withe, and thus represents all cyclic context strings
from ¢ to c. The termabc™t thus represents the set of contexts
consisting of the opening context pushed on the opening context
b, pushed on a sequence of openings contexts startingowtid
ending withe.

To develop the abstraction function froffi to ( we first de-

Let (* represent the set of sequences of opening contexts of lengthvelop the abstract syntax tree (AST) doméinthat is isomorphic

< kandk + 1 length sequences created by appending | |( to
k-length sequences of opening contexts. An elemeﬂff of called
ak-context We can establish a map, : (*— (* as:

N R Z
apv=
k V. T

In other words, whemw is longer thark, o, maps it tov,. T, where

v, is thek-length prefix ofv. A sequence of lengtk & is mapped
to itself. It follows from the lemma below thdt is an abstraction
of (.

if v <k
otherwise, wherél’ : v = vy, A || = k.

LEMMA 5.1. « is surjective and additive.

Proof Since ak-context is formed from &-length prefix, additiv-
ity may be shown by using strong ordering on element§of |j

Thus, (* and (* form a Galois insertion with the abstraction
map ay. Context-sensitive analyses may be derived by defining
appropriate context abstractigh” (4.

In Table 1, the “Context” column provides some examples of
contexts. Their correspondinfgcontext abstractions, with = 3,
are shown in the “3-Context” column.

to (*. The abstraction map is then defined(en The following rule
defines the syntactic structure (af in terms of (7.

(r= LU (rx(7x(
An element of (r may either bel or a 3-tuple consisting of
(vr,or,c) wherevr € (r, or € (r, ande € (. In addition,
we also require that the elements(ef further satisfy the semantic

constraint tha(t, or, ¢) is in (r iff ¢ does not occur again in the
subtreeg andor, which is formally defined as follows:

Vt € (r;or € (p;c€(: (t,or,¢) € (r & crtAcgr+ or

where the two relationsr C (x(r ander+ C (x (7 are defined
as follows:

Ve,d € (;or € (73t € (1
¢ €r (t,op,d) & cEptVeeEp«orVd=c
c Erx tiop & cErtVeEpx or

The functiong maps elements frorff to (. This map amounts
to parsing.

¢: ("= (r
pe &1L

po.c £ ((¢ s1), (map ¢ [52’53’ s ,SnD,C)



Context T-Context

a (J_,e,a)

abc (((L,€e,a),¢,b),¢,c)

aaaaa (L,[L, L, L,1],a)

abca (L, [((L, €, b),€,0)], @)

abeabe ((Lye,a), ), (L, e, a), €, B)], )

cabcaaabab  (((L,€,¢),€,a),[((L,€¢),[L,L],a),(L,€a)],b)

Table 2. Examples of mapping contexts and T-contexts

wheres = s1.c.s2.c....c.s, for somesi, sa,...,s, € (" such
thatV1 < i <n : ¢ ¢ s;. The function splits a context string,
using its first context, into a sequence of maximal substrings
s1,...,Sn Such that each of the; does not contaim. The triple
(s1, [s2 - - - sn], ¢) is used to create the recursive structure, with the
function map lifting ¢ to apply it point-wise on all elements of
a sequence. This construction ensures that the semanstraion
for (r is preserved. The map from a sequence € (* to the
triple (s1, [s2 ... sx], ¢) is bijective. Thus, the domair(s and (r
are isomorphic. Table 2 provides examples of contexts aait th
corresponding “T-contexts”, i.e., the corresponding ®im(r.

We now define an abstraction map : (7— (° as follows:

vt € (155 € (1;c € (
(ar L) £e
(o (L, 8,¢)) 2 (o t).clo® I3
whereqg is defined as:
2 1 n=0
(ap ) = {+ n >0

It follows from the definition thatog is surjective and additive.
Hence,ap is an abstraction fronN to B, andN and B form a
Galois insertion. To demonstrate that is additive we introduce
the relationC" 7 on (7 as follows:

Vi, t1,t2 € (1r;Vs1,s2 € (p;Ver,e2 € (
LErt,
(t1,81,c1) Cp (t2,82,¢2) & t1 Crta Asi CrsaAe1 C e
It can be shown thdt 1 is reflexive, anti-symmetric, and transitive,
and thus defines a partial order fn.
LEMMA 5.3. ay is surjective and additive.

Proof Follows from structural induction. |j

Syntactic Categories:

beB (boolean expressions)
e, e’ €E (integer expressions)
i€l (instructions)
LI'elLCZ (labels)
z€Z (integers)
peP (programs)
reR (references)
Syntax
eu=l]z|r|*r|eiopes (op €{+, —, * /,..})
b= true| false | e; < ez |-b| bl && b2
iu=1l: esp = esp+e . cip=c|
l:esp =e .cip=c¢|
l: xesp =e . eip =€’ |
l:7 =e.cip=2c|
l:*r =e .cip=2c|
l

if (b)eip=c¢; eip=1

p = s'eq(i)

Figure 2. An x86-like assembly language.

retinstructions to determine procedure boundaries and tdaetha
call graph [11]. When these instructions are obfuscateslptbce-
dures identified and the call graph created may be quest®aal
any subsequent interprocedural analyses circumspect.

6.1 Programming language

To present our analysis of assembly programs witateandret
instructions are obfuscated, we first introduce a simplerabsy
language that does not contain these instructions. Insteadan-
guage provides primitives to manipulate the stack pointer the
instruction pointer, both of which are registers in the 1A82hitec-
ture. Thus, our language captures the essential propeseged to
present our algorithm for performing context-sensitivalgsis of
obfuscated assembly programs.

Figure 2 presents the syntax of the language we use to model
our analysis. A program in this language consists of a sequence
of instructions §eq(i)). Instructions can be either conditional or
unconditional. A conditional instruction at a lablehas the form
“l: if (b) eip = e; eip = I'", wherebis a boolean expressionijs
an integer expression which evaluates to the label of theuictson
to execute wherb evaluates tatrue, and!’ is the label of the
instruction to execute whenevaluates t¢false. An unconditional
instruction at a label has the form of I : assign . eip = €,

Once again, a context-sensitive analysis may be derived by \whereassign may assign the result of evaluating an expression to

defining( and)), and the appropriate context abstractiém (“°*.

6. Analysis of obfuscated assembly programs

We now turn our attention to context-sensitive analysissseably

programs in which theall andret instructions may be obfuscated.

The semantics of the classiall andret instructions consists of

two parts: manipulation of return address on the stack aantsfer

of program control. To obfuscate a procedure call (or refoom

a call) the two parts of the semantics of the instructions may

be separated and performed using other instructions. &uratl

instructions participating in simulating a call or a retumay not

be contiguous in the code; they may be distributed—integthix

with other instructions. On the other hanghll (ret) instructions

may be employed for purposes other than making (returniom ¥r

a procedure call. For instance,call instruction may be used to

transfer control, but the return address may be discardéd [1
Procedure call and return obfuscations thwart analysissém-

bly program by attacking an important step needed for imerp

cedural analysis: identification of procedures and creatibcall

graph [15]. Most assembly languages do not provide any mecha

nism to encapsulate procedures. Thus, disassemblersalisend

a reference (a register or memory location), or a memorytiooa
pointed to by a reference. The componéfatip e’ of an
unconditional instruction assigns to the instruction peirip the
label of the command to be executed next.

Our language assumes a unique symésp representing the
stack pointer, which may be a register or a memory location. A
noted by the rules in Figure 2 for instructian the operations
on (or through) the stack pointer are distinguishable fraimeo
operations. The analysis presented assumes that the stk g
towards lower memory addresses, but it can be changedilyitda
accommodate the opposite convention.

Though our language does not explicitly modall, ret, push
or pop instructions, equivalent behavior may be performed using
primitives of our language. For example, aafl [” instruction
may be mapped to the following sequence of instructions in ou
language:

lo:esp=esp—1l.eip=1
l1
wherels is the address of the instruction after the call instruction

It is not necessary that these two instructions appear gaotisly
in code.

txesp=Ila.eip=1



Figure 3 presents the semantics of our language. A program meaning that a context is a pair of a statement and stack iiés

state is represented by a péird) € I x A, wherei is the next
instruction to be executed in the store environm&nthus,> =
I x A denotes the set of all possible program states. The transiti
relation between program states is definedas® — p(X), i.e,
the transition relation represents the behavior of an uesion ¢
when executed in a certain store environmé&nGiven a program
states € X, the semantic functioiZ s) gives the set of possible
successor states of

The transition relation, written for the set of all possibtates,
may be specialized for the states of a specific program asisl|
Let X7 = p x AP be the set of states of a programthen the
transition relatiorZ? : X — (XP?) on progranyp is: (Z? i §) =
{(#,8") | (¢,8") € (Zid),i € p, and 6,8 € AP}.

The concrete trace semantics for a prograns given by the
least fixpoint of the following function:

FPT=%PU{os.s |oseTAns €IPs}

whereT is a set of finite partial traces; is a sequence of pro-
gram statesy...s, of length|o| > 0 such thatvi € [1,n) : s; €
(Z? si—1), andsg € X? the set of initial states. Following Sec-
tion 4, the concrete context-trace semantics can be olotéipn¢he
least fixpoint of 7. : (*5 (%) — (*5 p(=*) which is
mapped fromF : p(X*) — p(X*).

6.2 Stack-context

We now define the setf),,,, and),,,,, which are the sets of
instructions that open and close contexts, respectivelged on
operations on the stack pointer. An instruction opens aetnite.,
belongs in(, ., if it decrements the stack pointer. Analogously, an
instruction closes a context, i.e., belonggin,., if it increments
the stack pointer.

(Com= {i|3n € N,36,8" : 6’ € (Ti6) A (6 esp) = (8 esp) —n}
Voo 2 {i|3n € N, 36,6 : &' € (Ti6) A (8 esp) = (6 esp) +n}

Consider the class of programs in which (a) an instructicat th
modifies the stack pointer always increments or decremerg i

a statically known constant and (b) that constant is the Sarredl
instructions. This class includes programs that use oaly, ret,
push, andpop instructions to modify the stack pointer. Programs
generated by conventional compilers typically fall in tligss.
For this class of programs the analysis doméifn,, — Abstore

or q;’gm_> Abstore may be used to derive a context-sensitive
analysis.

Now consider the programs that meet constraint (a), butbot (
That is, programs in which the increment/decrement apptea
stack pointer can be statically determined, but not allricdtons
use the same constant. Since the size of space allocatkaltdézd
on the stack is not the same, a closing context statement atag-n
move the entire context on the top of the stack. The analgside
trivially extended for this class of programs by staticafiyroduc-
ing pseudo instructions such that all stack pointer opemnatiuse
the same constant.

Obfuscated programs, however, may not meet either of the
constraints. They may contain instructions that modify skeck
pointer by direct assignment of values, such as using theiizt®n
[ : esp = e.eip = e, Or contain instructions that increment or
decrement the stack pointer by an expression whose valustan
be determined statically. In the absence of any furtheriédion
about the possible values of the expression, say from usiag t

set of closing contexts is represented by the dorain C I x N.
The domains are described as follows:

lasm= {(i,n) | 36,8" : &' € (Tid) A (8 esp) = (8 esp) —n An > 0}
Dasm = {(i,n)] 36,8 : &' € (Ti8) A (6 esp) = (6 esp) +n An > 0}

A context string is a sequence belonging (ff.,,,. A function
Masm : ° — (}sm may now be defined that maps a trace to its

context string. This function accounts for creation andmesion
of varying size contexts.

Hasm :EZsm - q:;sm
Ilosm o £ (H/ g 6)
H:zsm :EZsm - GZsmH qzsm
Hﬁlsm ev 2v
I, s1.€v 2v

I, s1.52.0 v = (I, 52.0 (Tasm (i1, n) v))

wheren = (§2 esp) — (01 esp),s1 = (i1,01),02 = s2 | 2

Tasm (I X N) i (]j;,srn_> q:;s’m

Tasm (1,0) v £
Tasm (i,n) v 2 (i, —n).v, if n <0
o (i) G 2 {

ifn>0

ifm>n
otherwise

(.j7 m — n),l/
Tasm (iv n—

m) v

The functionr,s, above is a counter-part of the functiande-
scribed in Section 4. It performs thpaishand pop operations on a
context-string depending on the valuerof A negative value of.
implies apushoperation when the stack grows towards lower mem-
ory addresses. Correspondingly, a positive value imhplies apop
operation.

The concrete domaing.sm,m and )a.s» form infinite lattices
becauseN is infinite. Besides, the value af, representing the size
of a context, may not be statically computable. Hence, wel nee
an abstraction of these domains. We use the lattice of aursta
propagation to abstratt. Let V represent the flat lattice consisting
of the set of numbers iV and the special values and L. The
lattice is flat in thatvn,ni,n2 € N 1 Cy nCy T,and
if n1 # ng thenny Unz = T. We can now define the abstract

context domaing,, = I x N and),. = I x N.Thel-context

abstraction of|,_, ., denoted b)(]ism, will be used in the context-
sensitive analysis of assembly programs.

Let us compare the difference between the stack-contextend
calling-context of a non-obfuscated program. It is appitest the
set(,.,, specialized for instructions in a prografmay be larger
when using stack-context than for calling-context. Thibeésause
when using stack-context, a context is created not justddirin-
structions, but also fgoushinstructions. What is the implication of
these extra nodes on the computational complexity of thiysis&
The complexity depends on two factors. The total number of co
text strings created for a program and the number of contergs
reaching a statement. The total number of context stringscfw
includes all partial strings) will increase as will the I¢hgf the
strings. Empirical investigation is needed to ascertadnitipact of
this increase on the expected computational complexityil&ily,
encoding of the stack graph using binary-decision diagri@bd)
may lead to efficient computation the exponential relataspre-

asm

Abstore, to derive a safe analysis a worst case assumption would viously reported for context-sensitive pointer analy&is, [33].

need to be made.

To analyze the most general class of assembly programs, we

need to develop a concrete context-trace semantics trawsall
for non-fixed size contexts. The set of opening contexts fchs
semantics may be represented by the doméin;, C I x N,

6.3 Modeling transfer of control

To complete the analysis of programs in the model assemhly la
guage we still need to develop abstraction for modeling ridnesfer



Semantic domains:

JEA=R+L—2Z
seX=IxA

z €L

B = {true, false}

(store environment)
(program states)
(integers)

(truth values)

Transition relation:

1 esp = esp+e .
cesp =e . eip==—el, §) = {(Feapr € 0), Freset (Fexpr e68)3)}
: xesp =e . eip =€), ) = {((Fexpr € 8), Fresp (Fexpr €6) )}
cr =e.eip==e€], ) = {((Fexpr € 8), Fassign ™ (Fexpr€d) )}
DX = € .
{(Feapr €9),0)}

if true = (Fyoo1 bd)
{W, &)}

2 if (b) eip = e; eip=1'], §) = {
if false = (Fyoo1 b 0)

eip = '], 8) = {(Feapr €' 8), Fesp (Feapr €0) 8)}

eip =e'], §) = {((Feapr €' 8), (Frassign 7 (Feapr €6) 6)}

Semantic functions:

Fesp:Z - A — A

Foup 28 = [espr (5 esp) + 2)]6
Freset : 2 — A — A

Freset 26 = [esp— z]6
Fiesp:Z — A — A

Fiesp 26 = [l —2]5, wherel’ = § esp
Fass’ign:Rg’ZﬂAﬂA

Faussign 720 = [r—2z]8
Figssign 1 R—7Z — A — A

Fugssign 726 = [l 2]5, wherel’ =& r
Fewpr : B — A = 7

Feapr[l]6 = 1

Feppr[2]d = 2

Fepprr]d=6r

Fegpr[*r]8 = 61, wherel =6 r

Fepprler op e2]d = Fexpre1]d op Fexpr[e2]d
Fbonl :B— A —B

Fyoor[true]d = true

Fyoot[false]d = false

Fhoot[e1 < €2]8 = Fegprle1]d < Fexprle2]d

Froot[0]0 = ~Fpoot [b] 6

Fooo1[b1 && b2]0 = Fro01[b1]6 A Froot[b2]6

Figure 3. Semantics for our model language of Figure 2.

of control. In the concrete semantics, the regisiprrepresents the
instruction pointer. Upon execution of each instructioa &ip is
updated with the label (a numerical value) of the next ircttam to

stack tops, a path in the graph representing the second c@mpo

©((asm X (4sm): gives a partial stack string.
Venableet al. combined the ASG and VSA domains to derive

be executed. The value of the label may be computed from an ex-the context-insensitive analysis — R + L — ASG x RIC.

pression involving values of registers and memory locatidius,
to model transfer of control we need an abstraction of theesl
computed by an expression.

We use Balakrishnan and Reps’ Value-Set Analygis Q) [1]
to recover information about the contents of memory locatio
and registers manipulated by an assembly program. VSA bses t
domainRIC = N x Z x Z to abstracto(Z). A value s[lb, ub] €
RIC, wheres € N andlb, ub € Z are mapped t@(Z) by the
following concretization map:

~v(s[lb,ub]) = {z|lb < z < ub, z = Ib (Mods) }.
Thus,v(2[1,9]) ={1,3,5,7,9}.

Since memory addresses are numerical values, the daRTaih
provides a safe approximation of the set of numerical vahisasell
as addresses held by a register or a memory location. Whisther
values represented by an elemefib, ub] are memory addresses
or numerical values follows from how the information is used
an instruction. When the value is assignecip it is treated as a
memory address, in particular, a label of an instructiomiirly,

the value represents a memory address when used in an indirec|_gyva 6.1. (3

memory operand, such as when computing the expression

6.4 Semantic domain for context-sensitive Venablet al.’s
algorithm

We now discuss the derivation of semantic domain for theesdant
sensitive version of Venableist al’s algorithm, a static analyzer
that tracks stack manipulations where the stack pointer bey
saved and restored in memory or registers. It combines Ltgkho
and Kumar's Abstract Stack Graph (ASG) [14] with Reps and
Balakrishnan’s Value-set Analysis (VSA) [1].

The ASG domain was introduced by [14] as an abstraction of
the setp((}s,). Each element ob((;...) represents a set of (par-
tial) stack strings. To create a finite representation of ssjidy in-
finite set of such strings, Lakhotia and Kumar abstragiéfi ....)

using the domaimSG = o((,,,,,) X ©(lysn, X (,p,)- The rel-
evant abstraction/concretization maps to show hef,») C

©(yem) X ©({sm < (,sm) May be derived from the following
insight. The first component of the ASG domags((,,,), repre-

sents the set of top of stacks. Starting from a node in the fset o

We derive a context-sensitive equivalent of this analysiagithe

domainqism — I — R+ L — RIC. This domain does not
include a mapping from an instruction to its ASG because the
abstraction of the stack is implicitly available in a coritsgnsitive
analysis. The analyzer may be derived using the chain ofi§&alo
connections. To ensure termination of the analyzer, we hee t
widening operator folR/C' domain as given by [1] to accelerate

fixpoint computation.

6.5 Soundness

The concrete context-trace semantics is given by the leqsiifit

of the fUNCHONF, : (fem—2 O(E%) — (fom—2s o(2%),
where¥ = I x R+ L — Z. The context-trace semantics of
the context-sensitive analyzer is given by the least fixpofrthe

function F# : (f]e — I - R+ L — RIC) — (Qe

asm, asm

I - R+ L — RIC).

—

~0

() E lgsn = 1 = R+ L —

Masm
asm

RIC.

Proof From Lemma 5.3 and Balakrishnan and Reps’ [1] follows
~0
that (., C andp(Z) C RIC. Then, it follows that:

asm

* Has?n *
asm™ g‘)((z) )

asm— (9(2))
asm— (I = R+ L — p(Z))"
asm— I = R+ L — o(Z)

o m

(
(
(
(

IM

—I—R+L— RIC. |

qasm

It follows from lemma 6.1 and the fixpoint transfer theorem
that 7% is a sound approximation of.. Though, F# may not
be completev.r.t F..

7. Empirical evaluation

We now present the results of an empirical evaluation of ednt
sensitive analysis of obfuscated programs. We study theowvep
ments in analysis of obfuscated code resulting from the fiserd-
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Figure 4. Time evaluation of the set of hand-crafted, obfuscated
programs.

context-sensitive version of Venaldeal.s analysis [28] against its
context-insensitive version. The two versions of the asialyere
implemented on the Eclipse workbench and the evaluations pe
formed on an Intel Core2 Duo 2Ghz/3GB Dell Workstation

Our empirical evaluation shows that, as expected, a context
sensitive analysis produces more precise results tharoitext-
insensitive counterpart. Quite unexpectedly our evatuathlso
shows that for certain call structures the context-sarsiginaly-
sis is also more efficient.

In the absence of any accepted gold standard or benchmark for

evaluating obfuscated programs, we crafted our own praeciile
performed the analysis using two sets of programs. Progiams
the first set were hand-crafted with a certain known obfiestat
calling structure. By hand-crafting the programs we werke ab
control the call-structure and study how the performananged
with changes in the structure. While the extreme case of éle ¢
structures we created are unlikely to occur in real progratimsy
nonetheless reveal how the performance varies with thetgroév
context. The second set contains W32.Evol.a, a metamovphis
that employs call obfuscation. This virus has been thorpagl-
alyzed in our lab, and hence we are in a position to evaluae th
results of our analysis. While we have thousands of malgjmo-
grams in our repository, we have not used them for our arglysi
because of lack of knowledge of their details and hence @lilin

ity to evaluate the results of their analysis.

For quantitative comparison we use two metrics: time, messu
as CPU time in milliseconds, and size of the sets, measurdteas
cumulative size of the value sets for all instructions. Tiee of
the value set at an instructianfor context-insensitive analysis is
denoted byS;, (i), and that for context-sensitive analysis is denoted
by Ssen ().

Each program in the hand-crafted set contains a single proce
dure that adds two parameters and returns the value. Thegpnsg
differ in the number of calls to this procedure. We considctO
programs, where program numberhasn “calls” to the same
procedure. Each “call” passes different pairs of numberd ian
implemented using a combination of tywishinstructions and a
ret instruction. Although all stack-contexts in these progsasne
bounded by four (the number @iushinstructions), this class of
programs helps us evaluate the effect of the number of ctstex

Figure 4 plots the time for analyzing the 10 programs and Fig-
ure 5 plots the sizes of the value sets. The results show tinat f
this limited class of programs, the computational cost oftert-
sensitive analysis grows linearly with the number of cotgein
contrast, the cost of context-insensitive analysis growadeati-
cally. This is expected because Venadlal's context-insensitive
analysis essentially performs intraprocedural analysishe pro-
gram. Since the program is obfuscated, its calling strecisiun-
available. The analysis, thus, returns the results of d™tmlkevery
“call”-site, leading toO(n?) paths for returning values.
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Figure 5. Size of the sets evaluation of the set of hand-crafted,
obfuscated programs.
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Figure 6. Histogram of approximations for Win32.Evol.a.

Figure 5 shows the size of the value sets for all stores in the
whole program in the context-sensitive analysis.(,) and context-
insensitive analysis;»). Observe thatS;.,, grows linearly with
the growth of contexts; howeves;, grows quadratically. The
quadratic growth can be explained due to the analysis being p
formed on a much larger number of invalid paths.

To quantify the improvement resulting from analyzing theane
morphic virus W32.Evol.a using our context-sensitive gsialover
Venableet al’s context-insensitive analysis we compute the dif-
ference in the size of the value sets resulting from the twai-an
ysis for each instruction. Since the sizes resulting fromtext-
insensitive analysis are always higher, we compute therdiffce
asSin (1) — Ssen (1), for instructioni.

Figure 6 presents a histogram that shows the number of astru
tions where the context-insensitive analysis gives laggts (for
various intervals of differences). The data shows an imgmuent
in precision with 25 of 98 interpreted instructions of W32oEa
virus producing answers with better precision. The time dar
alyzing W32.Evol.a virus was 300 ms and 1100 ms for context-
sensitive and context-insensitive analysis, respegtivhus, our
context-sensitive analysis is more efficient and more peetiian
the Venableet al’s context-insensitive analysis.

8. Conclusions

We have presented a method for performing context-seasitial-
ysis for binaries in which calling-contexts cannot be disee.
Such binaries are often crafted to break existing methodmaf-
ysis. For instance, the IDA Pro disassembler identifies toeg
dures in a binary by analyzing itall instructions. Any analysis
based on such a disassembler would fail if the binary doesismt
thecall instruction to make a procedure call. Obfuscations that de-
feat analyzers are commonly used by authors of malware. atey
also used to protect intellectual property.

Our method of context-sensitive analysis does not rely ai fin
ing procedure boundaries and determining procedure ¢afitead,
it defines a context based on the state of the stack. Thus,@ny o
eration that pushes data on the stack creates a contextefSety



any operation that removes data from the stack removes axtont
The problem of determining transfer of control, also an intgot
problem for obfuscated binaries, is solved separately byguBal-
akrishnan and Reps’ Value-Set Analysis (VSA) [1].

We adapt prior work on context-sensitive analysis using- cal
strings to use with the stack-context. The notion of calhgs has
in the past been described in terms of valid paths of an ICEE [2
We generalize the concept using abstract interpretatidndafine
contexts using trace semantics. We implement a contexsitaen
variant of Venablet al.s analysis that combines the VSA and ASG
domains [28]. Empirical evaluation shows that contexts@iere
analysis using/-context leads to several order of magnitude im-
provement in the running time and improvement in precision.

While the method improves upon the state-of-the-art by en-
abling context-sensitive analysis of obfuscated progriésrzerfor-
mance on non-obfuscated programs is equally importanatifig
any push on the stack to create a new context increases th@enum
of nodes in a context-graph, a graph that contains the cafitg
Further empirical investigation is needed to study the ichpéthis
increase on the computational complexity of the analysis.

Acknowledgements We are thankful to Michael Venable for his
assistance with the implementation.
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