Pointer Analysis

Static Analysis 2009

Michael |. Schwartzbach
Computer Science, University of Aarhus

Heap Pointers

= Pointers in the TIP language are limited:
e malloc only allocates a single cell

 only linear structures can be built in the heap

0o
—0—0—0—0—0-

= But we still have all relevant analysis challenges...

Static Analysis

Pointer Targets

The fundamental question about pointers:
What are their possible targets?

We need a suitable abstraction:
¢ &id for a program variable named id
e malloc-ifor an allocation site with index |

= The set of all these is denoted Targets

Each target may correspond to many actual
memory cells at runtime

Static Analysis

Points-To Analysis

= Determine for each pointer variable p the set,
pt(p), of its possible targets

= A conservative analysis:

» the set may be too large
« the trivial answer is pt(p) = Targets
« can e.g. eliminate aliases: pt(p) N pt(g) = I

= A flow-insensitive analysis:
 takes place on the AST
 before or together with the control-flow analysis

Static Analysis

Obtaining Points-To Information

* The simplest non-trivial analysis:
* include all malloc-itargets
* include &id if that expression occurs in the program

 this is called address-taken

* Improvement for a typed language:
 eliminate those targets whose types do not match

= Amazingly, this is sometimes good enough
« and clearly very fast to compute

Static Analysis

Pointer Normalization

= Assume that all pointer usage is normalized:

e Id=malloc

* Id; = &ld,
* id, = 1d,

* id; = *id,
o xid, = id,
e id =null

= Simply introduce lots of temporary variables
= All subexpressions are now named

Static Analysis

Andersen’s Analysis (1/2)

= For every program variable, v, introduce a
variable [[v]] ranging over Targets

= (Generate constraints:

* id=malloc: {malloc-i} c[[id]]

* id; = &id,: { &id,} c [[idy]]

e id; = id,: [[id,]] < [[id,]]

e id; = *id,: &ide [[id,]] = [[id]] < [[id,]]
e *id; = id,: &ide([id,]] = [[id,]] < [[id]]

Static Analysis

Andersen’s Analysis (2/2)

The points-to map is defined as: pt(p) = [[p]]

The constraints fit into the cubic framework

= Unique minimal solution in time O(n3)

= The analysis is flow-insensitive but directional
« we know which way values flow in assignments

Static Analysis

Example Program

var p,qg,X,v¥Y,Z;

p = malloc;

X =Yy

bl
I
N

Static Analysis

Applying Andersen

= Generated constraints:
{malloc-1}c [[p]]

[yl < [[x]]
[[z]] < [[]]
&y € [[p]l = [[z]] < [[v]]
[[a]] < [[e]]
{&y} c [[dll
&y € [[p]l = [yl < [[x]]
{&z} c [[p]]

= Smallest solution:
pt(p) = [[p]] = {malloc-1, &y, &z}
pt(a) = [[a]] = {&y}

Static Analysis

10

10

Steensgaard’s Analysis (1/2)

= View assignments as being bidirectional

Introduce tokens:
e malloc-i
* id and *id for each variable id

= Define a relation on these tokens

Compute smallest enclosing equivalence, ~
* this can be done in time O(na(n))

Static Analysis

11

11

Steensgaard’s Analysis (2/2)

= (Generate constraints:

 [d =malloc: *Id ~malloc-I
* id; = &id,: *id, = id,

e id; = id,: id, ~id,

 id; = *id,: id, ~ *id,

e xid, = id,: *id, ~id,

* The points-to map is defined as:

e pt(p) ={&ld | *p~id} u{malloc-i| *p ~malloc-i}

Static Analysis

12

12

Applying Steensgaard

p~q
X =Y
P~y
X ~ Z
X ~ *p
*D ~ Z
*D ~ Z

*p ~ malloc-1

malloc-1

= pt(p) =pt(g) ={malloc-1, &x, &y, &z }
= |ntersecting with address-taken eliminates &x

Static Analysis

13

13

Interprocedural Points-To Analysis

= |f function pointers are distinct from heap pointers:
e first run a CFA
« then run Andersen or Steensgaard

= But both pointers may be mixed together:
(***x) (1,2,3)

* |n this case the CFA and the points-to analysis
must happen simultaneously

Static Analysis 14

14

Function Call Normalization

= Assume that all function calls are of the form:
= Assume that all return statements are of the form:

return id;

= Simply introduce lots of temporary variables

Static Analysis 15

15

CFA with Andersen

= For the function call and every occurrence of:
f(Xy, .., X,) { ... returnid; }
add the constraints:

{ &} < IIf]]
&f e [[idy]] = [[a]] < [Ix]] A [[id]] < [[id,]]

= Solve the constraints using the cubic framework

Static Analysis 16

16

CFA with Steensgaard

= Always add the constraints:

= Very imprecise, since any n-argument function is
assumed to be a possible target for the call

Static Analysis

17

17

NULL Pointer Analysis

» Decide for every dereference *p:
* has p been initialized?
* is p different from null?

= Use the monotone framework

e assuming that a points-to map has been computed

Static Analysis

18

18

A Lattice for NULL Analysis

= Define the simple lattice Null:

?

l
IN

|
NN

|
1

where IN is initialized and NN is not null

= Use for every program point the map lattice:
Vars — Null
where Vars are the declared variables

Static Analysis 19

19

Setting Up

= For every CFG node, v, we have a variable [[V]]:

« a map giving the NULL status for all program
variables at the program point after v

= Auxiliary definition:

JOIN(v) = |_] [[w]]

we pred(v)

Static Analysis

20

20

NULL Constraints

= For variable declarations:
e [[VII=[d;—>?,...,id, > 7]

* For pointer operations:

e i[d =malloc: [v]] = JOIN(v)[id — NN]

* id; = &id,: [v]] = JOIN(v)[id; — NN]

e id; = id,: [v]] = JOIN(v)[id; — JOIN(v)(id,)]
* id; = *id,: [v]] = right(JOIN(v),id,,id,)

o *id; = id,: [v]] = left(JOIN(v),id,,id,)

e id = null: [v]] = JOIN(v)[id — IN]

= For all other CFG nodes:
* [[V]] = JOIN(v)

Static Analysis 21

21

m = *Y:

Auxiliary Functions

right(c,x,y) = o[x — o(y) U L_|o(p)]

= xX =Y

&pe pt(y)

left(o,x,y) =c [p — o(p) Ll o(y)]

&pe pt(x)

= Strong update: 6[x — change]
= Weak update: o[x — ¢(X) U change]

Static Analysis

22

22

Using the NULL Analysis

= The pointer dereference *p is safe at v if:

(L] [wI(p) = NN

we pred(v)

* The quality of the NULL analysis depends on the
quality of the underlying points-to analysis

Static Analysis 23

23

Example Program

q = &pj;
n = null;
*q = n;
*p:r,

= Andersen generates:
pt(gq) = {malloc-1}
pt(p) = {&q}
pt(r) = pt(n) = {}

Static Analysis

24

24

Generated Constraints

[var p,g,r,n]]=p—2,g—2?,r—2?,n— ?]
[p=malloc]] =[[var p,q, r, n]l[p — NN]

[g=&p]] = [[p=malloc]][g — NN]

[n=null]] = [[g=&p]][n — IN]

[*gq=n]] = [[n=null]]lp — [[n=null]](p) U [[n=null]](n)]
[*p=r]] = [[*g=n]]

Static Analysis

25

25

Solution

[var p,g,r,n]]=p—2,g—2?,r—2?,n— ?]
[p=malloc]]=[p—>NN,g—?,r— ?,n— ?]
[g=&p]] =[p - NN, g > NN, r — ?, n — ?]
[n=null]]=[p —>NN,g— NN, r — ?, n— IN]
[*g=n]]=[p — IN,g — NN, r — ?, n — IN]
[*p=r]]=[p — IN,g — NN, r — ?, n — IN]

* For the statement *p=r the compiler now knows:
e p may contain NULL
e r may be uninitialized

Static Analysis

26

26

