
1

Pointer AnalysisPointer Analysis

Static Analysis 2009Static Analysis 2009

Michael I. Schwartzbach
Computer Science, University of Aarhus



2

2Static Analysis

Heap PointersHeap Pointers

Pointers in the TIP language are limited:
• malloc only allocates a single cell
• only linear structures can be built in the heap

But we still have all relevant analysis challenges...

x

y

z



3

3Static Analysis

Pointer TargetsPointer Targets

The fundamental question about pointers:
What are their possible targets?

We need a suitable abstraction:
• &id for a program variable named id
• malloc-i for an allocation site with index i

The set of all these is denoted Targets

Each target may correspond to many actual 
memory cells at runtime



4

4Static Analysis

PointsPoints--To AnalysisTo Analysis

Determine for each pointer variable p the set, 
pt(p), of its possible targets

A conservative analysis:
• the set may be too large
• the trivial answer is pt(p) = Targets
• can e.g. eliminate aliases: pt(p) ∩ pt(q) = ∅

A flow-insensitive analysis:
• takes place on the AST
• before or together with the control-flow analysis



5

5Static Analysis

Obtaining PointsObtaining Points--To InformationTo Information

The simplest non-trivial analysis:
• include all malloc-i targets
• include &id if that expression occurs in the program
• this is called address-taken

Improvement for a typed language:
• eliminate those targets whose types do not match

Amazingly, this is sometimes good enough 
• and clearly very fast to compute



6

6Static Analysis

Pointer NormalizationPointer Normalization

Assume that all pointer usage is normalized:
• id = malloc

• id1 = &id2

• id1 = id2

• id1 = *id2

• *id1 = id2

• id = null

Simply introduce lots of temporary variables
All subexpressions are now named



7

7Static Analysis

AndersenAndersen’’s Analysis (1/2)s Analysis (1/2)

For every program variable, v, introduce a 
variable [[v]] ranging over Targets

Generate constraints:
• id = malloc: { malloc-i } ⊆ [[id]]
• id1 = &id2: { &id2 } ⊆ [[id1]]
• id1 = id2: [[id2]] ⊆ [[id1]]
• id1 = *id2: &id∈[[id2]] ⇒ [[id]] ⊆ [[id1]]
• *id1 = id2: &id∈[[id1]] ⇒ [[id2]] ⊆ [[id]]



8

8Static Analysis

AndersenAndersen’’s Analysis (2/2)s Analysis (2/2)

The points-to map is defined as: pt(p) = [[p]]

The constraints fit into the cubic framework
Unique minimal solution in time O(n3)

The analysis is flow-insensitive but directional
• we know which way values flow in assignments



9

9Static Analysis

Example ProgramExample Program

var p,q,x,y,z;

p = malloc;

x = y;

x = z;

*p = z;

p = q;

q = &y;

x = *p;

p = &z;



10

10Static Analysis

Applying AndersenApplying Andersen

Generated constraints:
{malloc-1} ⊆ [[p]]
[[y]] ⊆ [[x]]
[[z]] ⊆ [[x]]
&y ∈ [[p]] ⇒ [[z]] ⊆ [[y]]
[[q]] ⊆ [[p]]
{&y} ⊆ [[q]]
&y ∈ [[p]] ⇒ [[y]] ⊆ [[x]]
{&z} ⊆ [[p]]

Smallest solution:
pt(p) = [[p]] = {malloc-1, &y, &z}
pt(q) = [[q]] = {&y}



11

11Static Analysis

SteensgaardSteensgaard’’s Analysis (1/2)s Analysis (1/2)

View assignments as being bidirectional

Introduce tokens:
• malloc-i
• id and *id for each variable id

Define a relation on these tokens
Compute smallest enclosing equivalence, ∼
• this can be done in time O(nα(n))



12

12Static Analysis

SteensgaardSteensgaard’’s Analysis (2/2)s Analysis (2/2)

Generate constraints:
• id = malloc: *id ∼ malloc-i
• id1 = &id2: *id1 = id2 

• id1 = id2: id1 ∼ id2

• id1 = *id2: id1 ∼ *id2

• *id1 = id2: *id1 ∼ id2

The points-to map is defined as:
• pt(p) = {&id | *p ∼ id} ∪ { malloc-i | *p ∼ malloc-i }



13

13Static Analysis

Applying SteensgaardApplying Steensgaard

*p ∼ malloc-1 

p ∼ q

x ∼ y 

*p ∼ y

x ∼ z 

x ∼ *p

*p ∼ z 

*p ∼ z

pt(p) = pt(q) = { malloc-1, &x, &y, &z } 
Intersecting with address-taken eliminates &x

x

y
z

*p

*q

malloc-1

*x

p

q

*y

*z



14

14Static Analysis

Interprocedural PointsInterprocedural Points--To AnalysisTo Analysis

If function pointers are distinct from heap pointers:
• first run a CFA
• then run Andersen or Steensgaard

But both pointers may be mixed together:
(***x)(1,2,3)

In this case the CFA and the points-to analysis 
must happen simultaneously



15

15Static Analysis

Function Call NormalizationFunction Call Normalization

Assume that all function calls are of the form:

id1 = id2(a1, ..., an)

Assume that all return statements are of the form:

return id;

Simply introduce lots of temporary variables



16

16Static Analysis

CFA with AndersenCFA with Andersen

For the function call and every occurrence of:

f(x1, ..., xn) { ... return id; }

add the constraints:

{ &f } ⊆ [[f]]
&f ∈ [[id2]] ⇒ [[ai]] ⊆ [[xi]] ∧ [[id]] ⊆ [[id1]]

Solve the constraints using the cubic framework



17

17Static Analysis

CFA with SteensgaardCFA with Steensgaard

Always add the constraints:

ai ∼ xi ∧ id ∼ id1

Very imprecise, since any n-argument function is 
assumed to be a possible target for the call



18

18Static Analysis

NULL Pointer AnalysisNULL Pointer Analysis

Decide for every dereference *p:
• has p been initialized?
• is p different from null?

Use the monotone framework
• assuming that a points-to map has been computed



19

19Static Analysis

A Lattice for NULL AnalysisA Lattice for NULL Analysis

Define the simple lattice Null:

where IN is initialized and NN is not null

Use for every program point the map lattice:
Vars → Null

where Vars are the declared variables

?

IN

NN

⊥



20

20Static Analysis

Setting UpSetting Up

For every CFG node, v, we have a variable [[v]]:
• a map giving the NULL status for all program   

variables at the program point after v

Auxiliary definition:

JOIN(v) =      [[w]]
w∈pred(v)

v

w1

w2

wk



21

21Static Analysis

NULL ConstraintsNULL Constraints

For variable declarations:
• [[v]] = [id1 → ?, ..., idn → ?]

For pointer operations:
• id = malloc: [[v]] = JOIN(v)[id → NN]
• id1 = &id2: [[v]] = JOIN(v)[id1 → NN]
• id1 = id2: [[v]] = JOIN(v)[id1 → JOIN(v)(id2)]
• id1 = *id2: [[v]] = right(JOIN(v),id1,id2)
• *id1 = id2: [[v]] = left(JOIN(v),id1,id2)
• id = null: [[v]] = JOIN(v)[id → IN]

For all other CFG nodes:
• [[v]] = JOIN(v)



22

22Static Analysis

Auxiliary FunctionsAuxiliary Functions

x = *y:
right(σ,x,y) = σ[x → σ(y)          σ(p)]

*x = y
left(σ,x,y) = σ [p → σ(p)    σ(y)]

Strong update: σ[x → change]
Weak update: σ[x → σ(x)    change]

&p∈pt(y)

&p∈pt(x)



23

23Static Analysis

Using the NULL AnalysisUsing the NULL Analysis

The pointer dereference *p is safe at v if:

(       [[w]])(p) = NN

The quality of the NULL analysis depends on the 
quality of the underlying points-to analysis

w∈pred(v)



24

24Static Analysis

Example ProgramExample Program

var p,q,r,n;

p = malloc;

q = &p;

n = null;

*q = n;

*p = r;

Andersen generates:
pt(q) = {malloc-1}
pt(p) = {&q}
pt(r) = pt(n) = {}



25

25Static Analysis

Generated ConstraintsGenerated Constraints

[[var p,q,r,n]] = [p→ ?, q→ ?, r→ ?, n→ ?]
[[p=malloc]] = [[var p,q,r,n]][p→ NN]
[[q=&p]] = [[p=malloc]][q→ NN]
[[n=null]] = [[q=&p]][n→ IN]
[[*q=n]] = [[n=null]][p→ [[n=null]](p) ⊔ [[n=null]](n)]
[[*p=r]] = [[*q=n]]



26

26Static Analysis

SolutionSolution

[[var p,q,r,n]] = [p→ ?, q→ ?, r→ ?, n→ ?]
[[p=malloc]] = [p→ NN, q→ ?, r→ ?, n→ ?]
[[q=&p]] = [p→ NN, q→ NN, r→ ?, n→ ?]
[[n=null]] = [p→ NN, q→ NN, r→ ?, n→ IN]
[[*q=n]] = [p→ IN, q→ NN, r→ ?, n→ IN]
[[*p=r]] = [p→ IN, q→ NN, r→ ?, n→ IN]

For the statement *p=r the compiler now knows:
• p may contain NULL
• r may be uninitialized


