
1

Control Flow AnalysisControl Flow Analysis

Static Analysis 2009Static Analysis 2009

Michael I. Schwartzbach
Computer Science, University of Aarhus

2

2Static Analysis

Control Flow ComplicationsControl Flow Complications

Function pointers complicate CFG construction:
• several functions may be invoked at a call site
• this depends on the dataflow
• but dataflow analysis first requires a CFG

Same situation for other features:
• higher-order functions
• a class hierarchy with objects and methods
• prototype objects with dynamic properties

3

3Static Analysis

Control Flow AnalysisControl Flow Analysis

A control flow analysis approximates the CFG
• conservatively computes possible functions at call sites
• the trivial answer: all functions

This is a flow-insensitive analysis:
• it is based on the AST
• the CFG is not available yet

A subsequent analysis may use the CFG:
• a flow-sensitive CFA may be less conservative
• this could be iterated

4

4Static Analysis

CFA for The Lambda CalculusCFA for The Lambda Calculus

The pure lambda calculus

E → λx.E | (function definition)
E1 E2 | (function application)
x (variable reference)

Assume all λ-bound variables are distinct
A closure λx abstracts the function λx.E in all
contexts (values of free variables)
For each call site E1E2 determine the possible
functions for E1 from the set {λx1, λx2, ..., λxn}

5

5Static Analysis

Closure AnalysisClosure Analysis

For every AST node, v, we introduce a variable
[[v]] ranging over subsets of closures
For λid.E we have the constraint:

{λid} ⊆ [[λid.E]]

For E1E2 we have the conditional constraint:
λid∈[[E1]] ⇒ [[E2]] ⊆ [[id]] ∧ [[E]] ⊆ [[E1E2]]

for every closure λid

6

6Static Analysis

The Cubic FrameworkThe Cubic Framework

We have a set of tokens {t1, t2, ..., tk}
We have a collection of variables {x1, ..., xn}
ranging over subsets of tokens
A collection of constraints of the form:
• {t} ⊆ x
• t∈x ⇒ y ⊆ z

Compute the unique minimal solution
• this exists since solutions are closed under intersection

An cubic time algorithm is available

7

7Static Analysis

The Solver Data StructureThe Solver Data Structure

Each variable is mapped to a node in a DAG
Each node has a bitvector in {0,1}k

• initially set to all 0’s
Each bit has a list of pairs of variables
• used to model conditional constraints

The DAG edges model inclusion constraints

The bitvectors will at all times directly represent
the minimal solution to the constraints seen so far

8

8Static Analysis

An Example GraphAn Example Graph

x1

x2

x3

x4

(x2,x4)

9

9Static Analysis

Adding Constraints (1/2)Adding Constraints (1/2)

Constraints of the form {t} ⊆ x:
• look up the node associated with x
• set the bit corresponding to t to 1
• if the list of pairs for t is not empty, then add the edges

corresponding to the pairs to the DAG

0

(y,z)

x
t

1x
t

y

z

10

10Static Analysis

Adding Constraints (2/2)Adding Constraints (2/2)

Constraints of the form t∈x ⇒ y ⊆ z:
• test if the bit corresponding to t is 1
• if so, add the DAG edge from y to z
• otherwise, add (y,z) to the list of pairs for t

0x
t

0

(y,z)

x
t

1x
t

1x
t

y
z

11

11Static Analysis

Collapse CyclesCollapse Cycles

If a newly added edge forms a cycle:
• merge the nodes on the cycle into a single node
• form the union of the bitvectors
• concatenate the lists of pairs
• update the map from variables accordingly

000011

000100

100101

x

z

y 100111x,y,z

(a,b)

(c,d)

(a,b)

(c,d)

12

12Static Analysis

Propagate BitvectorsPropagate Bitvectors

Propagate the values of all newly set bits along all
edges in the DAG

1

1

1

1

1

1

13

13Static Analysis

Time Complexity (1/3)Time Complexity (1/3)

Assume number of tokens and constraints is O(n)
• all are proportional to the size of the program

Merging DAG cycles:
• at most O(n) times
• at most O(n) nodes in each merger
• at most O(n2) to concatenate lists
• at most O(n2) to union bitvectors
• in total at most O(n3)

Inserting new edges:
• at most O(n2) times

14

14Static Analysis

Time Complexity (2/3)Time Complexity (2/3)

Including constant sets:
• at most O(n2) times

Propagating bits along edges:
• imagine thin bitwires along DAG edges
• each bit propagation burns out the wire:

• with at most n3 bitwires, propagation is at most O(n3)

1

0

0

0

0

0

1

0

0

0

0

0

15

15Static Analysis

Time Complexity (2/3)Time Complexity (2/3)

Including constant sets:
• at most O(n2) times

Propagating bits along edges:
• imagine thin bitwires along DAG edges
• each bit propagation burns out the wire:

• with at most n3 bitwires, propagation is at most O(n3)

1

0

0

0

0

1

1

0

0

0

0

1

16

16Static Analysis

Time Complexity (3/3)Time Complexity (3/3)

Adding it all up, the upper bound is O(n3)

This is known as the cubic time bottleneck:
• seems to be a lower bound as well
• occurs in many different scenarios

A special case of general set constraints:
• defined on sets of terms instead of sets of tokens
• solvable in time O(22)n

17

17Static Analysis

CFA for Function PointersCFA for Function Pointers

For a computed function call:

E → (E)(E, ..., E)

we cannot see which function is called

A coarse but sound approximation:
• assume any function with right number of arguments

Use CFA to get a much better result!

18

18Static Analysis

CFA Constraints (1/2)CFA Constraints (1/2)

Tokens are {&id1, &id2, ..., &idk} for all functions
For every AST node, v, we introduce the variable
[[v]] denoting the set of functions to which v may
evaluate

For function definitions:
{&id} ⊆ [[id]]

For assignments:
[[E]] ⊆ [[id]]

19

19Static Analysis

CFA Constraints (2/2)CFA Constraints (2/2)

For function calls:
&f ∈[[E]] ⇒ [[Ei]] ⊆ [[ai]] ∧ [[E’]] ⊆ [[(E)(E1, ..., En)]]

for every function f with arguments a1, ..., an

and return expression E’

If we consider typable programs:
• only generate constraints for those functions f for

which the call would be type correct

20

20Static Analysis

Example ProgramExample Program

inc(i) { return i+1; }

dec(j) { return j-1; }

ide(k) { return k; }

foo(n,f) {

var r;

if (n==0) { f=ide; }

r = (f)(n);

return r;

}

main() {

var x,y;

x = input;

if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }

return y;

}

21

21Static Analysis

Generated ConstraintsGenerated Constraints

{&inc} ⊆ [[inc]]
{&dec} ⊆ [[dec]]
{&ide} ⊆ [[ide]]
[[ide]] ⊆ [[f]]
[[(f)(n)]] ⊆ [[r]]
&inc ∈ [[f]] ⇒ [[n]] ⊆ [[i]] ∧ [[i+1]] ⊆ [[(f)(n)]]
&dec ∈ [[f]] ⇒ [[n]] ⊆ [[j]] ∧ [[j-1]] ⊆ [[(f)(n)]]
&ide ∈ [[f]] ⇒ [[n]] ⊆ [[k]] ∧ [[k]] ⊆ [[(f)(n)]]
[[input]] ⊆ [[x]]
[[foo(x,inc)]] ⊆ [[y]]
[[foo(x,dec)]] ⊆ [[y]]
{&foo} ⊆ [[foo]]
&foo ∈ [[foo]] ⇒ [[x]] ⊆ [[n]] ∧ [[inc]] ⊆ [[f]] ∧ [[(f)(n)]] ⊆ [[foo(x,inc)]]
&foo ∈ [[foo]] ⇒ [[x]] ⊆ [[n]] ∧ [[dec]] ⊆ [[f]] ∧ [[(f)(n)]] ⊆ [[foo(x,dec)]]
{&main} ⊆ [[main]]

22

22Static Analysis

Least SolutionLeast Solution

[[inc]] = {&ide}
[[dec]] = {&dec}
[[ide]] = {&ide}
[[f]] = {&inc, &dec, &ide}
[[foo]] = {&foo}
[[main]] = {&main}

23

23Static Analysis

Resulting CFGResulting CFG

var x,y

x = input

x > 0

save-1-x=x save-2-x=x

save-1-y=y save-2-y=y

n = x n = x

f = inc f = dec

x=save-1-x x=save-2-x

y=save-1-y y=save-2-y

y=call-1 y=call-2

ret-main=y

var r

n==0

f = ide

save-3-r=r

r=save-3-r

r=call-3

ret-foo=r

call-1=ret-foo

call-2=ret-foo

ret-inc=i+1 ret-dec=j-1 ret-ide=k

call-3=ret-inc

call-3=ret-dec

call-3=ret-ide

24

24Static Analysis

Resulting CFGResulting CFG

var x,y

x = input

x > 0

save-1-x=x save-2-x=x

save-1-y=y save-2-y=y

n = x n = x

f = inc f = dec

x=save-1-x x=save-2-x

y=save-1-y y=save-2-y

y=call-1 y=call-2

ret-main=y

var r

n==0

f = ide

save-3-r=r

r=save-3-r

r=call-3

ret-foo=r

call-1=ret-foo

call-2=ret-foo

ret-inc=i+1 ret-dec=j-1 ret-ide=k

call-3=ret-inc

call-3=ret-dec

call-3=ret-ide

25

25Static Analysis

Simple CFA for OO (1/3)Simple CFA for OO (1/3)

CFA in an object-oriented language:

x.m(a,b,c)

Which method implementations may be invoked?

Full CFA is a possibility...
But the extra structure allows simpler solutions

26

26Static Analysis

Simple CFA for OO (2/3)Simple CFA for OO (2/3)

Simplest solution:
• select all methods named m with three arguments

Class Hierarchy Analysis (CHA):
• consider only the part of the class hierarchy rooted by

the declared type of x

x

27

27Static Analysis

Simple CFA for OO (3/3)Simple CFA for OO (3/3)

Rapid Type Analysis (RTA):
• restrict to those classes that are actually used in the

program in new expressions

Variable Type Analysis (VTA):
• perform intraprocedural control flow analysis

x

