Control Flow Analysis

Static Analysis 2009

Michael I. Schwartzbach
Computer Science, University of Aarhus

Control Flow Complications

* Function pointers complicate CFG construction:
» several functions may be invoked at a call site
* this depends on the dataflow
» but dataflow analysis first requires a CFG

= Same situation for other features:
 higher-order functions
 a class hierarchy with objects and methods
» prototype objects with dynamic properties

Static Analysis

Control Flow Analysis

= A control flow analysis approximates the CFG
« conservatively computes possible functions at call sites
 the trivial answer: all functions

= This is a flow-insensitive analysis:
 itis based on the AST
» the CFG is not available yet

* A subsequent analysis may use the CFG:
» a flow-sensitive CFA may be less conservative
« this could be iterated

Static Analysis

CFA for The Lambda Calculus

* The pure lambda calculus

E — AXE]| (function definition)
E,E,] (function application)
X (variable reference)

Assume all A-bound variables are distinct
A closure Ax abstracts the function Ax.E in all

contexts (values of free variables)

= For each call site E,E, determine the possible
functions for E; from the set {Ax;, AX,, ..., AX.}

Static Analysis

Closure Analysis

= For every AST node, v, we introduce a variable
[[V]] ranging over subsets of closures

* For Aid.E we have the constraint:
{Aid} c [[Aid.E]]
= For E,E, we have the conditional constraint:
ride [[E,]] = [[E,]] < [[id]] A [[E]] < [[E,E,]]
for every closure Aid

Static Analysis

The Cubic Framework

We have a set of tokens {t,, t,, ..., t,}

We have a collection of variables {x,, ..., X}
ranging over subsets of tokens

A collection of constraints of the form:

« {t}cx

s tex=>ycz

Compute the unigue minimal solution
* this exists since solutions are closed under intersection

An cubic time algorithm is available

Static Analysis

The Solver Data Structure

Each variable is mapped to a node in a DAG
Each node has a bitvector in {0,1}

o initially set to all O’'s

Each bit has a list of pairs of variables

e used to model conditional constraints

The DAG edges model inclusion constraints

The bitvectors will at all times directly represent

the minimal solution to the constraints seen so far

Static Analysis

Static Analysis

An Example Graph

(X2,Xy)

Adding Constraints (1/2)

» Constraints of the form {t} c x:
e look up the node associated with x
 set the bit correspondingtotto 1

o if the list of pairs for t is not empty, then add the edges
corresponding to the pairs to the DAG

@IIIEIII :> @Illtllll

(v.2)

Static Analysis

Adding Constraints (2/2)

» Constraints of the formtex = y c z:

o test if the bit corresponding totis 1
e if so, add the DAG edge fromy to z
« otherwise, add (y,z) to the list of pairs for t

@Illtllll

4> @Illtllll

@IIIEIII

Static Analysis

> @IE

(v,2)

0

10

10

Collapse Cycles

* |f a newly added edge forms a cycle:
e merge the nodes on the cycle into a single node
e form the union of the bitvectors
e concatenate the lists of pairs
« update the map from variables accordingly

Lelefofofofo

Static Analysis

Llofsfofols

A 4

(a,b)

Lofofsfofo]o

A

(c,d)

) I1|1|1|0|0|1
A 4

(a,b)
(c,d)

11

11

Propagate Bitvectors

* Propagate the values of all newly set bits along all

edges in the DAG

Llel |]]

HEEEN

HEEEE

LIl [] Ll []

Static Analysis

L1l []]

12

12

Time Complexity (1/3)

= Assume number of tokens and constraints is O(n)
« all are proportional to the size of the program

= Merging DAG cycles:

at most O(n) times

at most O(n) nodes in each merger
at most O(n?) to concatenate lists
at most O(n?) to union bitvectors

in total at most O(n3)

* |nserting new edges:

at most O(n?) times

Static Analysis

13

13

Time Complexity (2/3)

* Including constant sets:
e at most O(n?) times

* Propagating bits along edges:
* imagine thin bitwires along DAG edges
» each bit propagation burns out the wire:

Rr|lO]J]O|O|O|O

RrlO|lO]J]O]|]O|O

— <—

e with at most n3 bitwires, propagation is at most O(n3)

Static Analysis

14

14

Time Complexity (2/3)

* Including constant sets:
e at most O(n?) times

* Propagating bits along edges:
* imagine thin bitwires along DAG edges
» each bit propagation burns out the wire:

PR|lO|J]O|O|O|F

RlO|lO]|]O|O|F

— <—

e with at most n3 bitwires, propagation is at most O(n3)

Static Analysis

15

15

Time Complexity (3/3)

= Adding it all up, the upper bound is O(n3)

= This is known as the cubic time bottleneck:
 seems to be a lower bound as well
e occurs in many different scenarios

= A special case of general set constraints:
» defined on sets of terms instead of sets of tokens
« solvable in time O(22")

Static Analysis

16

16

CFA for Function Pointers

= For a computed function call:

E—-> (E)(E, ..., E)

we cannot see which function is called

= A coarse but sound approximation:
e assume any function with right number of arguments

= Use CFA to get a much better result!

Static Analysis

17

17

CFA Constraints (1/2)

= Tokens are {&ld,, &Id,, ..., &id,} for all functions

= For every AST node, v, we introduce the variable
[[V]] denoting the set of functions to which v may
evaluate

= [For function definitions:
{&id} < [[id]]

* For assignments:
[[E]] < [[id]]

Static Analysis 18

18

CFA Constraints (2/2)

= For function calls:
&t el[Ell = [[Ell cllall AlIEN <[(E) (B, ..., E)]I

for every function f with arguments a,, ..., a,
and return expression E’

= |f we consider typable programs:

« only generate constraints for those functions f for
which the call would be type correct

Static Analysis 19

19

Example Program

inc (i) { return i+1;
dec(j) { return j-1; }
ide (k) { return k; }

foo(n, f) {
var r;
if (n==0) { f=ide; }
r = (f) (n);

return r;

return y;

}

main () {
var xX,Y;
X = input;
if (x>0) { y = foo(x,inc); } else { y = foo(x,dec);

}

Static Analysis

20

20

Generated Constraints

{s&inc} c [[inc]]

{adec} c [[dec]]

{aide} c [[ide]]

[[ice]] < [[£]]

[[(£))1l <llx]]

&inc e [[f]] = [[n]] c [i]] A [[i+1]1 < [[(£) (n)]]

&dec e [[f]] = [[n]l c [BII A [[T-11 <[(£) (n)]]

&ide € [[f]] = [[n]] c [k A [[k]] < [[(£) (n)]]

[[input]] c [[x]]

[[foo (x, inc)]] < [[v]]

[[foo (x,dec)]] c[[v]]

{&foo} c [[fo0]]

&foo € [[foo]] = [[x]] < [[n]] A [[inc]] c [[E]] A [(£) (n)]] c [[foo (x, inc)]]
&foo € [[foo]] = [[x]] c [[n]] A [[dec]] c [[E]] A [[(£) (n)]] < [[foo (x, dec)]]
{smain} c [[main]]

B

Static Analysis

21

21

Least Solution

[inc]] = {&ide}
[dec]] = {&dec}
[ide]] = {&ide}
[£]] = {&inc, &dec, &ide}
[foo]] = {&foo}

[main]] = {&main}

Static Analysis

22

22

Resulting CFG

|ret—inc=i+l||ret—dec=j—l| |ret—ide=k

call-3=ret-dec

call-3=ret-ide

Static Analysis

ret-main=y

call-2=ret-foo

23

23

Resulting CFG

|ret—inc=i+1||ret—dec=j—l| |ret—ide=k

call-3=ret-inc

call-3=ret-dec

call-3=ret-ide

Static Analysis

ret-main=y

call-2=ret-foo

24

24

Simple CFA for OO (1/3)

CFA in an object-oriented language:

x.m(a,b, c)

Static Analysis

Which method implementations may be invoked?

Full CFA Is a possibllity...
But the extra structure allows simpler solutions

25

25

Simple CFA for OO (2/3)

= Simplest solution:
 select all methods named m with three arguments

» Class Hierarchy Analysis (CHA):

« consider only the part of the class hierarchy rooted by
the declared type of x

Static Analysis 26

26

Simple CFA for OO (3/3)

» Rapid Type Analysis (RTA):

* restrict to those classes that are actually used in the
program in new expressions

= Variable Type Analysis (VTA):
o perform intraprocedural control flow analysis

Static Analysis 27

27

