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Control Flow Complications

* Function pointers complicate CFG construction:
» several functions may be invoked at a call site
* this depends on the dataflow
» but dataflow analysis first requires a CFG

= Same situation for other features:
 higher-order functions
 a class hierarchy with objects and methods
» prototype objects with dynamic properties
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Control Flow Analysis

= A control flow analysis approximates the CFG
« conservatively computes possible functions at call sites
 the trivial answer: all functions

= This is a flow-insensitive analysis:
 itis based on the AST
» the CFG is not available yet

* A subsequent analysis may use the CFG:
» a flow-sensitive CFA may be less conservative
« this could be iterated
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CFA for The Lambda Calculus

* The pure lambda calculus

E — AXE]| (function definition)
E,E,] (function application)
X (variable reference)

Assume all A-bound variables are distinct
A closure Ax abstracts the function Ax.E in all

contexts (values of free variables)

= For each call site E,E, determine the possible
functions for E; from the set {Ax;, AX,, ..., AX.}
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Closure Analysis

= For every AST node, v, we introduce a variable
[[V]] ranging over subsets of closures

* For Aid.E we have the constraint:
{Aid} c [[Aid.E]]
= For E,E, we have the conditional constraint:
ride [[E,]] = [[E,]] < [[id]] A [[E]] < [[E,E,]]
for every closure Aid
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The Cubic Framework

We have a set of tokens {t,, t,, ..., t,}

We have a collection of variables {x,, ..., X}
ranging over subsets of tokens

A collection of constraints of the form:

« {t}cx

s tex=>ycz

Compute the unigue minimal solution
* this exists since solutions are closed under intersection

An cubic time algorithm is available
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The Solver Data Structure

Each variable is mapped to a node in a DAG
Each node has a bitvector in {0,1}

o initially set to all O’'s

Each bit has a list of pairs of variables

e used to model conditional constraints

The DAG edges model inclusion constraints

The bitvectors will at all times directly represent

the minimal solution to the constraints seen so far
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Adding Constraints (1/2)

» Constraints of the form {t} c x:
e look up the node associated with x
 set the bit correspondingtotto 1

o if the list of pairs for t is not empty, then add the edges
corresponding to the pairs to the DAG
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Adding Constraints (2/2)

» Constraints of the formtex = y c z:

o test if the bit corresponding totis 1
e if so, add the DAG edge fromy to z
« otherwise, add (y,z) to the list of pairs for t
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Collapse Cycles

* |f a newly added edge forms a cycle:
e merge the nodes on the cycle into a single node
e form the union of the bitvectors
e concatenate the lists of pairs
« update the map from variables accordingly
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Propagate Bitvectors

* Propagate the values of all newly set bits along all

edges in the DAG
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Time Complexity (1/3)

= Assume number of tokens and constraints is O(n)
« all are proportional to the size of the program

= Merging DAG cycles:

at most O(n) times

at most O(n) nodes in each merger
at most O(n?) to concatenate lists
at most O(n?) to union bitvectors

in total at most O(n3)

* |nserting new edges:

at most O(n?) times
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Time Complexity (2/3)

* Including constant sets:
e at most O(n?) times

* Propagating bits along edges:
* imagine thin bitwires along DAG edges
» each bit propagation burns out the wire:

Rr|lO]J]O|O|O|O

RrlO|lO]J]O]|]O|O

— <—

e with at most n3 bitwires, propagation is at most O(n3)
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Time Complexity (2/3)

* Including constant sets:
e at most O(n?) times

* Propagating bits along edges:
* imagine thin bitwires along DAG edges
» each bit propagation burns out the wire:
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e with at most n3 bitwires, propagation is at most O(n3)
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Time Complexity (3/3)

= Adding it all up, the upper bound is O(n3)

= This is known as the cubic time bottleneck:
 seems to be a lower bound as well
e occurs in many different scenarios

= A special case of general set constraints:
» defined on sets of terms instead of sets of tokens
« solvable in time O(22")
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CFA for Function Pointers

= For a computed function call:

E—-> (E)(E, ..., E)

we cannot see which function is called

= A coarse but sound approximation:
e assume any function with right number of arguments

= Use CFA to get a much better result!
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CFA Constraints (1/2)

= Tokens are {&ld,, &Id,, ..., &id,} for all functions

= For every AST node, v, we introduce the variable
[[V]] denoting the set of functions to which v may
evaluate

= [For function definitions:
{&id} < [[id]]

* For assignments:
[[E]] < [[id]]

Static Analysis 18

18



CFA Constraints (2/2)

= For function calls:
&t el[Ell = [[Ell cllall AlIEN <[ (E) (B, ..., E) ]I

for every function f with arguments a,, ..., a,
and return expression E’

= |f we consider typable programs:

« only generate constraints for those functions f for
which the call would be type correct
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Example Program

inc (i) { return i+1;
dec(j) { return j-1; }
ide (k) { return k; }

foo(n, f) {
var r;
if (n==0) { f=ide; }
r = (f) (n);

return r;

return y;

}

main () {
var xX,Y;
X = input;
if (x>0) { y = foo(x,inc); } else { y = foo(x,dec);

}
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Generated Constraints

{s&inc} c [[inc]]

{adec} c [[dec]]

{aide} c [[ide]]

[[ice]] < [[£]]

[[(£) )1l <llx]]

&inc e [[f]] = [[n]] c [i]] A [[i+1]1 < [[(£) (n)]]

&dec e [[f]] = [[n]l c [BII A [[T-11 <[ (£) (n)]]

&ide € [[f]] = [[n]] c [k A [[k]] < [[(£) (n)]]

[[input]] c [[x]]

[[foo (x, inc)]] < [[v]]

[[foo (x,dec)]] c[[v]]

{&foo} c [[fo0]]

&foo € [[foo]] = [[x]] < [[n]] A [[inc]] c [[E]] A [ (£) (n)]] c [[foo (x, inc)]]
&foo € [[foo]] = [[x]] c [[n]] A [[dec]] c [[E]] A [[(£) (n)]] < [[foo (x, dec)]]
{smain} c [[main]]

B
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Least Solution

[inc]] = {&ide}
[dec]] = {&dec}
[ide]] = {&ide}
[£]] = {&inc, &dec, &ide}
[foo]] = {&foo}

[main]] = {&main}
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Resulting CFG

|ret—inc=i+l||ret—dec=j—l| |ret—ide=k

call-3=ret-dec

call-3=ret-ide
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call-2=ret-foo
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Simple CFA for OO (1/3)

CFA in an object-oriented language:

x.m(a,b, c)

Static Analysis

Which method implementations may be invoked?

Full CFA Is a possibllity...
But the extra structure allows simpler solutions
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Simple CFA for OO (2/3)

= Simplest solution:
 select all methods named m with three arguments

» Class Hierarchy Analysis (CHA):

« consider only the part of the class hierarchy rooted by
the declared type of x
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Simple CFA for OO (3/3)

» Rapid Type Analysis (RTA):

* restrict to those classes that are actually used in the
program in new expressions

= Variable Type Analysis (VTA):
o perform intraprocedural control flow analysis
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