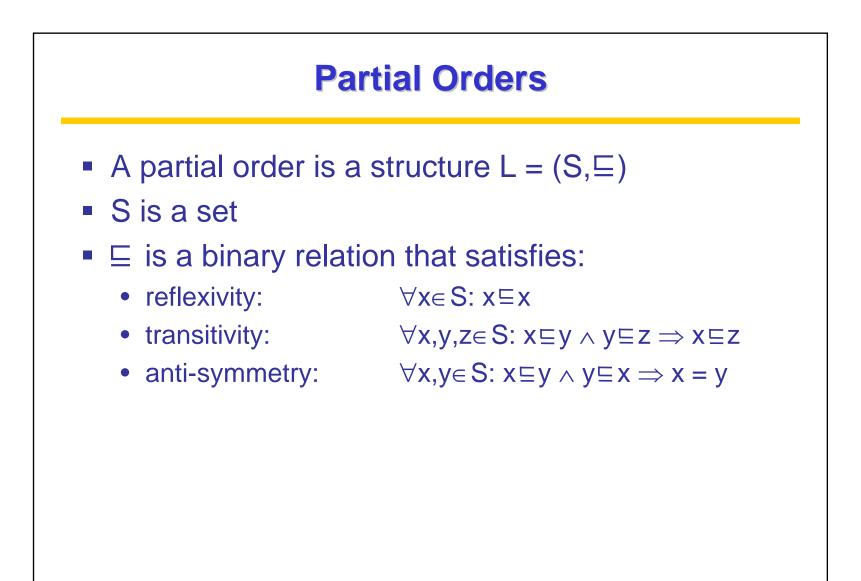
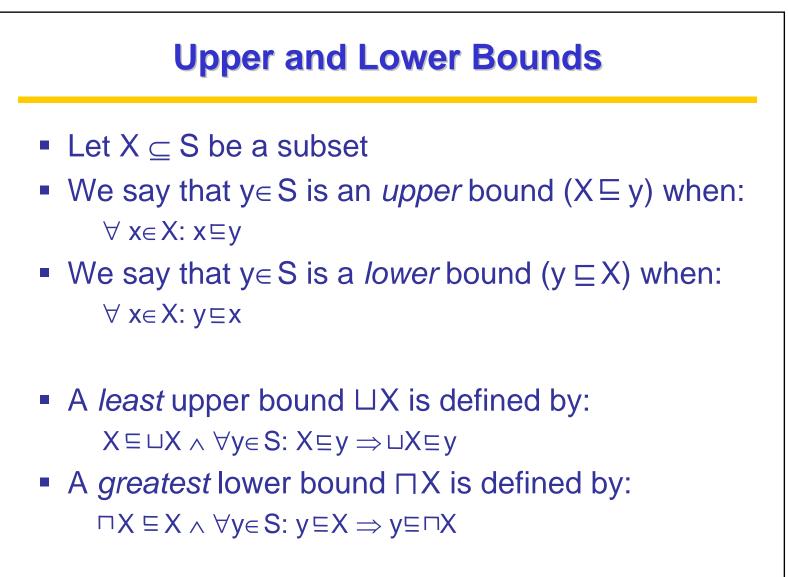
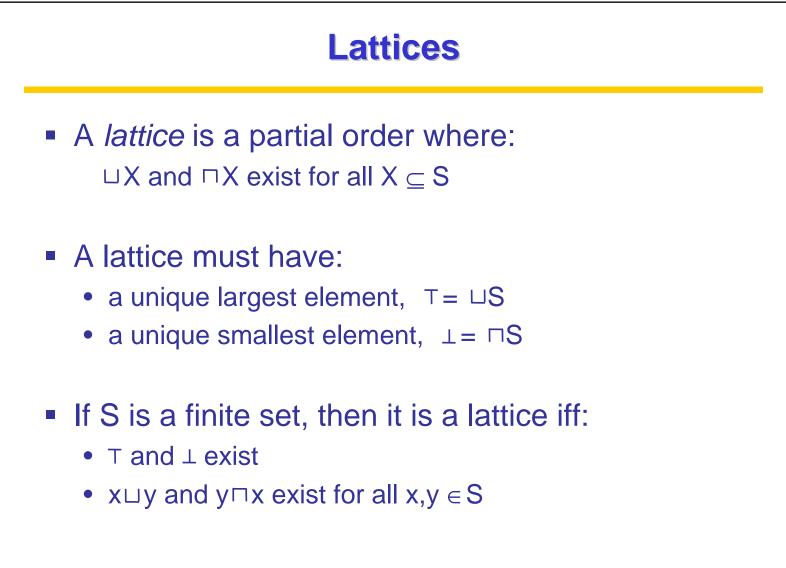
Lattice Theory Control Flow Graphs Dataflow Analysis

Static Analysis 2009

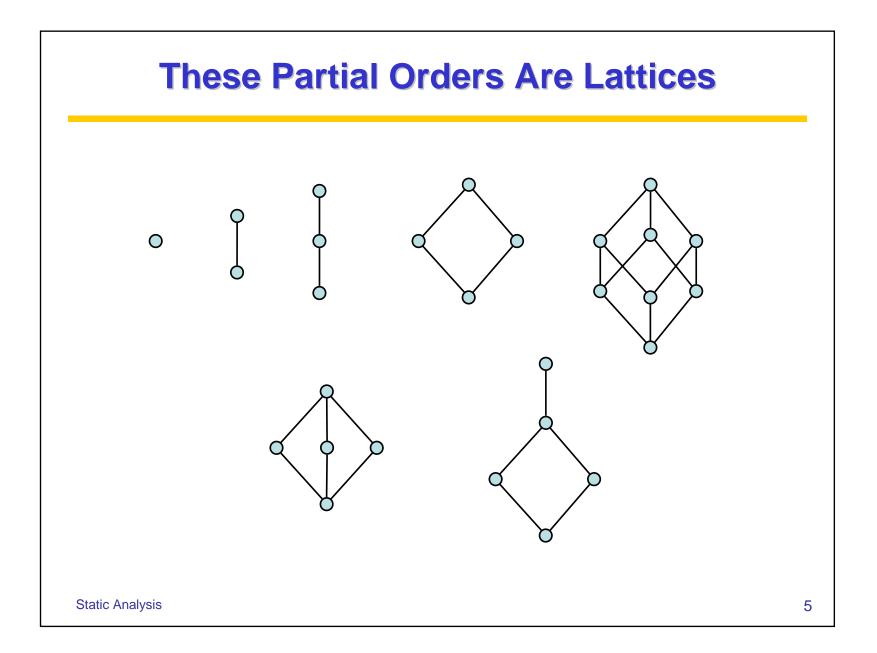
Michael I. Schwartzbach Computer Science, University of Aarhus

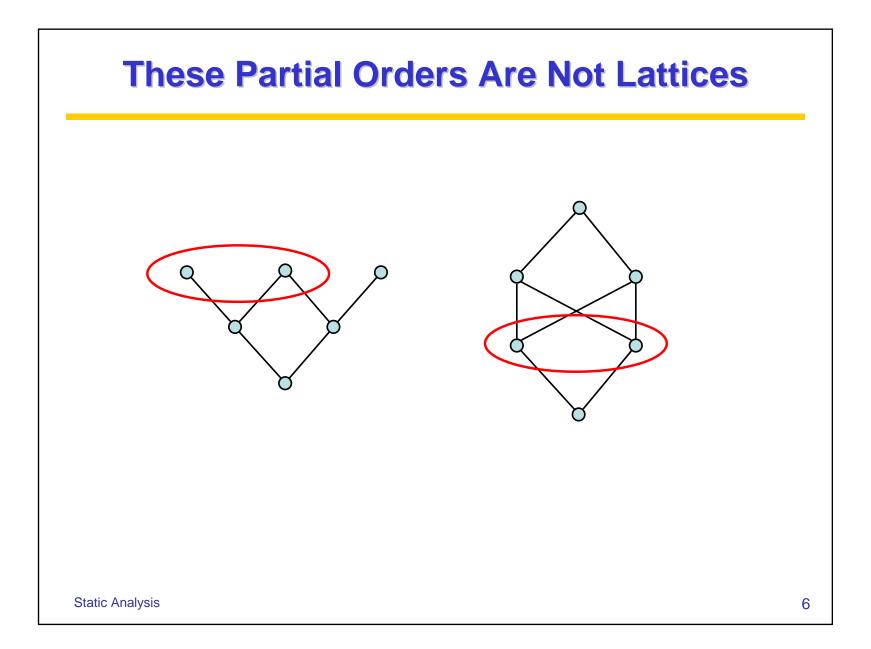


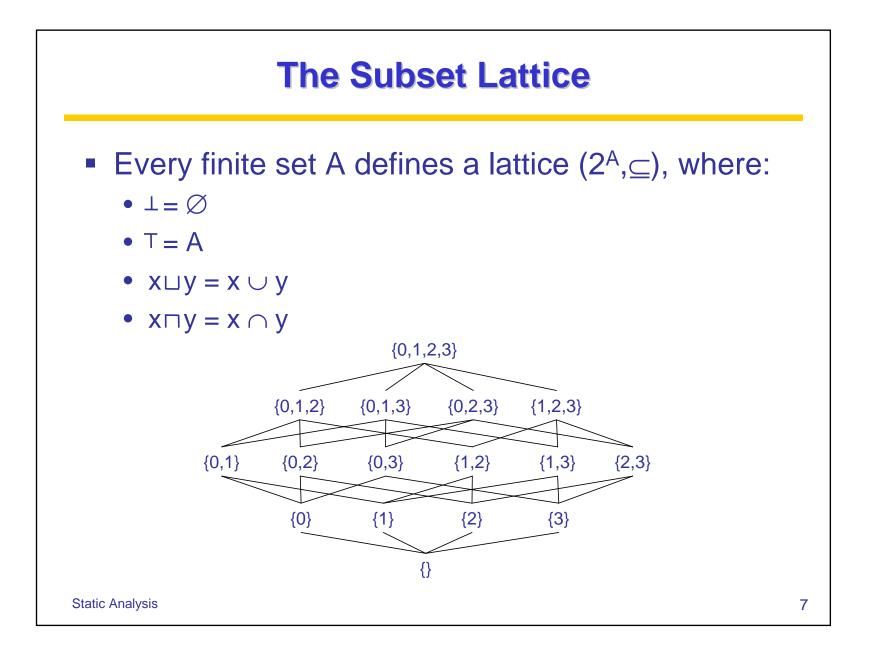


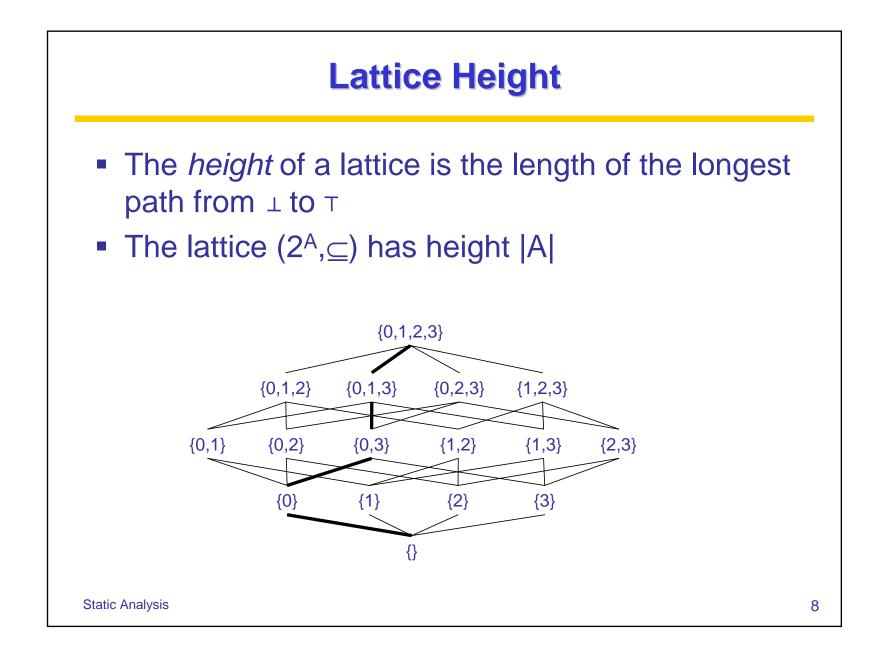


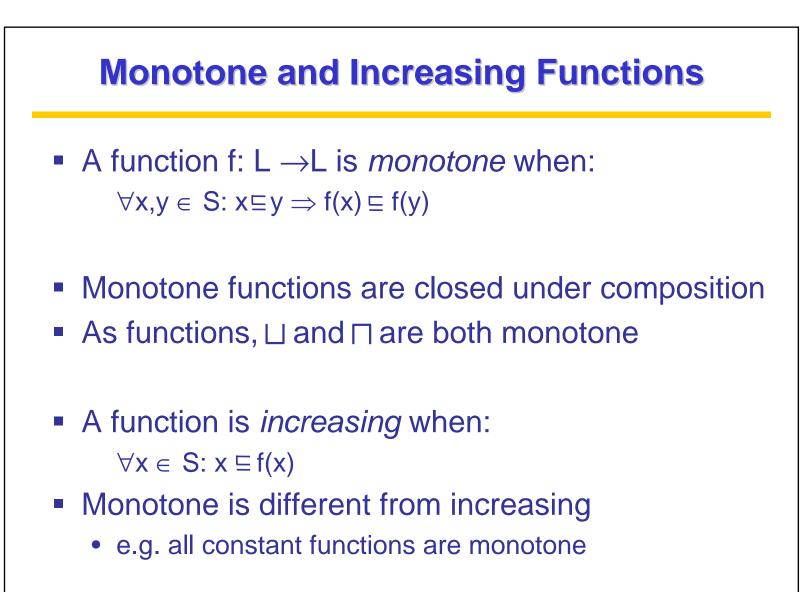
Static Analysis

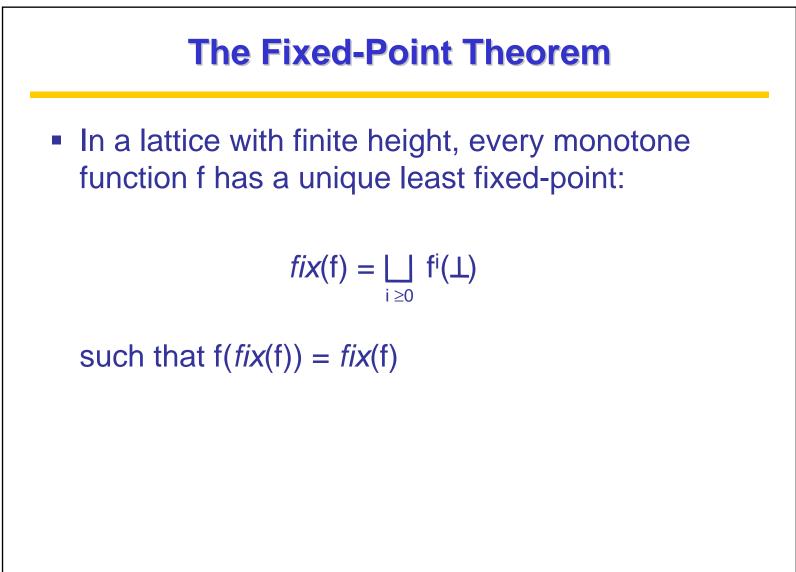




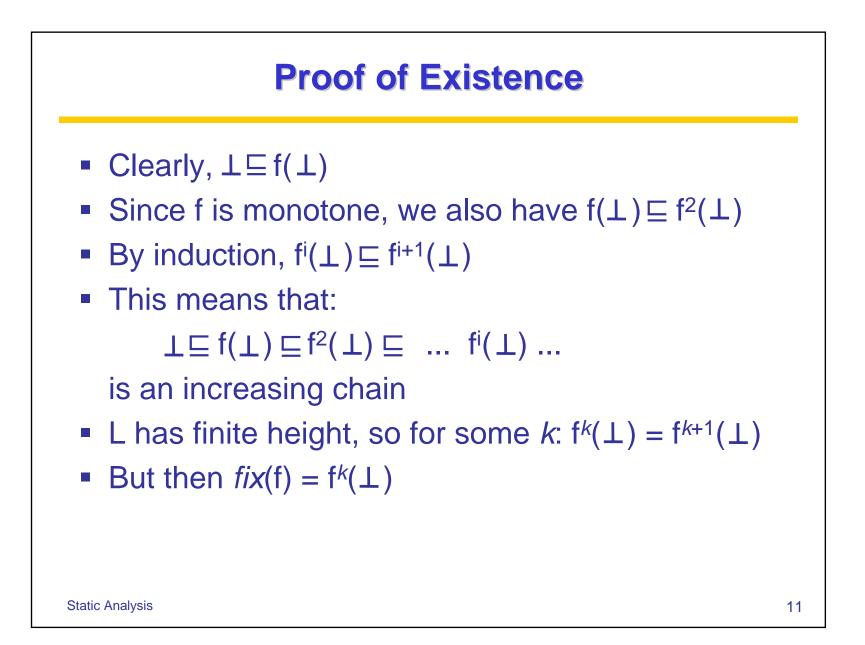






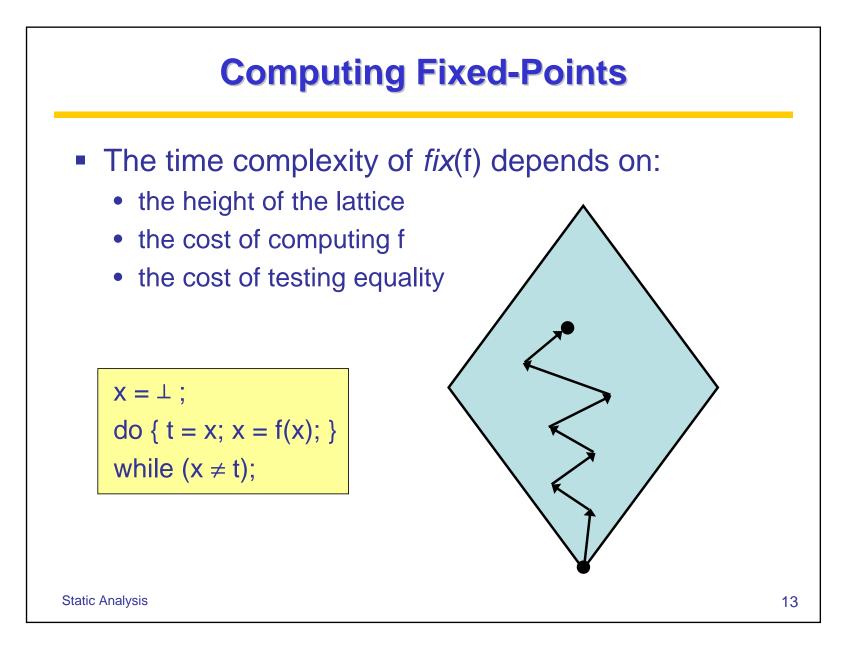


Static Analysis



Proof of Unique Least

- Assume that x is another fixed-point: x = f(x)
- Clearly, $\bot \sqsubseteq x$
- By induction, $f^i(\bot) \subseteq f^i(x) = x$
- In particular, $fix(f) = f^k(\bot) \sqsubseteq x$
- Uniqueness then follows from anti-symmetry



Product Lattice

• If L₁, L₂, ..., L_n are lattices, then so is the *product*.

$$L_1 \times L_2 \times \ldots \times L_n = \{ (x_1, x_2, \ldots, x_n) \mid x_i \in L_i \}$$

where \sqsubseteq is defined pointwise

- Note that \(\) and \(\) can be computed pointwise
- $height(L_1 \times L_2 \times ... \times L_n) = height(L_1) + ... + height(L_n)$

Static Analysis

Sum Lattice

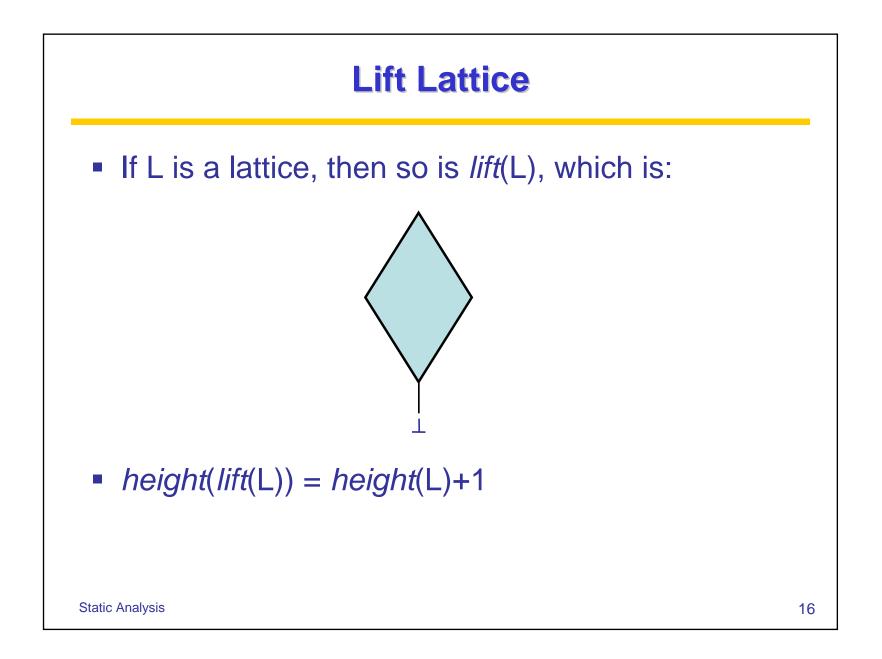
• If L₁, L₂, ..., L_n are lattices, then so is the *sum*:

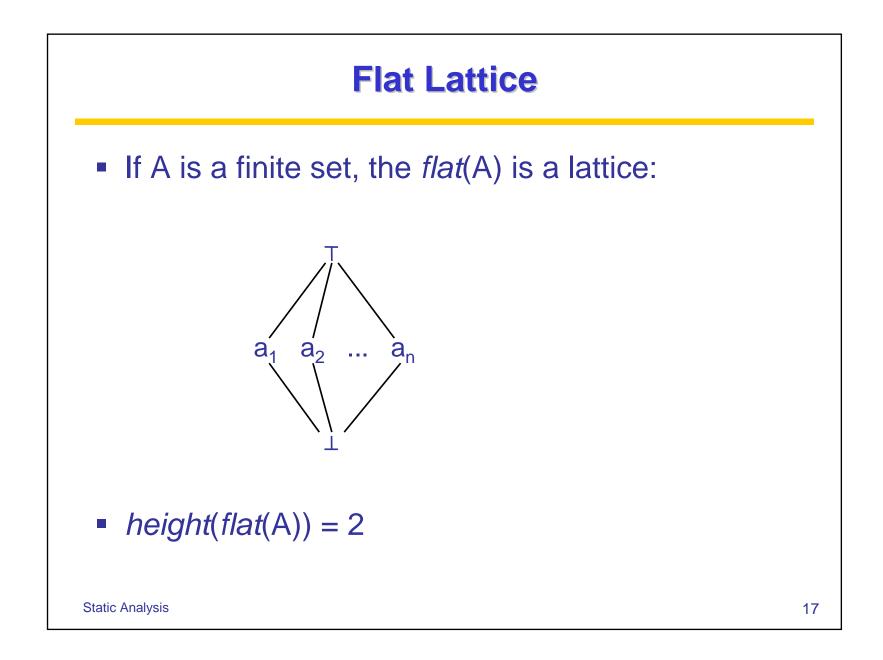
$$\mathsf{L}_1 + \mathsf{L}_2 + \dots + \mathsf{L}_n = \{ (i, x_i) \mid x_i \in \mathsf{L}_i \setminus \{\bot, \top\} \} \cup \{\bot, \top\}$$

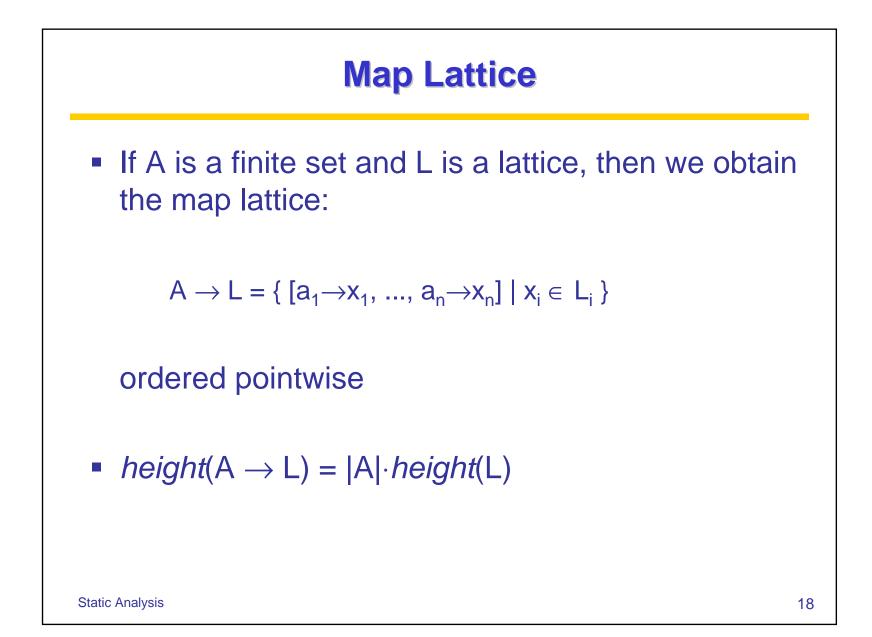
where:

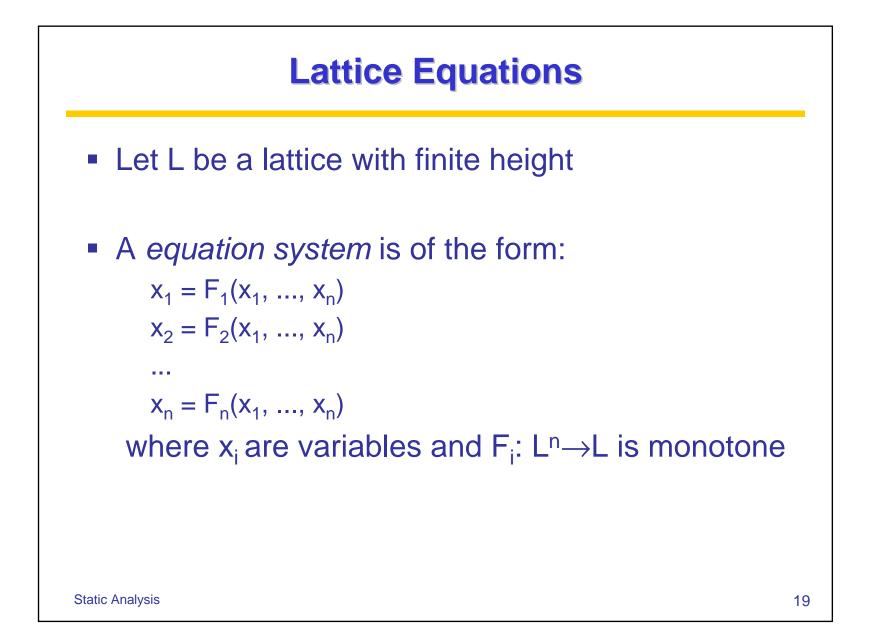
- \perp and \top are as expected
- $(i,x) \equiv (j,y)$ if and only if i=j and $x \equiv y$
- $height(L_1+L_2+...+L_n) = max{height(L_i)}$

Static Analysis









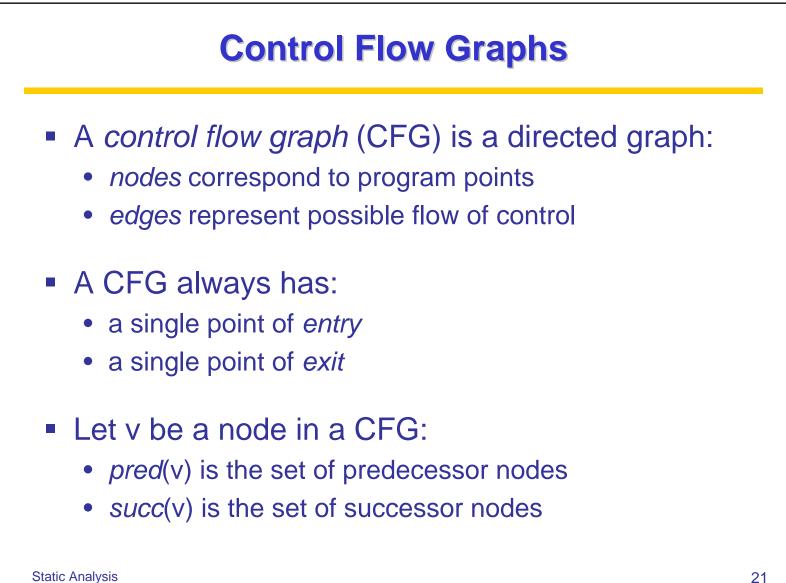
Solving Equations

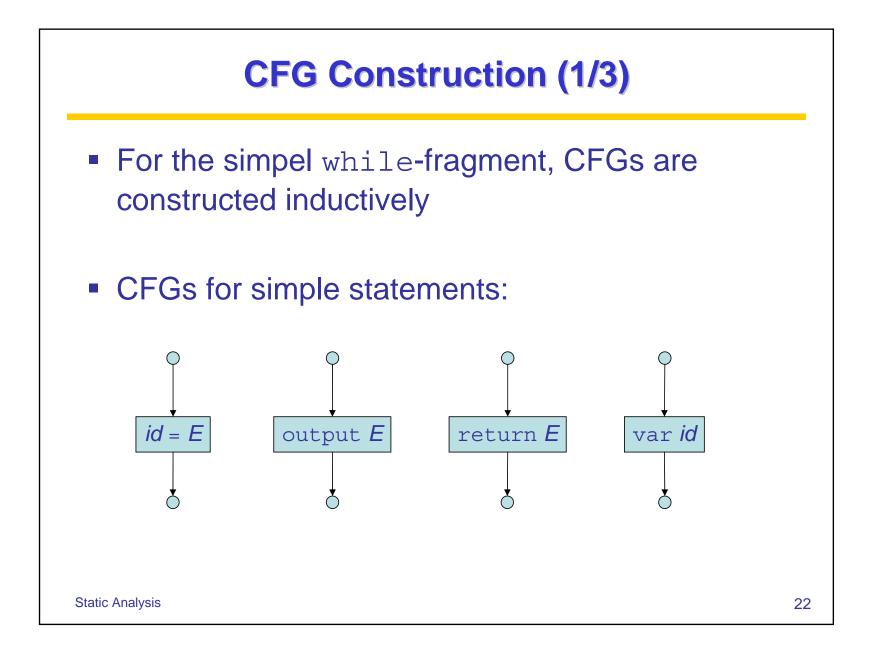
 Every equation system has a *unique least* solution, which is the least fixed-point of the function F: Lⁿ→Lⁿ defined by:

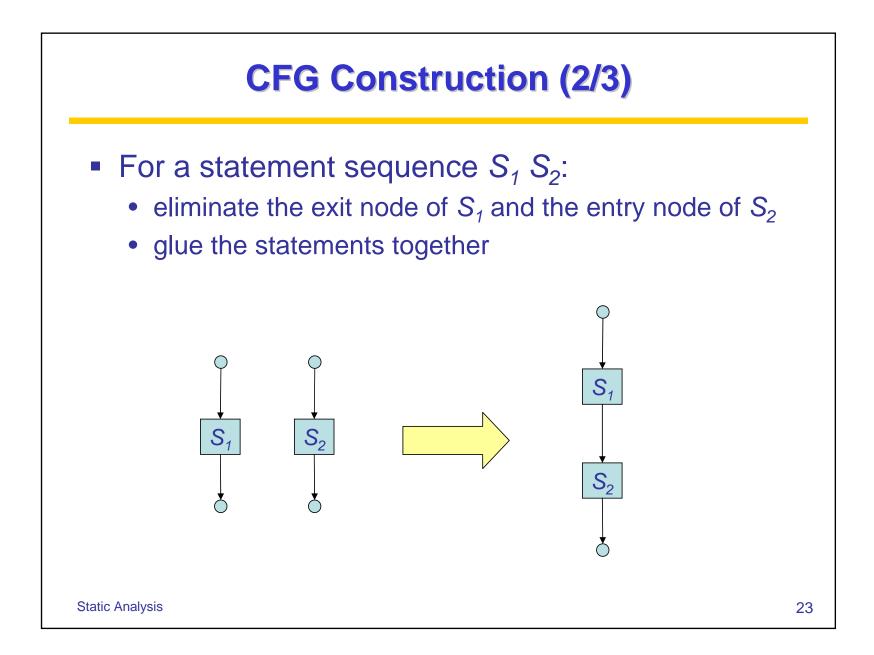
 $F(x_1,...,x_n) = (F_1(x_1,...,x_n), ..., F_n(x_1,...,x_n))$

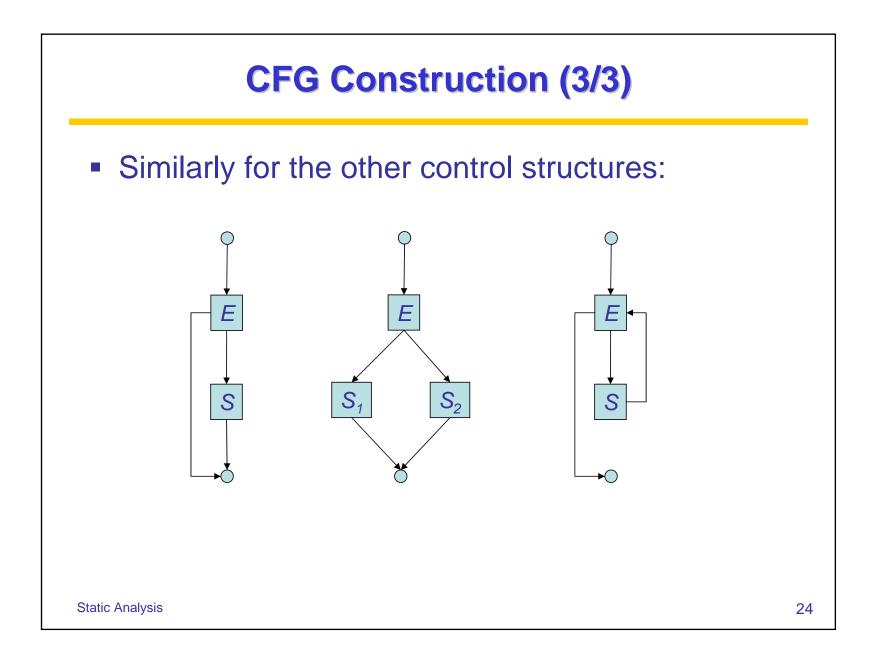
- The F function plugs into the right-hand sides
- A solution is always a fixed-point
 - this is true for any kind of equation

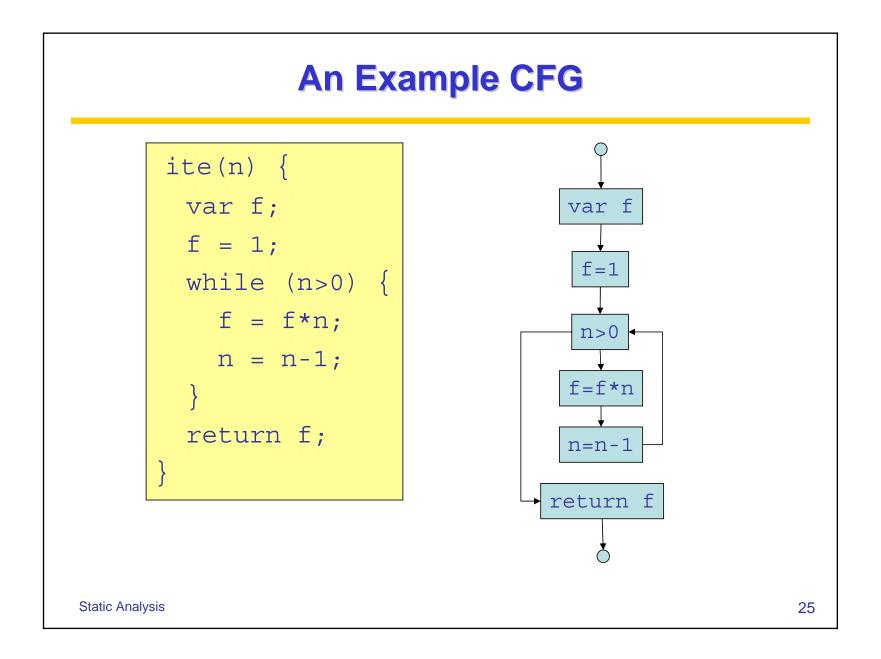
Static Analysis





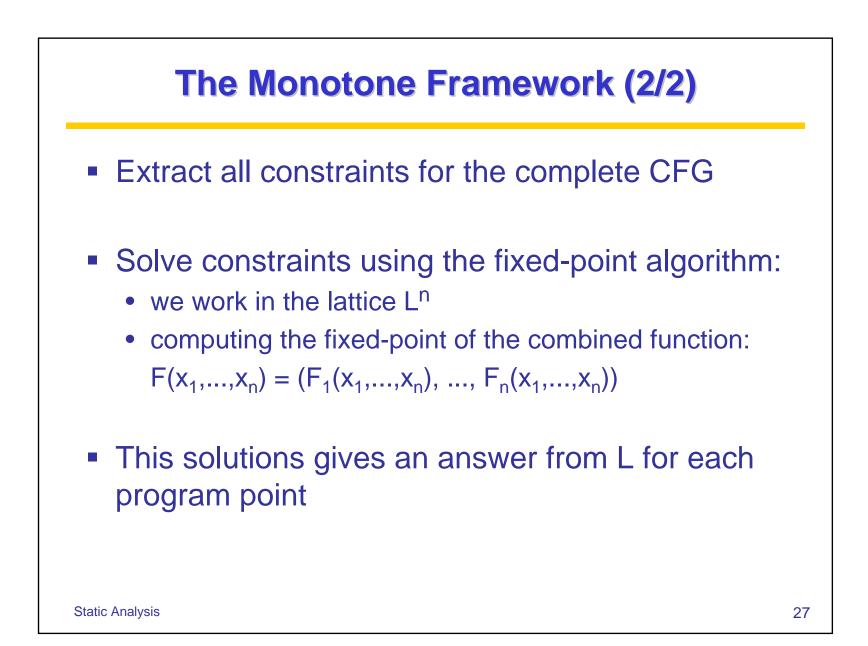


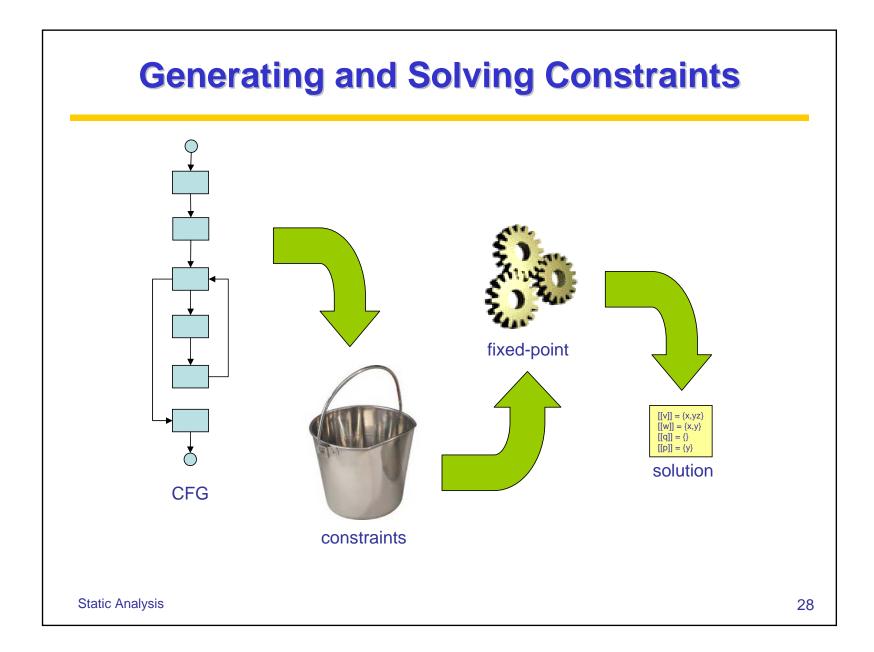


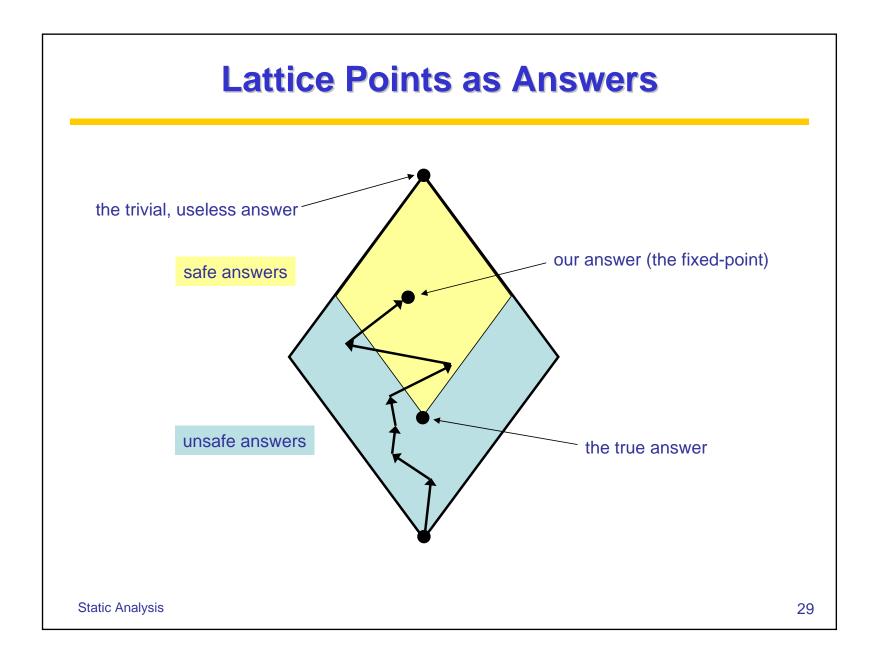


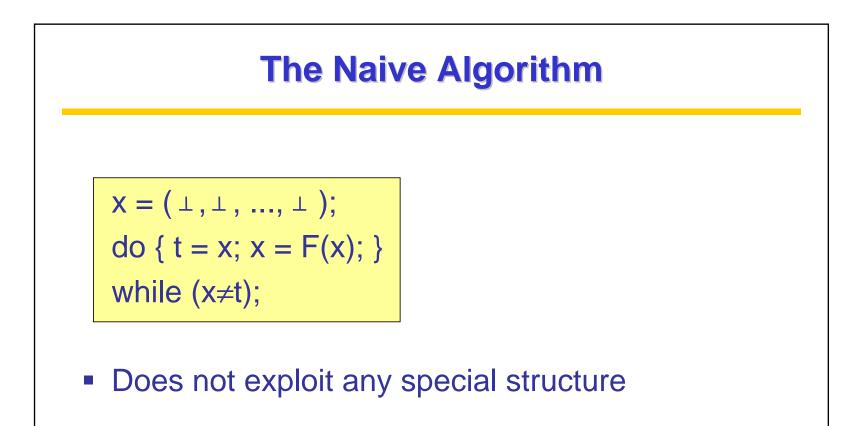
- A CFG to be analyzed, nodes $V = \{v_1, v_2, ..., v_n\}$
- A finite-height lattice L of possible answers
 - fixed or parametrized by the given program
- A variable [[v]]∈L for every CFG node v
- A dataflow constraint for each syntactic construct
 - relates the value of [[v_i]] to the variables for other nodes
 - typically a node is related to its neighbors
 - the constraints must be monotone functions: $[[v_i]] = F_i([[v_1]], [[v_2]], ..., [[v_n]])$

Static Analysis

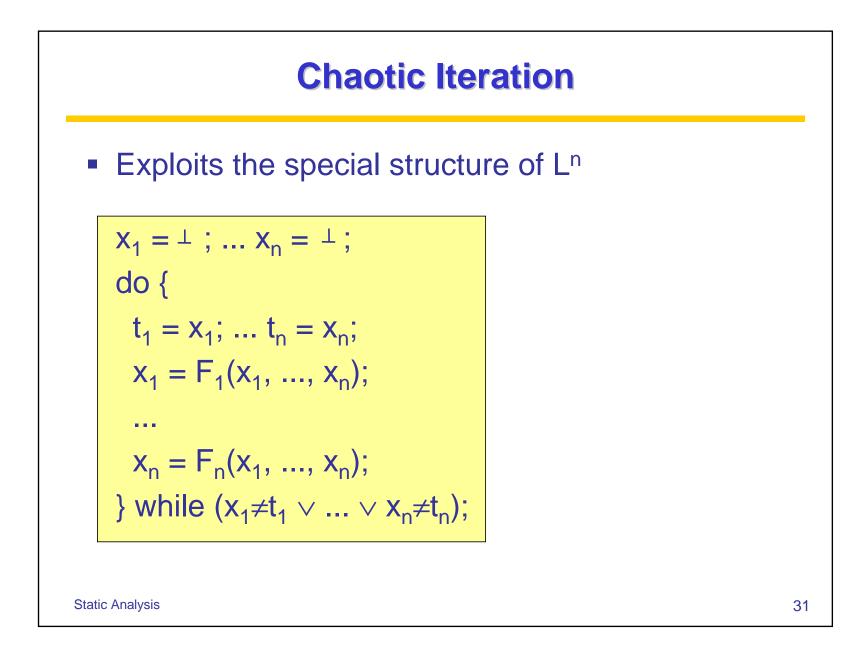


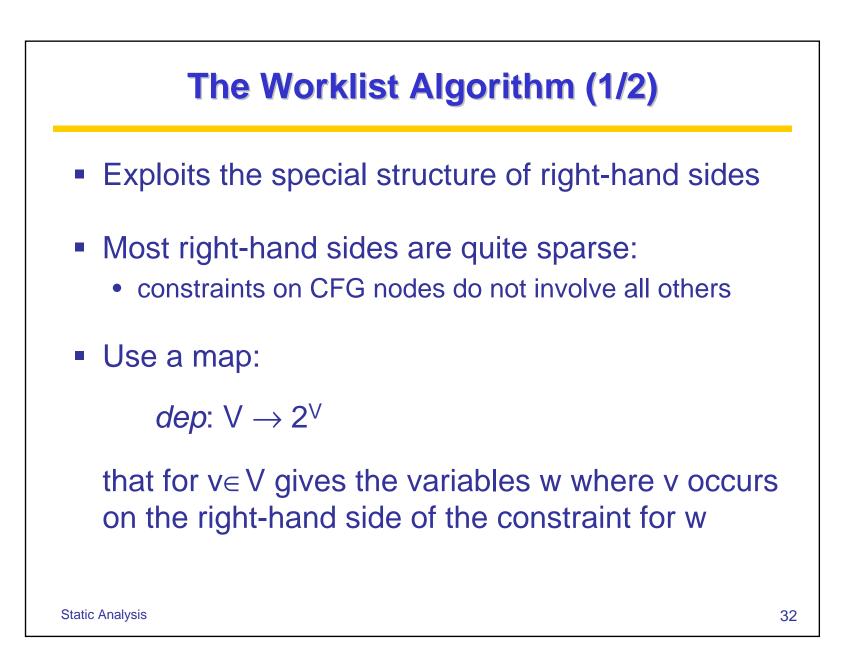


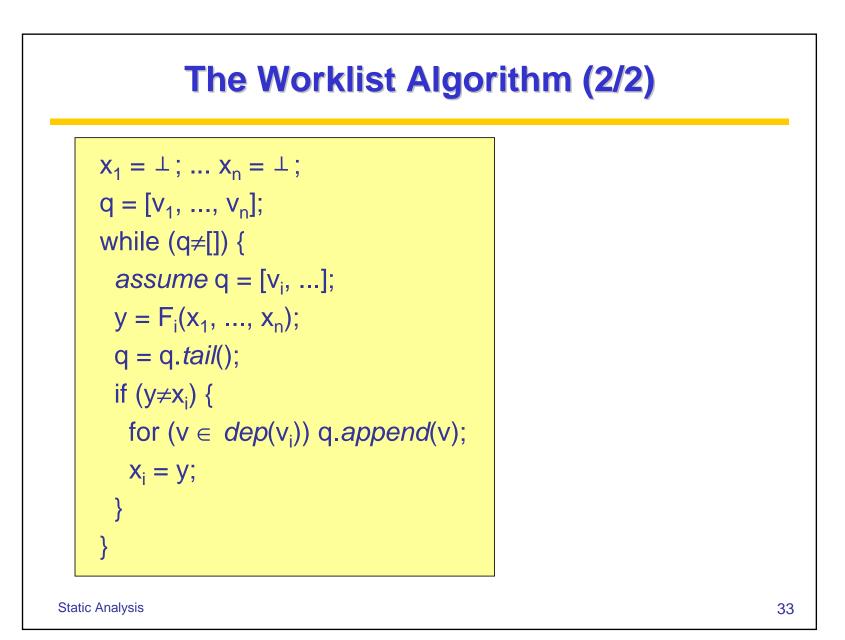


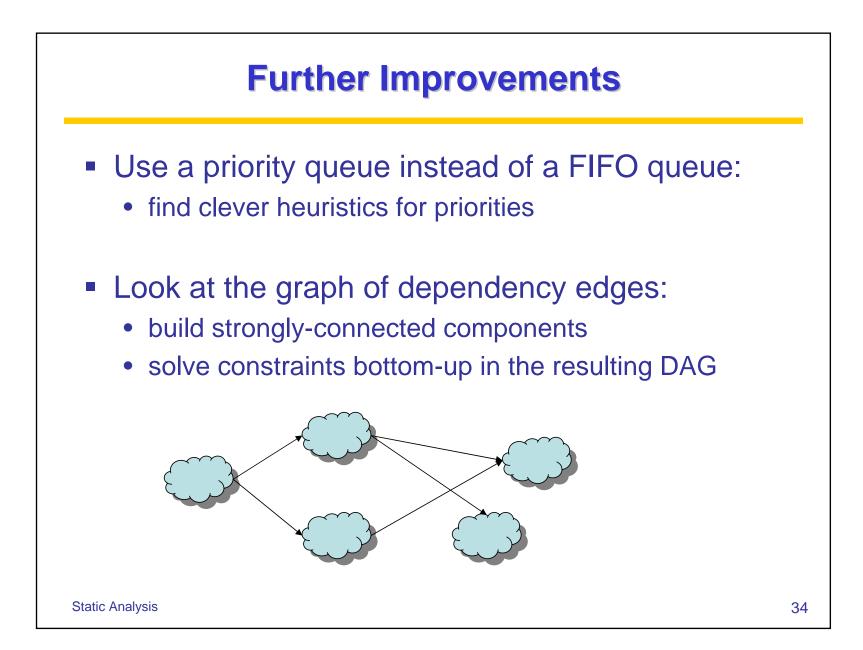


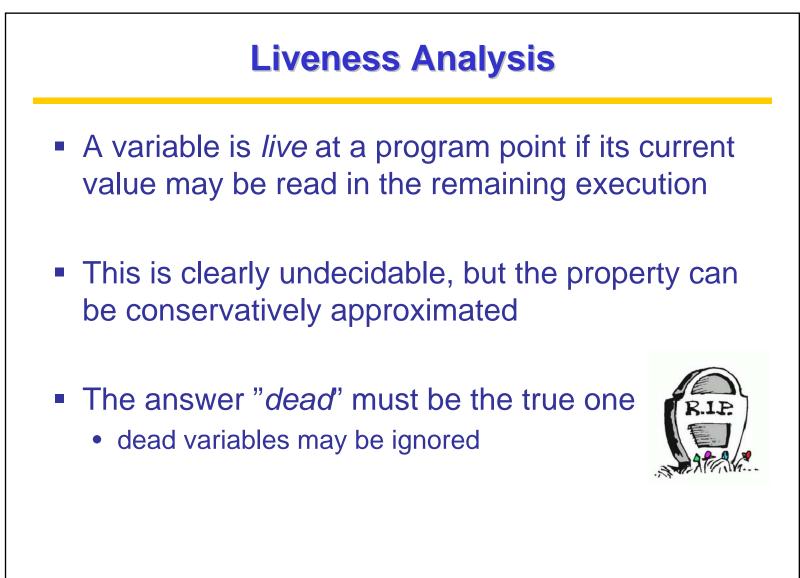
Static Analysis

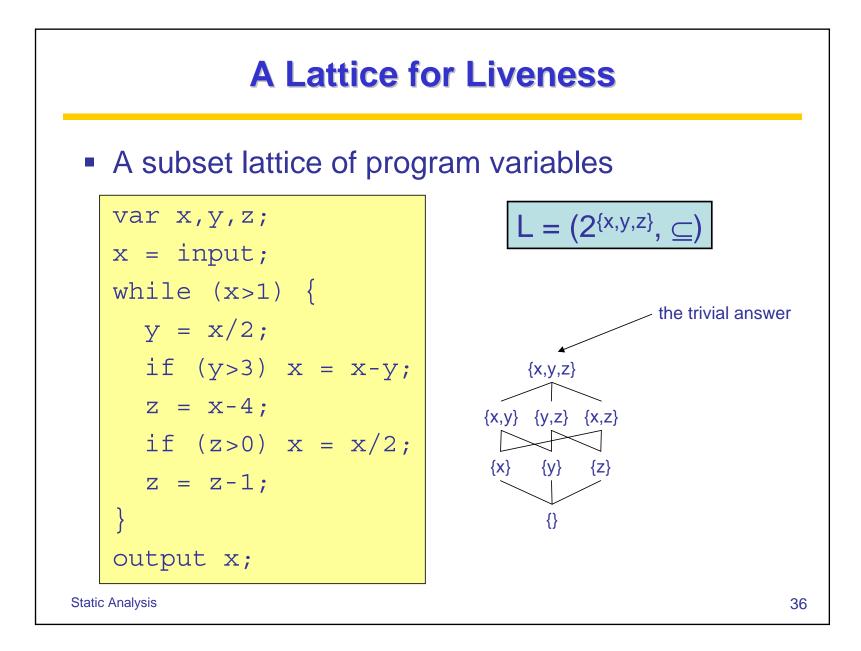


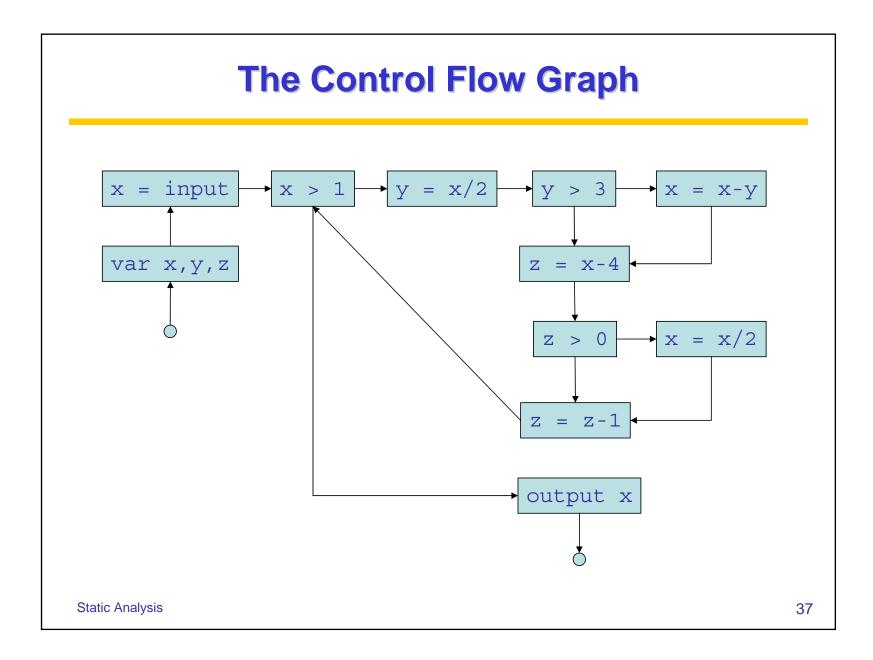


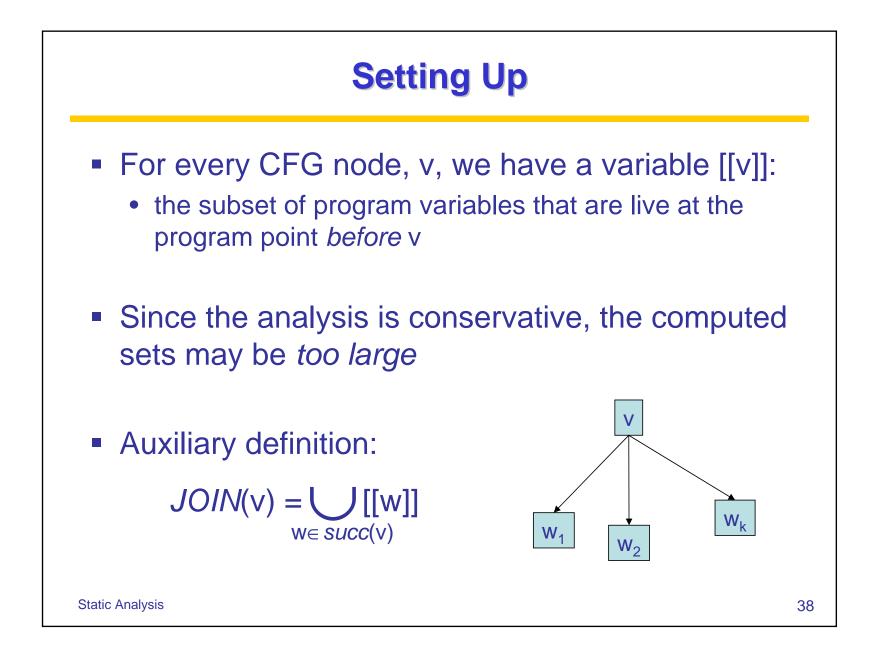


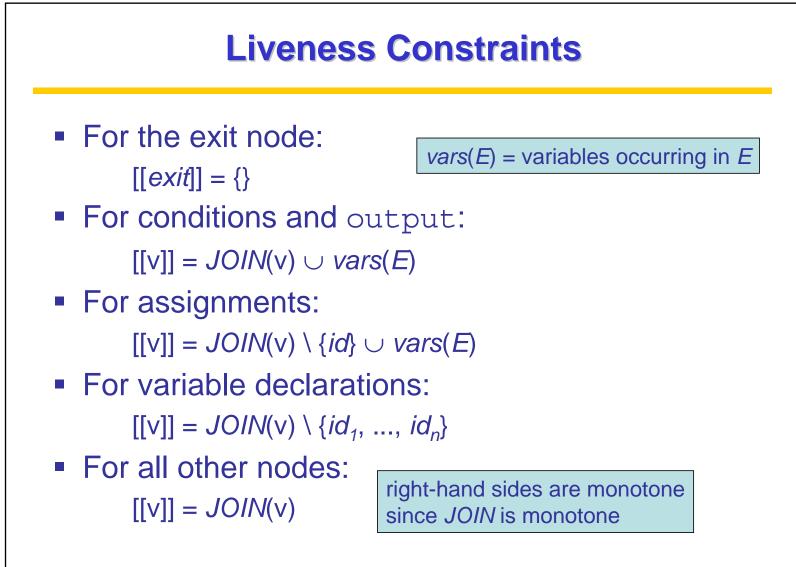












Static Analysis

Generated Constraints

```
[[var x, y, z]] = [[z=input]] \setminus \{x, y, z\}

[[x=input]] = [[x>1]] \setminus \{x\}

[[x>1]] = ([[y=x/2]] \cup [[output x]]) \cup \{x\}

[[y=x/2]] = ([[y>3]] \setminus \{y\}) \cup \{x\}

[[y>3]] = [[x=x-y]] \cup [[z=x-4]] \cup \{y\}

[[x=x-y]] = ([[z=x-4]] \setminus \{x\}) \cup \{x\}

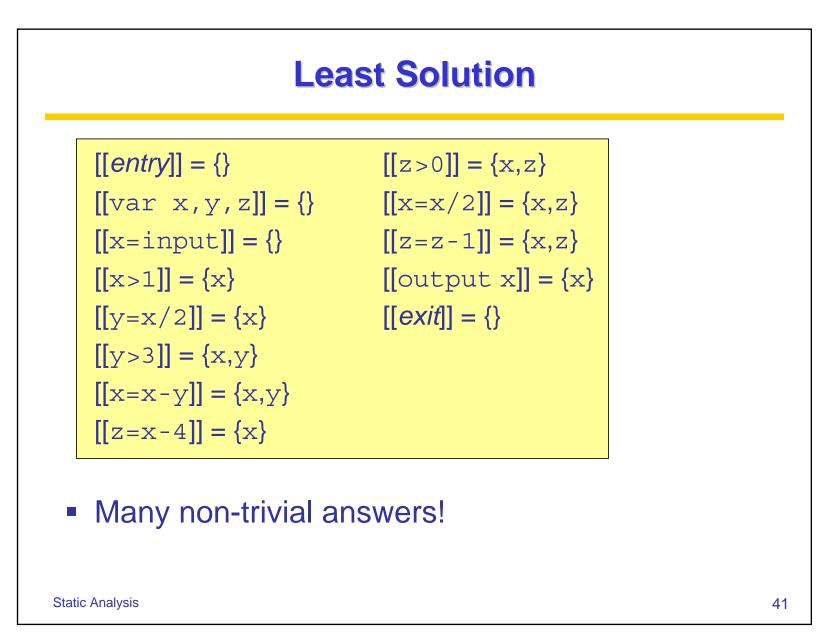
[[z>0]] = [[x=x/2]] \cup [[z=z-1]] \cup \{z\}

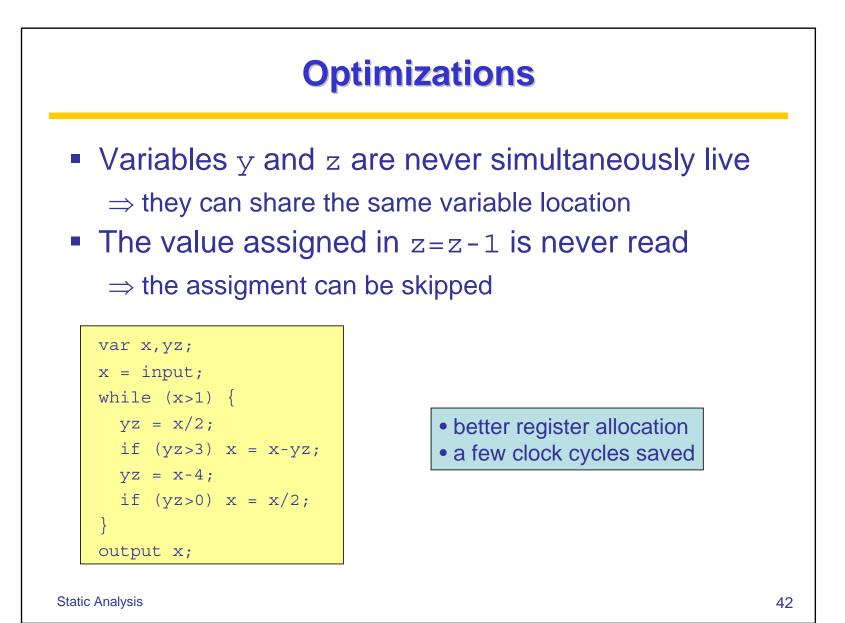
[[x=x/2]] = ([[z=z-1]] \setminus \{x\}) \cup \{z\}

[[output x]] = [[exit]] \cup \{x\}

[[exit]] = \{\}
```

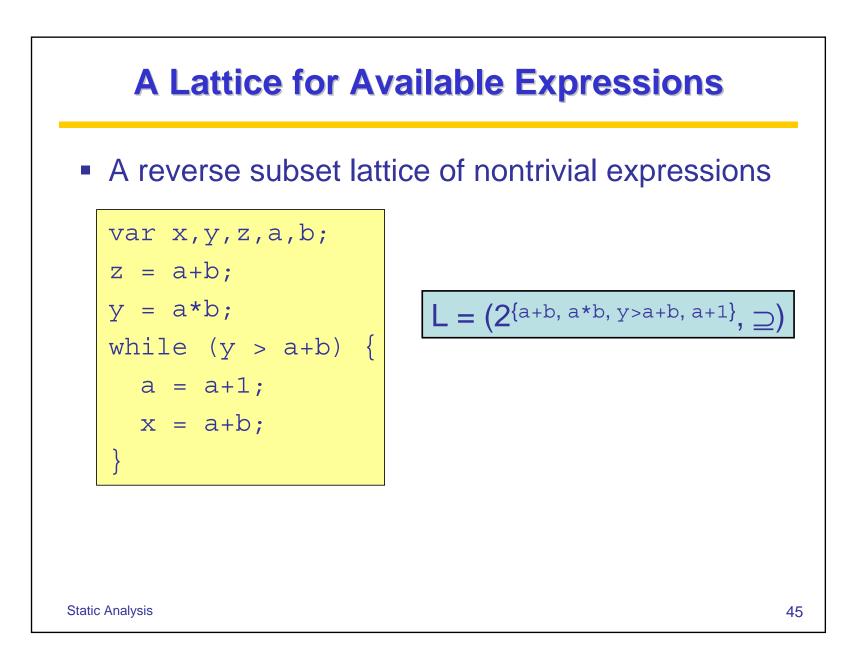
Static Analysis

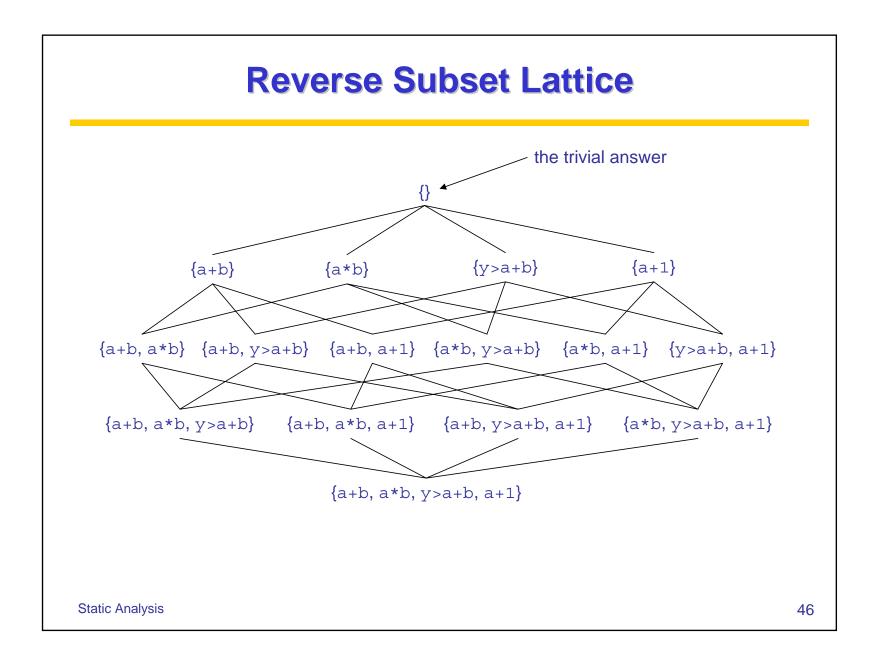


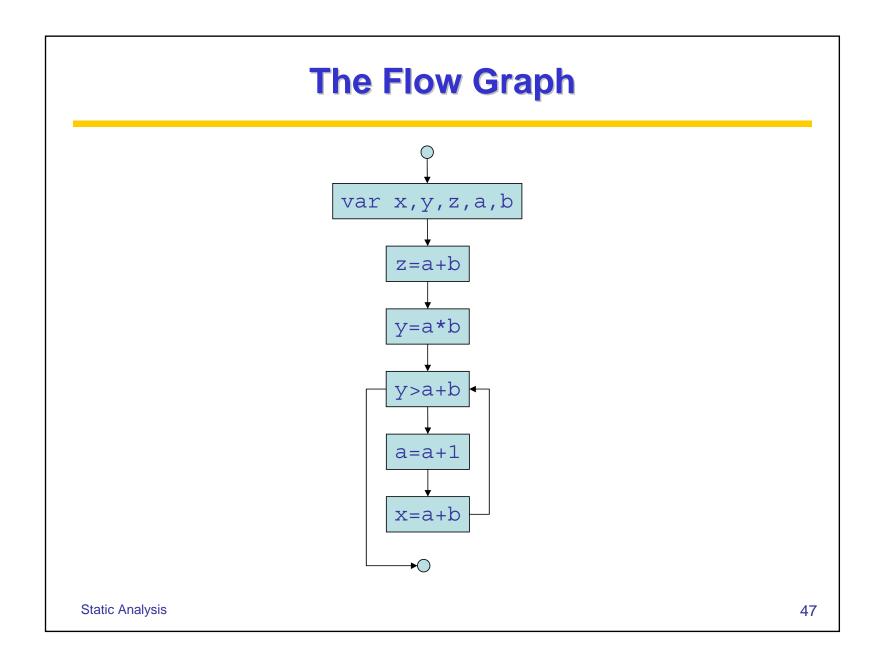


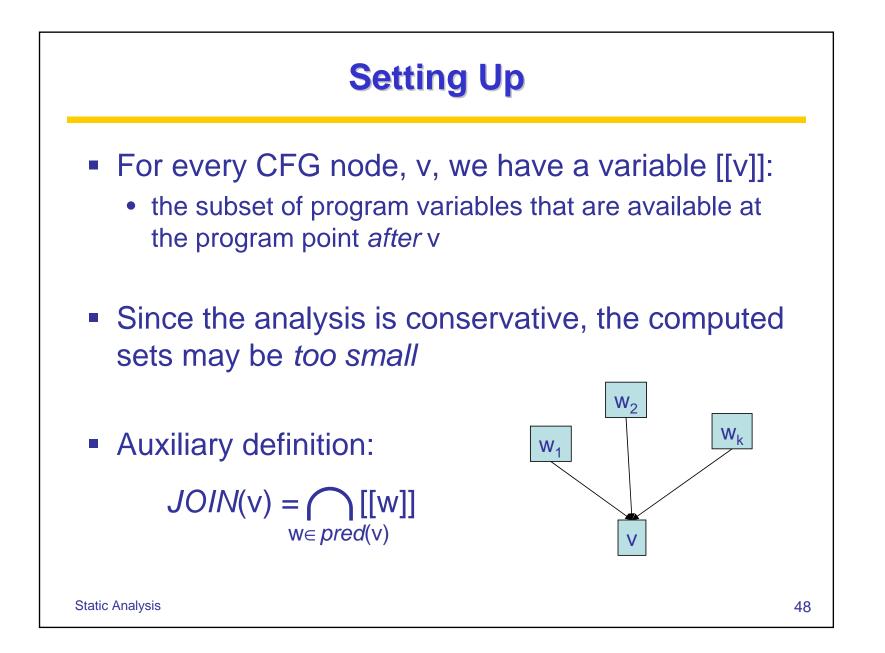
- With n CFG nodes and k variables:
 - the lattice has height $k \cdot n$
- Subsets can be represented as bitvectors:
 - each lattice element has size k
 - each \cup , \setminus , = operation takes time O(*k*)
- Each iteration uses O(n) operations:
 - each iteration takes time $O(k \cdot n)$
- There are at most k n iterations
- Total time complexity: O(k²n²)

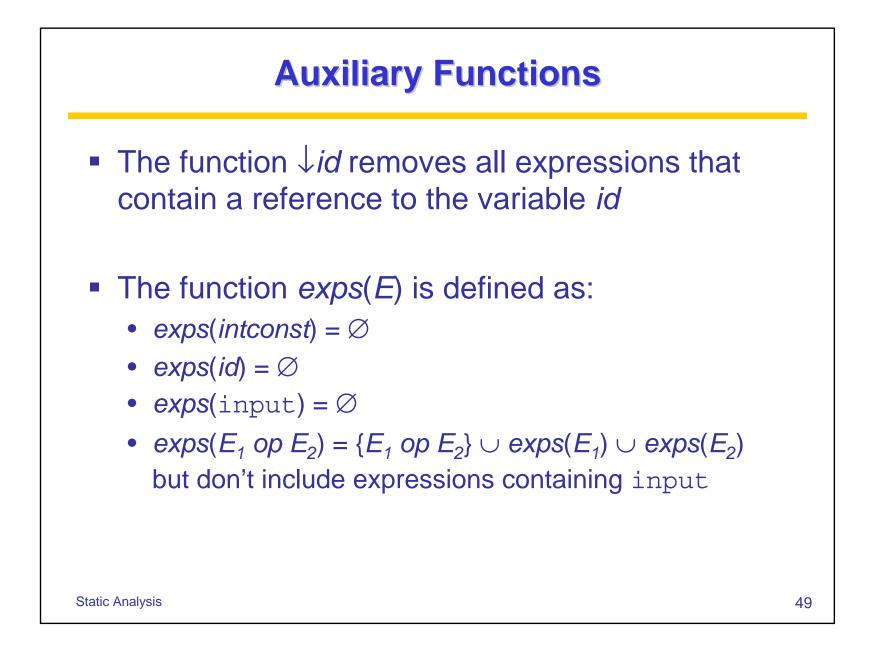
- A (nontrivial) expression is *available* at a program point if its current value has already been computed earlier in the execution
- The approximation includes too few expressions
 - the answer "available" must be the true one
 - available expression may not be re-computed

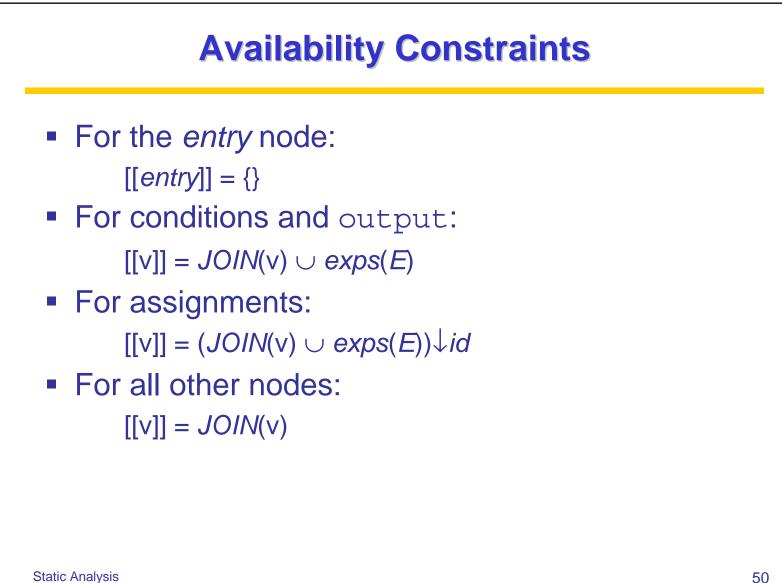


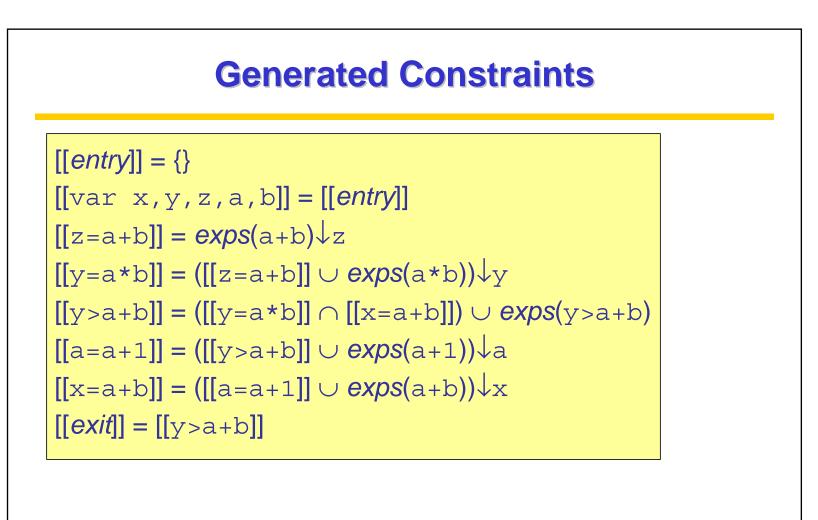




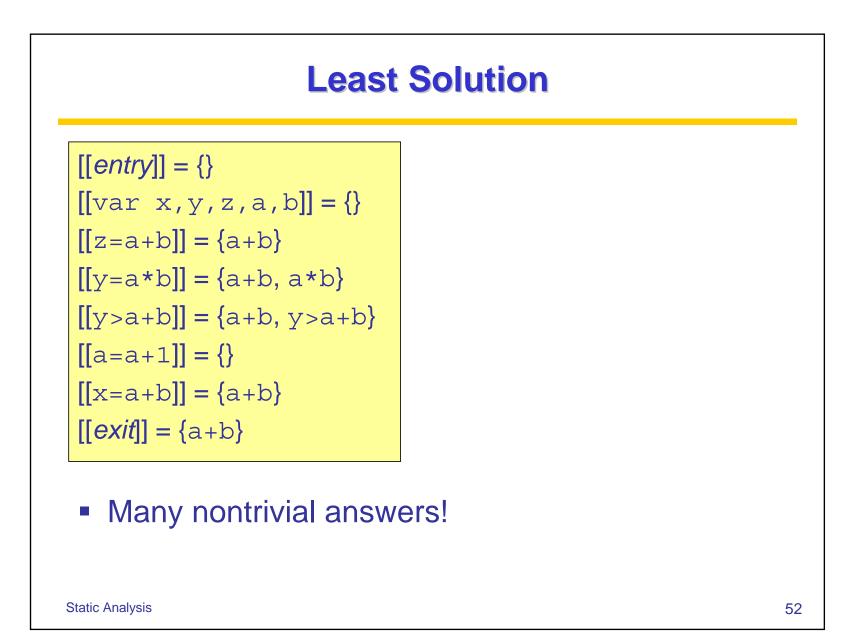


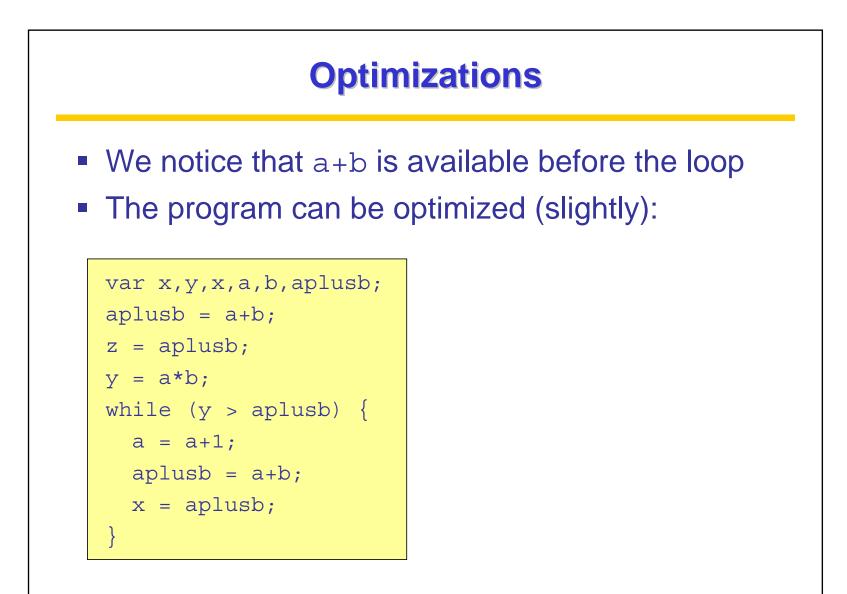




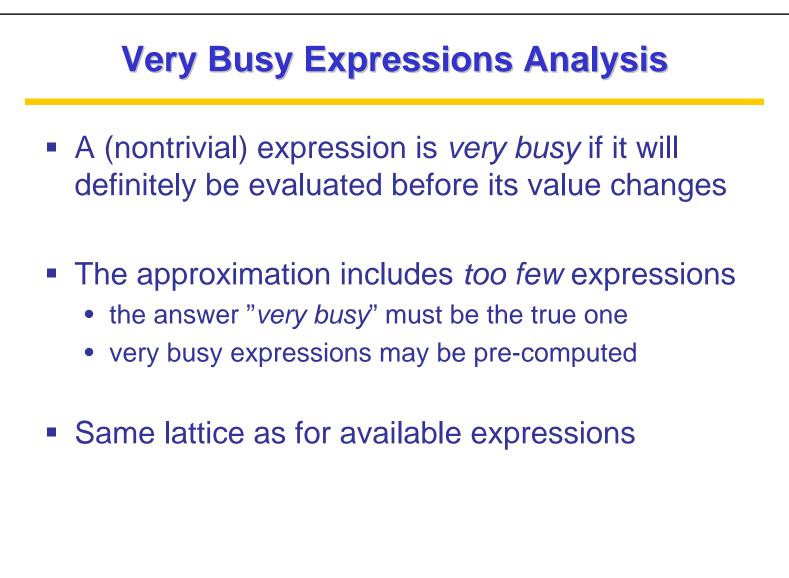


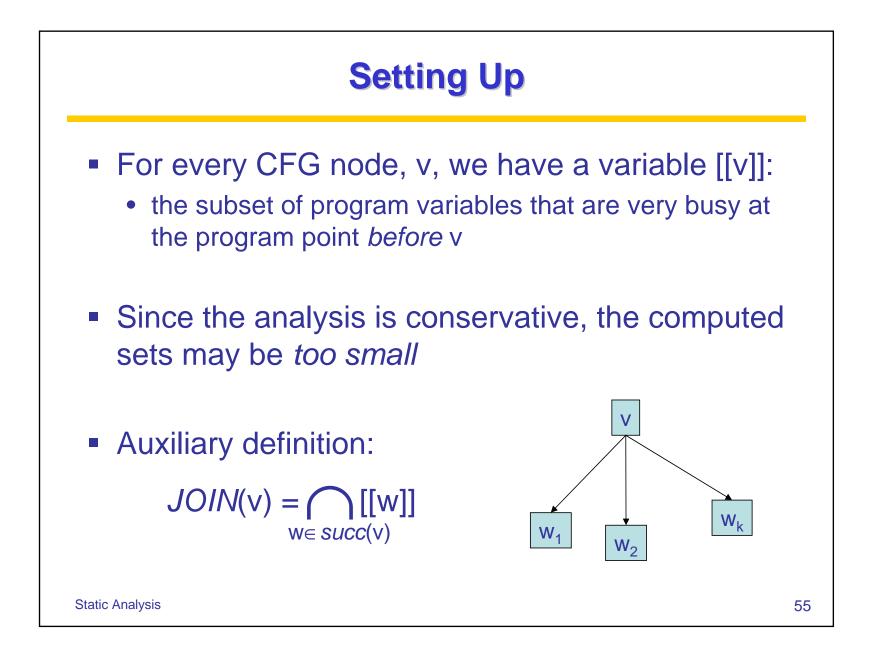
Static Analysis

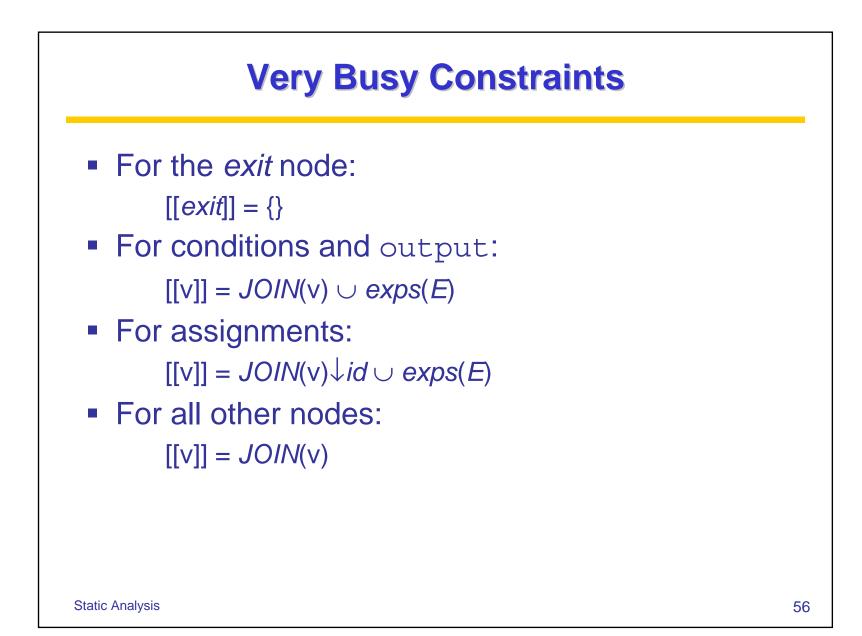


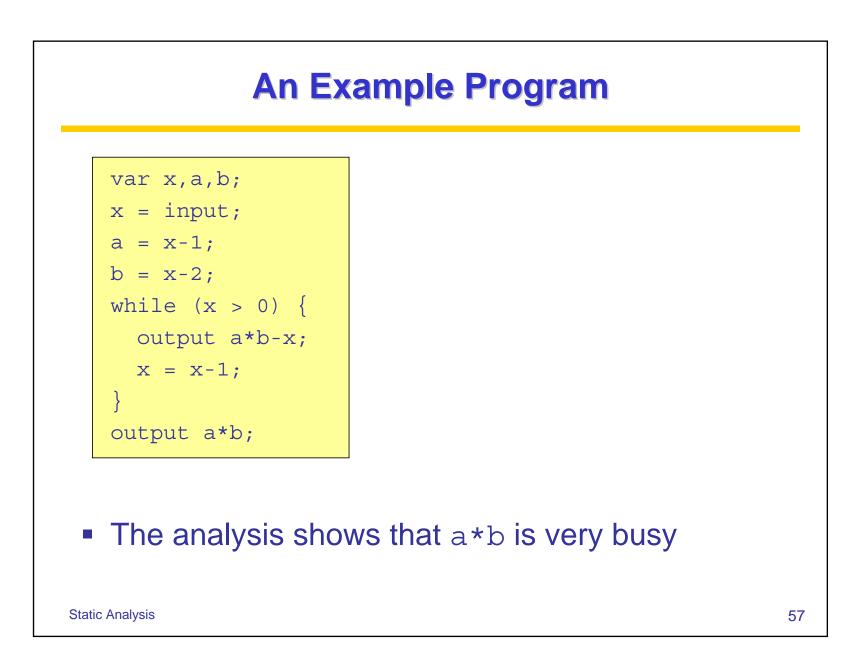


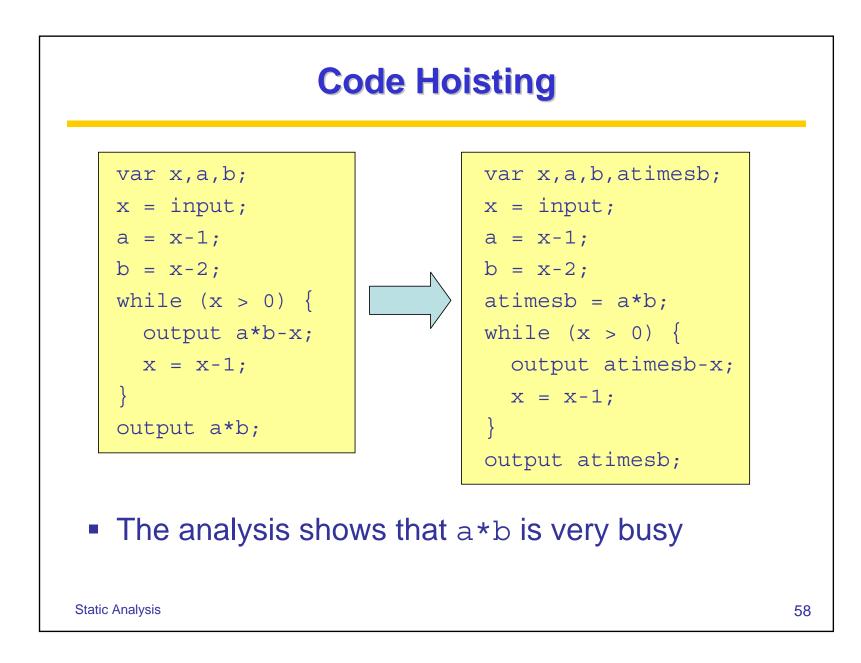
Static Analysis



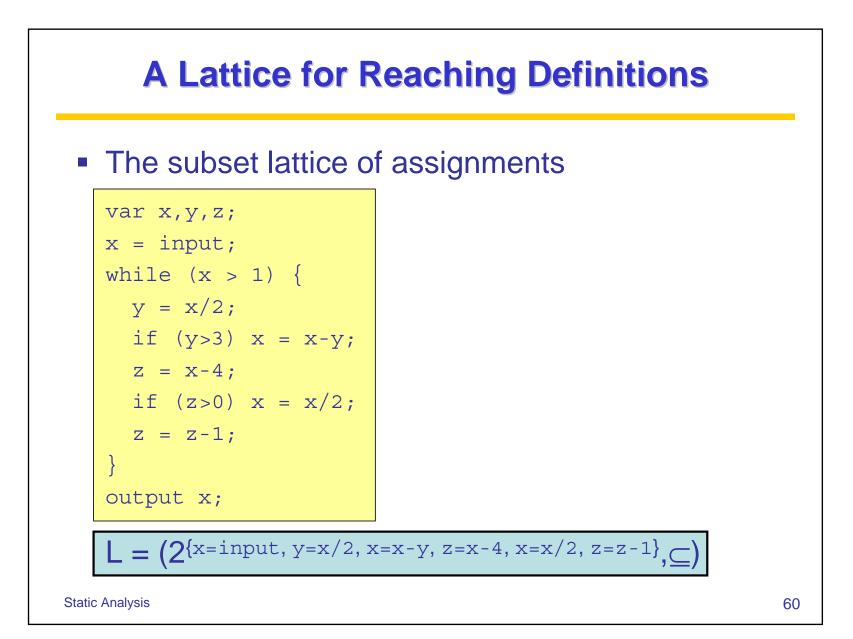


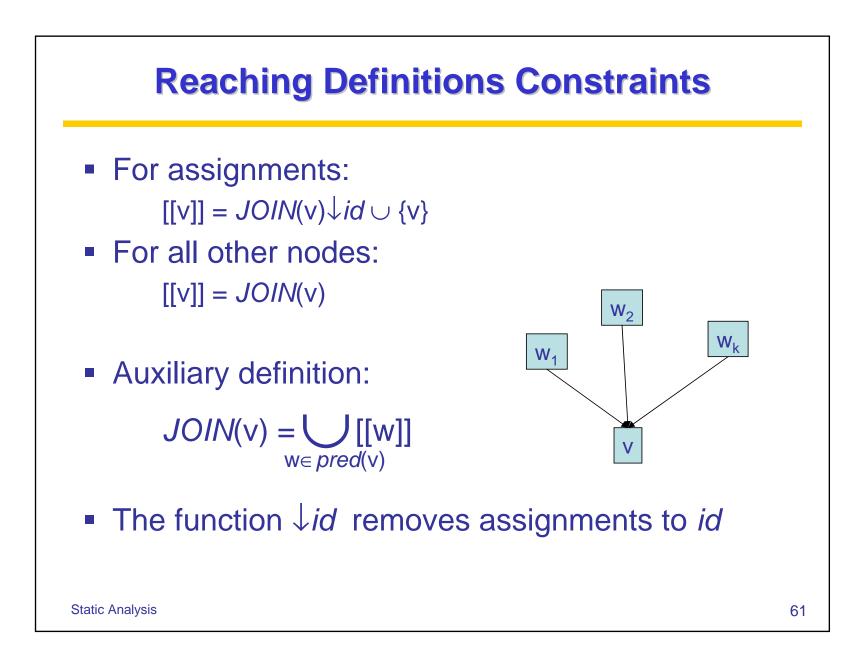


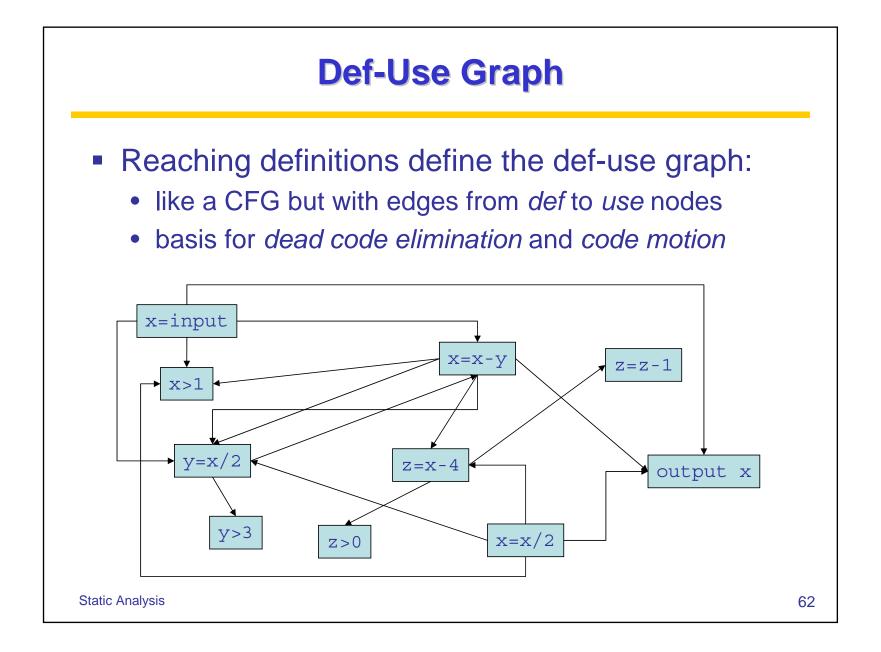


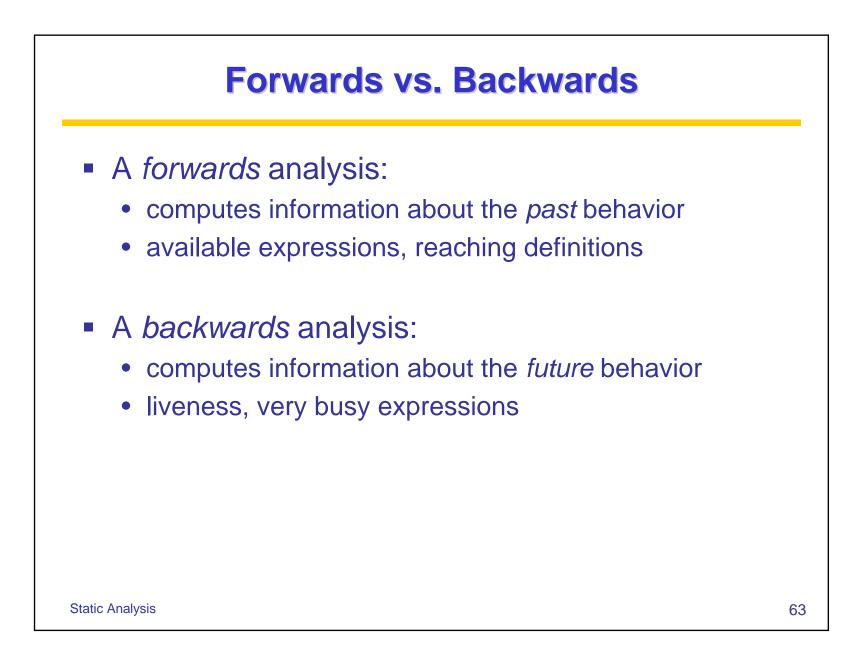


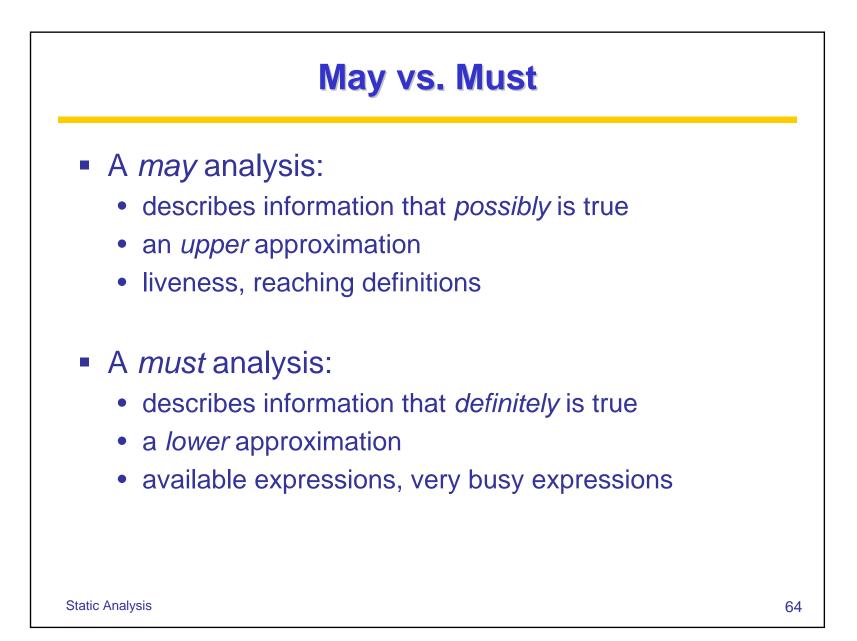
- The reaching definitions for a program point are those assignments that may define the current values of variables
- The conservative approximation may include too many possible assignments











Classifying Analyses

	forwards	backwards
may	reaching definitions [[v]] describes state <i>after</i> v $JOIN(v) = \bigsqcup_{w \in pred(v)} [[w]] = \bigcup_{w \in pred(v)} [[w]]$	liveness [[v]] describes state <i>before</i> v $JOIN(v) = \bigsqcup_{w \in succ(v)} [[w]] = \bigcup_{w \in succ(v)} [[w]]$
must	available expressions [[v]] describes state after v $JOIN(v) = \bigsqcup_{w \in pred(v)} [[w]] = \bigcap_{w \in pred(v)} [[w]]$	very busy expressions [[v]] describes state <i>before</i> v $JOIN(v) = \bigsqcup_{w \in succ(v)} [[w]] = \bigcap_{w \in succ(v)} [[w]]$

