
1

Lattice TheoryLattice Theory
Control Flow GraphsControl Flow Graphs

Dataflow AnalysisDataflow Analysis

Static Analysis 2009Static Analysis 2009

Michael I. Schwartzbach
Computer Science, University of Aarhus

2

2Static Analysis

Partial OrdersPartial Orders

A partial order is a structure L = (S,)
S is a set

is a binary relation that satisfies:
• reflexivity: ∀x∈S: x x
• transitivity: ∀x,y,z∈S: x y ∧ y z ⇒ x z
• anti-symmetry: ∀x,y∈S: x y ∧ y x ⇒ x = y

3

3Static Analysis

Upper and Lower BoundsUpper and Lower Bounds

Let X ⊆ S be a subset
We say that y∈S is an upper bound (X y) when:

∀ x∈X: x y
We say that y∈S is a lower bound (y X) when:

∀ x∈X: y x

A least upper bound X is defined by:
X X ∧ ∀y∈S: X y ⇒ X y

A greatest lower bound X is defined by:
X X ∧ ∀y∈S: y X ⇒ y X

4

4Static Analysis

LatticesLattices

A lattice is a partial order where:
X and X exist for all X ⊆ S

A lattice must have:
• a unique largest element, = S
• a unique smallest element, = S

If S is a finite set, then it is a lattice iff:
• and exist
• x y and y x exist for all x,y ∈S

5

5Static Analysis

These Partial Orders Are LatticesThese Partial Orders Are Lattices

6

6Static Analysis

These Partial Orders Are Not LatticesThese Partial Orders Are Not Lattices

7

7Static Analysis

The Subset LatticeThe Subset Lattice

Every finite set A defines a lattice (2A,⊆), where:
• = ∅
• = A
• x y = x ∪ y
• x y = x ∩ y

{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}

8

8Static Analysis

Lattice HeightLattice Height

The height of a lattice is the length of the longest
path from to
The lattice (2A,⊆) has height |A|

{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}

9

9Static Analysis

Monotone and Increasing FunctionsMonotone and Increasing Functions

A function f: L →L is monotone when:
∀x,y ∈ S: x y ⇒ f(x) f(y)

Monotone functions are closed under composition
As functions, and are both monotone

A function is increasing when:
∀x ∈ S: x f(x)

Monotone is different from increasing
• e.g. all constant functions are monotone

10

10Static Analysis

The FixedThe Fixed--Point TheoremPoint Theorem

In a lattice with finite height, every monotone
function f has a unique least fixed-point:

fix(f) = fi()

such that f(fix(f)) = fix(f)

i ≥0

11

11Static Analysis

Proof of ExistenceProof of Existence

Clearly, f()
Since f is monotone, we also have f() f2()
By induction, fi() fi+1()
This means that:

f() f2() ... fi() ...
is an increasing chain
L has finite height, so for some k: fk() = fk+1()
But then fix(f) = fk()

12

12Static Analysis

Proof of Unique LeastProof of Unique Least

Assume that x is another fixed-point: x = f(x)
Clearly, x
By induction, fi() fi(x) = x
In particular, fix(f) = fk() x
Uniqueness then follows from anti-symmetry

13

13Static Analysis

Computing FixedComputing Fixed--PointsPoints

The time complexity of fix(f) depends on:
• the height of the lattice
• the cost of computing f
• the cost of testing equality

x = ;
do { t = x; x = f(x); }
while (x ≠ t);

14

14Static Analysis

Product LatticeProduct Lattice

If L1, L2, ..., Ln are lattices, then so is the product:

L1×L2× ... ×Ln = { (x1,x2,...,xn) | xi ∈ Li }

where is defined pointwise

Note that and can be computed pointwise
height(L1×L2× ... ×Ln) = height(L1)+ ... + height(Ln)

15

15Static Analysis

Sum LatticeSum Lattice

If L1, L2, ..., Ln are lattices, then so is the sum:

L1+L2+ ... +Ln = { (i,xi) | xi ∈ Li\{ , }} ∪ { , }

where:
• and are as expected
• (i,x) (j,y) if and only if i=j and x y

height(L1+L2+ ... +Ln) = max{height(Li)}

16

16Static Analysis

Lift LatticeLift Lattice

If L is a lattice, then so is lift(L), which is:

height(lift(L)) = height(L)+1

17

17Static Analysis

Flat LatticeFlat Lattice

If A is a finite set, the flat(A) is a lattice:

a1 a2 ... an

height(flat(A)) = 2

18

18Static Analysis

Map LatticeMap Lattice

If A is a finite set and L is a lattice, then we obtain
the map lattice:

A → L = { [a1→x1, ..., an→xn] | xi ∈ Li }

ordered pointwise

height(A → L) = |A|⋅height(L)

19

19Static Analysis

Lattice EquationsLattice Equations

Let L be a lattice with finite height

A equation system is of the form:
x1 = F1(x1, ..., xn)
x2 = F2(x1, ..., xn)
...
xn = Fn(x1, ..., xn)

where xi are variables and Fi: Ln→L is monotone

20

20Static Analysis

Solving EquationsSolving Equations

Every equation system has a unique least
solution, which is the least fixed-point of the
function F: Ln→Ln defined by:

F(x1,...,xn) = (F1(x1,...,xn), ..., Fn(x1,...,xn))

The F function plugs into the right-hand sides
A solution is always a fixed-point
• this is true for any kind of equation

21

21Static Analysis

Control Flow GraphsControl Flow Graphs

A control flow graph (CFG) is a directed graph:
• nodes correspond to program points
• edges represent possible flow of control

A CFG always has:
• a single point of entry
• a single point of exit

Let v be a node in a CFG:
• pred(v) is the set of predecessor nodes
• succ(v) is the set of successor nodes

22

22Static Analysis

CFG Construction (1/3)CFG Construction (1/3)

For the simpel while-fragment, CFGs are
constructed inductively

CFGs for simple statements:

id = E output E return E var id

23

23Static Analysis

CFG Construction (2/3)CFG Construction (2/3)

For a statement sequence S1 S2:
• eliminate the exit node of S1 and the entry node of S2

• glue the statements together

S1 S2

S1

S2

24

24Static Analysis

CFG Construction (3/3)CFG Construction (3/3)

Similarly for the other control structures:

E

S

E

S1 S2

E

S

25

25Static Analysis

An Example CFGAn Example CFG

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

26

26Static Analysis

The Monotone Framework (1/2)The Monotone Framework (1/2)

A CFG to be analyzed, nodes V = {v1,v2, ..., vn}
A finite-height lattice L of possible answers
• fixed or parametrized by the given program

A variable [[v]]∈L for every CFG node v

A dataflow constraint for each syntactic construct
• relates the value of [[vi]] to the variables for other nodes
• typically a node is related to its neighbors
• the constraints must be monotone functions:

[[vi]] = Fi([[v1]], [[v2]], ..., [[vn]])

27

27Static Analysis

The Monotone Framework (2/2)The Monotone Framework (2/2)

Extract all constraints for the complete CFG

Solve constraints using the fixed-point algorithm:
• we work in the lattice Ln

• computing the fixed-point of the combined function:
F(x1,...,xn) = (F1(x1,...,xn), ..., Fn(x1,...,xn))

This solutions gives an answer from L for each
program point

28

28Static Analysis

Generating and Solving ConstraintsGenerating and Solving Constraints

constraints

[[v]] = {x,yz}
[[w]] = {x,y}
[[q]] = {}
[[p]] = {y}

solution

fixed-point

CFG

29

29Static Analysis

Lattice Points as AnswersLattice Points as Answers

the trivial, useless answer

the true answer

our answer (the fixed-point)
safe answers

unsafe answers

30

30Static Analysis

The Naive AlgorithmThe Naive Algorithm

x = (, , ...,);
do { t = x; x = F(x); }
while (x≠t);

Does not exploit any special structure

31

31Static Analysis

Chaotic IterationChaotic Iteration

Exploits the special structure of Ln

x1 = ; ... xn = ;
do {
t1 = x1; ... tn = xn;
x1 = F1(x1, ..., xn);
...
xn = Fn(x1, ..., xn);

} while (x1≠t1 ∨ ... ∨ xn≠tn);

32

32Static Analysis

The Worklist Algorithm (1/2)The Worklist Algorithm (1/2)

Exploits the special structure of right-hand sides

Most right-hand sides are quite sparse:
• constraints on CFG nodes do not involve all others

Use a map:

dep: V → 2V

that for v∈V gives the variables w where v occurs
on the right-hand side of the constraint for w

33

33Static Analysis

The Worklist Algorithm (2/2)The Worklist Algorithm (2/2)

x1 = ; ... xn = ;
q = [v1, ..., vn];
while (q≠[]) {

assume q = [vi, ...];
y = Fi(x1, ..., xn);
q = q.tail();
if (y≠xi) {
for (v ∈ dep(vi)) q.append(v);
xi = y;

}
}

34

34Static Analysis

Further ImprovementsFurther Improvements

Use a priority queue instead of a FIFO queue:
• find clever heuristics for priorities

Look at the graph of dependency edges:
• build strongly-connected components
• solve constraints bottom-up in the resulting DAG

35

35Static Analysis

Liveness AnalysisLiveness Analysis

A variable is live at a program point if its current
value may be read in the remaining execution

This is clearly undecidable, but the property can
be conservatively approximated

The answer ”dead” must be the true one
• dead variables may be ignored

36

36Static Analysis

A Lattice for LivenessA Lattice for Liveness

A subset lattice of program variables
var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

L = (2{x,y,z}, ⊆)

{x,y,z}

{x,y}

{x}

{x,z}{y,z}

{y} {z}

{}

the trivial answer

37

37Static Analysis

The Control Flow GraphThe Control Flow Graph

z = x-4

x = input x > 1 y = x/2 y > 3 x = x-y

var x,y,z

z > 0 x = x/2

z = z-1

output x

38

38Static Analysis

Setting UpSetting Up

For every CFG node, v, we have a variable [[v]]:
• the subset of program variables that are live at the

program point before v

Since the analysis is conservative, the computed
sets may be too large

Auxiliary definition:

JOIN(v) = [[w]]∪
w∈succ(v)

v

w1 w2

wk

39

39Static Analysis

Liveness Constraints Liveness Constraints

For the exit node:
[[exit]] = {}

For conditions and output:
[[v]] = JOIN(v) ∪ vars(E)

For assignments:
[[v]] = JOIN(v) \ {id} ∪ vars(E)

For variable declarations:
[[v]] = JOIN(v) \ {id1, ..., idn}

For all other nodes:
[[v]] = JOIN(v)

vars(E) = variables occurring in E

right-hand sides are monotone
since JOIN is monotone

40

40Static Analysis

Generated ConstraintsGenerated Constraints

[[var x,y,z]] = [[z=input]] \ {x,y,z}
[[x=input]] = [[x>1]] \ {x}
[[x>1]] = ([[y=x/2]] ∪ [[output x]]) ∪ {x}
[[y=x/2]] = ([[y>3]] \ {y}) ∪ {x}
[[y>3]] = [[x=x-y]] ∪ [[z=x-4]] ∪ {y}
[[x=x-y]] = ([[z=x-4]] \ {x}) ∪ {x}
[[z>0]] = [[x=x/2]] ∪ [[z=z-1]] ∪ {z}
[[x=x/2]] = ([[z=z-1]] \ {x}) ∪ {z}
[[output x]] = [[exit]] ∪ {x}
[[exit]] = {}

41

41Static Analysis

Least SolutionLeast Solution

[[entry]] = {} [[z>0]] = {x,z}
[[var x,y,z]] = {} [[x=x/2]] = {x,z}
[[x=input]] = {} [[z=z-1]] = {x,z}
[[x>1]] = {x} [[output x]] = {x}
[[y=x/2]] = {x} [[exit]] = {}
[[y>3]] = {x,y}
[[x=x-y]] = {x,y}
[[z=x-4]] = {x}

Many non-trivial answers!

42

42Static Analysis

OptimizationsOptimizations

Variables y and z are never simultaneously live
⇒ they can share the same variable location

The value assigned in z=z-1 is never read
⇒ the assigment can be skipped

var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;

• better register allocation
• a few clock cycles saved

43

43Static Analysis

Time ComplexityTime Complexity

With n CFG nodes and k variables:
• the lattice has height k⋅n

Subsets can be represented as bitvectors:
• each lattice element has size k
• each ∪, \, = operation takes time O(k)

Each iteration uses O(n) operations:
• each iteration takes time O(k⋅n)

There are at most k⋅n iterations
Total time complexity: O(k2n2)

44

44Static Analysis

Available Expressions AnalysisAvailable Expressions Analysis

A (nontrivial) expression is available at a program
point if its current value has already been
computed earlier in the execution

The approximation includes too few expressions
• the answer ”available” must be the true one
• available expression may not be re-computed

45

45Static Analysis

A Lattice for Available ExpressionsA Lattice for Available Expressions

A reverse subset lattice of nontrivial expressions

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

L = (2{a+b, a*b, y>a+b, a+1}, ⊇)

46

46Static Analysis

Reverse Subset LatticeReverse Subset Lattice

{a+b, y>a+b}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b}

{a+b, a*b, y>a+b, a+1}

{a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b} {a*b} {y>a+b} {a+1}

{}

the trivial answer

47

47Static Analysis

The Flow GraphThe Flow Graph

var x,y,z,a,b

z=a+b

y=a*b

y>a+b

a=a+1

x=a+b

48

48Static Analysis

Setting UpSetting Up

For every CFG node, v, we have a variable [[v]]:
• the subset of program variables that are available at

the program point after v

Since the analysis is conservative, the computed
sets may be too small

Auxiliary definition:

JOIN(v) = [[w]]∩
w∈pred(v) v

w1

w2

wk

49

49Static Analysis

Auxiliary FunctionsAuxiliary Functions

The function ↓id removes all expressions that
contain a reference to the variable id

The function exps(E) is defined as:
• exps(intconst) = ∅
• exps(id) = ∅
• exps(input) = ∅
• exps(E1 op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2)

but don’t include expressions containing input

50

50Static Analysis

Availability ConstraintsAvailability Constraints

For the entry node:
[[entry]] = {}

For conditions and output:
[[v]] = JOIN(v) ∪ exps(E)

For assignments:
[[v]] = (JOIN(v) ∪ exps(E))↓id

For all other nodes:
[[v]] = JOIN(v)

51

51Static Analysis

Generated ConstraintsGenerated Constraints

[[entry]] = {}
[[var x,y,z,a,b]] = [[entry]]
[[z=a+b]] = exps(a+b)↓z
[[y=a*b]] = ([[z=a+b]] ∪ exps(a*b))↓y
[[y>a+b]] = ([[y=a*b]] ∩ [[x=a+b]]) ∪ exps(y>a+b)
[[a=a+1]] = ([[y>a+b]] ∪ exps(a+1))↓a
[[x=a+b]] = ([[a=a+1]] ∪ exps(a+b))↓x
[[exit]] = [[y>a+b]]

52

52Static Analysis

Least SolutionLeast Solution

[[entry]] = {}
[[var x,y,z,a,b]] = {}
[[z=a+b]] = {a+b}
[[y=a*b]] = {a+b, a*b}
[[y>a+b]] = {a+b, y>a+b}
[[a=a+1]] = {}
[[x=a+b]] = {a+b}
[[exit]] = {a+b}

Many nontrivial answers!

53

53Static Analysis

OptimizationsOptimizations

We notice that a+b is available before the loop
The program can be optimized (slightly):

var x,y,x,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}

54

54Static Analysis

Very Busy Expressions AnalysisVery Busy Expressions Analysis

A (nontrivial) expression is very busy if it will
definitely be evaluated before its value changes

The approximation includes too few expressions
• the answer ”very busy” must be the true one
• very busy expressions may be pre-computed

Same lattice as for available expressions

55

55Static Analysis

Setting UpSetting Up

For every CFG node, v, we have a variable [[v]]:
• the subset of program variables that are very busy at

the program point before v

Since the analysis is conservative, the computed
sets may be too small

Auxiliary definition:

JOIN(v) = [[w]]∩
w∈succ(v)

v

w1 w2

wk

56

56Static Analysis

Very Busy ConstraintsVery Busy Constraints

For the exit node:
[[exit]] = {}

For conditions and output:
[[v]] = JOIN(v) ∪ exps(E)

For assignments:
[[v]] = JOIN(v)↓id ∪ exps(E)

For all other nodes:
[[v]] = JOIN(v)

57

57Static Analysis

An Example ProgramAn Example Program

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;

The analysis shows that a*b is very busy

58

58Static Analysis

Code HoistingCode Hoisting

var x,a,b; var x,a,b,atimesb;

x = input; x = input;

a = x-1; a = x-1;

b = x-2; b = x-2;

while (x > 0) { atimesb = a*b;

output a*b-x; while (x > 0) {

x = x-1; output atimesb-x;

} x = x-1;

output a*b; }

output atimesb;

The analysis shows that a*b is very busy

59

59Static Analysis

Reaching Definitions AnalysisReaching Definitions Analysis

The reaching definitions for a program point are
those assignments that may define the current
values of variables

The conservative approximation may include too
many possible assignments

60

60Static Analysis

A Lattice for Reaching DefinitionsA Lattice for Reaching Definitions

The subset lattice of assignments
var x,y,z;

x = input;

while (x > 1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

L = (2{x=input, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1},⊆)

61

61Static Analysis

Reaching Definitions ConstraintsReaching Definitions Constraints

For assignments:
[[v]] = JOIN(v)↓id ∪ {v}

For all other nodes:
[[v]] = JOIN(v)

Auxiliary definition:

JOIN(v) = [[w]]

The function ↓id removes assignments to id

∪
w∈pred(v) v

w1

w2

wk

62

62Static Analysis

DefDef--Use GraphUse Graph

Reaching definitions define the def-use graph:
• like a CFG but with edges from def to use nodes
• basis for dead code elimination and code motion

x>1

x=input

y=x/2

y>3

x=x-y

z=x-4

z>0 x=x/2

z=z-1

output x

63

63Static Analysis

Forwards vs. BackwardsForwards vs. Backwards

A forwards analysis:
• computes information about the past behavior
• available expressions, reaching definitions

A backwards analysis:
• computes information about the future behavior
• liveness, very busy expressions

64

64Static Analysis

May vs. MustMay vs. Must

A may analysis:
• describes information that possibly is true
• an upper approximation
• liveness, reaching definitions

A must analysis:
• describes information that definitely is true
• a lower approximation
• available expressions, very busy expressions

65

65Static Analysis

Classifying AnalysesClassifying Analyses

very busy expressions

[[v]] describes state before v

JOIN(v) = [[w]] = [[w]]

available expressions

[[v]] describes state after v

JOIN(v) = [[w]] = [[w]]
must

liveness

[[v]] describes state before v

JOIN(v) = [[w]] = [[w]]

reaching definitions

[[v]] describes state after v

JOIN(v) = [[w]] = [[w]]
may

backwardsforwards

w∈succ(v)

w∈pred(v)

w∈pred(v)

w∈succ(v)

∪∪

∩ ∩

w∈succ(v)w∈pred(v)

w∈pred(v) w∈succ(v)

66

66Static Analysis

Initialized Variables AnalysisInitialized Variables Analysis

Compute for each program point those variables
that have definitely been initialized in the past
⇒ forwards must analysis
Reverse subset lattice of all variables

JOIN(v) = [[w]]

[[entry]] = {}
For assignments: [[v]] = JOIN(v) ∪ {id}
For all others: [[v]] = JOIN(v)

∩
w∈pred(v)

