Nom:

L3 informatique – partiel de Prolog

Durée : 80 minutes – sans document ni moyen électronique

Répondre uniquement dans les cadres prévus à cet effet

 N^o dossier :

Prénom(s):	Signature:	
Date de naissance :	Section:	
Exercice 1 (4 •) Résolvez les systèmes d'équations sur	vants dans l'algèbre des termes finis :	
a) $\{p(Y, X, h(Y)) = p(h(g(a), Z), f(V), V)\}$		
b) $\{p(a, X) = p(X, Y, Z)\}$		
c) $\{p([X Y], [Y Z], V) = p([a, b, c], W, [X, W])\}$		
d) $\{p(X, Z, X) = p(g(Z, Z), a, g(b, Y))\}$		

Exercice 2 $(6 \bullet)$ Considérez le programme suivant :		
	% c1	
q(X) := t(X).	% c2	
q(X) := s(X).	% c3	
s(a). s(b).	% c4 % c5	
r(a,b).	% c6	
r(b,c).	% c7	
r(c,b).	% c8	
et dessinez soigneusement l'a	rbre de dérivations de la requête :- p(A,B).	

Nom:	N^o dossier :
Prénom(s) :	Signature:
Date de naissance :	Section:
eux aussi des arbres binaires. La valeur attac les arbres binaires par : — la constante vide;	
3.1 (1 •) racine(A,E) ssi E est l'étiquette d	le la racine de l'arbre A.
<pre>?- racine(noeud(a,vide,vide),R). R = a. ?-</pre>	
3.2 (1 •) vide(A) ssi A est l'arbre vide.	J
<pre>?- vide(noeud(a,vide,vide)). false. ?-</pre>	
3.3 (1 •) feuille(A) ssi A est un arbre bina	aire réduit à une feuille.
<pre>?- feuille(noeud(a,vide,vide)). true. ?-</pre>	
3.4 (1 •) dans (E,A) ssi E est une étiquette d	de l'arbre binaire A.
<pre>?- dans(E,noeud(a,vide,vide)). E = a; false. ?-</pre>	

3.5 (1 •) taille(A,N) ssi N est le nombre d'étiquettes de l'arbre binaire A.
<pre>?- taille(noeud(a,vide,noeud(a,vide,vide)),N). N = 2. ?-</pre>
3.6 (1 •) max(A,B,Max) ssi Max est le maximum des nombres A et B.
?- $\max(2,4,M)$. M = 4. ?-
3.7 (1 •) hauteur (A,H) ssi H est la hauteur de l'arbre binaire A. La hauteur d'un arbre correspond au nombre de nœuds de la plus longue branche entre la racine et une feuille. L'arbre vide aura la hauteur 0 et une feuille la hauteur 1.
<pre>?- hauteur(noeud(a,vide,noeud(b,noeud(c,vide,vide),vide)),N). N = 3; false. ?-</pre>
3.8 (3 •) symetrique (A) ssi la silhouette de l'arbre binaire A est symétrique. La silhouette d'un arbre binaire est <i>symétrique</i> si, en traçant une ligne verticale à partir de la racine de la représentation graphique usuelle de A, le sous-arbre gauche est le miroir du sous-arbre droit.
<pre>?- symetrique(noeud(a,noeud(b,vide,noeud(c,vide,vide)),noeud(d,noeud(e,vide,vide),vide))). true. ?-</pre>