© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Lecture 4: Lists

* Theory

— Introduce lists, an important recursive data
structure often used in Prolog programming

— Define the member/2 predicate, a fundamental
Prolog tool for manipulating lists

— lllustrate the idea of recursing down lists

» Exercises
— Exercises of LPN chapter 4
— Practical work

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Lists

» Alist is a finite sequence of elements
« Examples of lists in Prolog:

[mia, vincent, jules, yolanda]

[mia, robber(honeybunny), X, 2, mia]

[]

[mia, [vincent, jules], [butch, friend(butch)]]
[[1, dead(z), [2, [b.c]l, [1. Z, [2, [b,c]l]

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Important things about lists

 List elements are enclosed in square
brackets

» The length of a list is the number of
elements it has

« All sorts of Prolog terms can be
elements of a list

* There is a special list:
the empty list []

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Head and Tail

« A non-empty list can be thought of as
consisting of two parts
— The head
— The tail

 The head is the first item in the list

* The tail is everything else

— The tail is the list that remains when we
take the first element away

— The tail of a list is always a list

Head and Tail example 1

 [mia, vincent, jules, yolanda]
Head:
Tail:
Head and Tail example 1
 [mia, vincent, jules, yolanda]
Head: mia
Tail:

Head and Tail example 1

 [mia, vincent, jules, yolanda]
Head: mia
Tail: [vincent, jules, yolanda]
Head and Tail example 2
* [1, dead(z), [2, [b,c]], [1, Z, [2, [b,c]l]
Head:
Tail:

Head and Tail example 2

* [[1, dead(2), [2, [b.c]], [1, Z, [2, [b,c]]]

Head: []
Tail:

Head and Tail example 2

* [[1, dead(2), [2, [b.c]], [1, Z, [2, [b,c]]]

Head: []
Tail: [dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Head and Tail example 3

 [dead(z)]
Head:
Tail:
Head and Tail example 3
 [dead(z)]
Head: dead(z)
Tail:

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Head and Tail example 3

 [dead(z)]

Head: dead(z)
Tail:]

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Head and tail of empty list

* The empty list has neither a head
nor a tail

« For Prolog, [] is a special simple list
without any internal structure

* The empty list plays an important role
in recursive predicates for list
processing in Prolog

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

The built-in operator |

» Prolog has a special built-in operator |
which can be used to decompose a list
into its head and tail

» The | operator is a key tool for writing
Prolog list manipulation predicates

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

The built-in operator |

?- [Head|Tail] = [mia, vincent, jules, yolanda].

Head = mia
Tail = [vincent,jules,yolanda]
yes

2

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

The built-in operator |

?- [X]Y] = [mia, vincent, jules, yolanda].
X = mia
Y = [vincent,jules,yolanda]

yes

2

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

The built-in operator |

?-XIY1 =[]
no

o

The built-in operator |

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

?2- [X,Y|Taill = [], dead(z), [2, [b.cll, [I. Z, [2, [b,c]]] -
‘N x=0)
£ Y = dead(z)
Z= 4543
8 Tail =[[2, [b,c]l, [1, Z, [2, [b,c]]]
g yes
Anonymous variable

» Suppose we are interested in the
second and fourth element of a list

?- [X1,X2,X3,X4|Tail] = [mia, vincent, marsellus, jody, yolandal].
X1 = mia

X2 = vincent

X3 = marsellus

X4 = jody

Tail = [yolanda]

yes

?-

10

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Anonymous variables

» There is a simpler way of obtaining only
the information we want:

?-[_.X2, ,X4|]=[mia, vincent, marsellus, jody, yolandal].
X2 = vincent

X4 = jody

yes

D

* The underscore is the anonymous
variable

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

The anonymous variable

* |s used when you need to use a
variable, but you are not interested in
what Prolog instantiates it to

« Each occurrence of the anonymous
variable is independent, i.e. can be
bound to something different

11

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Exercises

« Exercise 4.1 of LPN
» Exercise 4.2 of LPN

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Member

* One of the most basic things we would
like to know is whether something is an
element of a list or not

» So let's write a predicate that when
given a term X and a list L, tells us
whether or not X belongs to L

 This predicate is usually called
member/2

12

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

member/2
member(X,[X|T]).

member(X,[H|T]):- member(X,T).

?- member(yolanda,[yolanda,trudy,vincent,jules]).

13

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(yolanda,[yolanda,trudy,vincent,jules]).

yes
2.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(vincent,[yolanda,trudy,vincent,jules]).

14

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(vincent,[yolanda,trudy,vincent,jules]).

yes
2.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(zed,[yolanda,trudy,vincent,jules]).

15

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(zed,[yolanda,trudy,vincent,jules]).

no
P

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(X,[yolanda,trudy,vincent,jules]).

16

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

member/2

member(X,[X|T]).
member(X,[H|T]):- member(X,T).

?- member(X,[yolanda,trudy,vincent,jules]).
X = yolanda;

X = trudy;

X = vincent;

X = jules;

no

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Rewriting member/2

member(X,[X|_]).
member(X,[_|T]):- member(X,T).

17

urn, Johan Bos & Kristina Striegnitz

© Patrick Blackb

Recursing down lists

« The member/2 predicate works by
recursively working its way down a list
— doing something to the head, and then
— recursively doing the same thing to the tail

 This technique is very common in
Prolog and therefore very important that
you master it

« So let's look at another example!

urn, Johan Bos & Kristina Striegnitz

© Patrick Blackb

Example: a2b/2

» The predicate a2b/2 takes two lists as
arguments and succeeds
— if the first argument is a list of as, and

— the second argument is a list of bs of
exactly the same length
?- a2b([a,a,a,a],[b,b,b,b]).
yes
?- a2b([a,a,a,al,[b,b,b]).
no
?- a2b([a,c,a,a],[b,b,b,1]).
no

18

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Defining a2b/2: step 1

a2b([1.0)-

» Often the best away to solve such
problems is to think about the simplest
possible case

* Here it means: the empty list

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Defining a2b/2: step 2

a2b([l.[1)-
a2b([alL1],[b|L2]):- a2b(L1,L2).

* Now think recursively!

* When should a2b/2 decide that two
non-empty lists are a list of as and a list
of bs of exactly the same length?

19

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Testing a2b/2

a2b([1.[1)-
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a],[b,b,b]).
yes
2

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Testing a2b/2

a2b([l.[1)-
a2b([alL1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a,al,[b,b,b]).
no
o

20

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Testing a2b/2

a2b([1.[1)-
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b([a,t,a,a],[b,b,b,c]).
no
2

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Further investigating a2b/2

a2b([l.[1)-
a2b([alL1],[b|L2]):- a2b(L1,L2).

?- a2b([a,a,a,a,a], X).
X =[b,b,b,b,b]

yes

2.

21

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Further investigating a2b/2

a2b([1.[1)-
a2b([a|L1],[b|L2]):- a2b(L1,L2).

?- a2b(X,[b,b,b,b,b,b,b]).
X =[a,a,a,a,a,a,9]

yes

2.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz

Summary of this lecture

* In this lecture we introduced list and
recursive predicates that work on lists

» The kind of programming that these
predicates illustrated is fundamental to
Prolog

* You will see that most Predicates you
will write in your Prolog career will be
variants of these predicates

22

urn, Johan Bos & Kristina Striegnitz

© Patrick Blackb

Next lecture

* Introduce arithmetic in Prolog

— Introduce Prolog's built-in abilities for
performing arithmetic

— Apply them to simple list processing
problems

— Introduce the idea of accumulators

23

