Université de la Réunion Avril 2015

L3 d'informatique

Optimisation et programmation par contraintes Durée : 60 minutes – sans document ni moyen électronique

Répondre uniquement dans les cadres prévus à cet effet Soigner la présentation

Nom:	Signature :			
$Pr\'{e}nom(s)$:				
Exercice 1 (10 \bullet) On	considère le programme linéaire ${\cal P}$ suivant, où les variables sont à valeur rationnelle :			
	$\text{Max } x_1-x_2 \text{ s.c.} \{ \ x_1 \geq 0, \ x_2 \geq 0, \ -x_1+x_2 \leq 1, \ -x_2 \leq -1 \}$			
1.1 (5 •) Résolvez <i>P</i> :	graphiquement.			

Nom:	Signature:
Prénom(s):	
Exercice 2 (10 •) Soit P un program $z(\tilde{x})$. Soit D son dual défini à l'aide c	nme linéaire défini à l'aide des variables $\tilde{x} = (x_1, \dots, x_n)$ et de fonction objectif des variables $\tilde{y} = (y_1, \dots, y_m)$ et de fonction objectif $w(\tilde{y})$.
2.1 (2 •) Énoncez le théorème de dua	alité faible.
2.2 (2 •) Énoncez le théorème de dua	alité forte.

2.3 $(2 \bullet)$ Soit P un programme linéaire satisfiable et D son dual. Si P n'est pas borné, que dire de D ?
2.4 $(2 \bullet)$ Déterminez le dual du programme linéaire P de l'exercice 1.
2.5 (2 \bullet) Résolvez le programme linéaire de la question 2.4.