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Chapitre 2 : Méthode du Simplexe

J.-F. Scheid
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[. Introduction

On a vu que pour résoudre un PL, il suffit de se restreindre aux solutions
de bases réalisables.

Méthode du simplexe due a Dantzig (1947).

Deux phases :

@ Phase 1 — Initialisation : Trouver une solution de base réalisable
(ou bien détecter I'impossibilité).

@ Phase 2 — Progression : On passe d'un sommet a un sommet voisin
pour augmenter la fonction objectif

Remarque : On appelle n-simplexe ou simplement simplexe, I'enveloppe
convexe d'un ensemble de n+ 1 points (n =1 : un segment, n =2 : un
triangle, n = 3 : un tétraedre)



II. L'algorithme du simplexe proprement dit : Phase 2

PL sous forme standard

)r(g?[gs {F(x) = ch]

Ax=b

x>0
On dispose d'une base B et d'une solution de base réalisable x avec (a une
permutation prés des colonnes de A)

A= (Ag|An) et X—(xB )
XH
ou Apg matrice m x m, inversible (variables de base)
Ay matrice m x (n — m) (variables hors-base)

But : on veut trouver une autre base B* et une solution de base réalisable
x* telles que x* est meilleur que x c-a-d

F(x*) > F(x)




Principe de la méthode du simplexe : faire rentrer une variable
hors-base dans la nouvelle base (variable entrante) et faire sortir a la place
une variable de base (variable sortante).

1) Variable entrante - calcul des coits réduits

Fonction objectif F exprimée en fonction des variables hors-base.

Ensemble des solutions réalisables Dg = {x € R"|Ax = b, x > 0}.

Proposition (Cofits réduits)

Pour tout x € Dg, on a
F(x) = F(x) + L—,_F,XH

ou

L), =c}, — cpAz Ay

est le vecteur des coiits réduits.




Démonstration.

On a b = Ax = Agxg + Axyxy avec Ag inversible donc
Xg = Agl(b — Apxpy). On obtient donc

c
F(x) = c'x=chixg+cxy avec c= <cB>
H
_ Ta-l T
= CBAB (b_AHXH)+CHXH

= cAg'b + (c], — LA An)xy
Or xg = Ag'b (car x5 = 0) et cAz'b = ¢"x = F(x) donc

F(x) = F(x) + (¢}, — c Az An)xn.



Variable entrante

@ Si les colits réduits sont tous négatifs i.e. LI, <0, il n'est alors pas
possible d’augmenter la fonction objectif F: I'algorithme se termine
normalement c'est-a-dire qu’on a trouvé une solution de base
réalisable x optimale.

@ Dans le cas contraire (i.e. I(Ly); > 0), on a intérét a faire entrer

dans la base, la variable hors-base qui a le coiit réduit
positif le plus grand possible.

On note e ¢ B I'indice de la variable entrante. On choisit e tel que
(Li)e = max {(Lu);. (L), >0}

ce qu'on note par

e= argmjax{(l-H)ja (Lu)j > 0}




Remarque. Si on traite d'un probléme de minimisation c'est-a-dire avec
min F(x),

alors la variable entrante x, est déterminée par I'indice

e= argmjin {(LH)J-, (Lu)j < 0}



2) Variable sortante

Une fois I'indice e choisi, il faut déterminer la variable qui doit quitter la
base. En maintenant la relation Ax = b avec x > 0, on augmente la
variable entrante x¢ jusqu’'a annuler une des variables de base. Cette
variable sera alors la variable sortante.

Ax=b & Agxg+ A°xe.=b ol A® désigne la e-ieme colonne de A
& xpg=Ag'(b— Ax.)
& Xp =Xg — AglAexe
& XB =Xpg — ZXe

avec

z=Ag'Ac e R™.




On doit avoir : xg =xg —zxe > 0 )

@ Si z <0, on peut augmenter x, autant qu'on veut, on aura toujours
la positivité de la variable de base xg. La fonction objectif n'est pas
majorée sur Dg (max F = +00) = arrét de |'algorithme.

@ Sinon (i.e. il existe z; > 0), pour avoir la positivité (xg); — zixe > 0
pour tout /, on choisit la variable sortante x; pour laquelle le rapport
(xg)i/zi pour i=1,--- mavec z; > 0, est le plus petit possible :

Variable sortante (indice) :

§ = argmin {(KB)", z > 0}
] Zj

1

On a, dans ce cas, xs = 0 et xg > 0.
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Remarque. La valeur de la variable entrante est donnée par

Xe = Min {
1

(xg)i

Zj

,z,->0}
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Méthode du simplexe en phase 2 (progression)

(4] o Calcul des variables de base réalisables :
Etant donné A = (Ag | Ap), on calcule xg = Ag'b > 0.

o Calcul des coiits réduits :
L), =c/ — ct Az Ay (F(x) = F(x) + L xu)

e Si Ly <0 alors xg est une solution optimale (— arrét de I'algo.).
@ variable entrante : e = argmax; {(LH)J-, (Ly)j > O}

© variable sortante : e Calcul de z = AElAe puis

® s = argmin; {(53)'., zi > 0}.
=

1

@ On obtient une nouvelle base B et une nouvelle matrice Ag dans
laquelle la colonne A¢ remplace la colonne A®. Calcul de Aél et
retour en 1.
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[11. Méthode des dictionnaires

PL sous forme standard max, F(x) = ¢ x
Ax=Db
x>0
Principe: on exprime les variables de base xg ainsi que F en fonction des

variables hors-base xy. On obtient un systeme linéaire qu'on appelle
dictionnaire.

Exemple du probleme de production.
Forme standard (variables d'écart e, e, €3)

max F(x1,x2) = 6x1 + 4x2
3x1+ 9% +el =81
4x1 + 5xp + €2 =55
2x1 +x2 +e3 =20
x1,x2 >0, e1,e,e3 >0
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* Etape 1.
Solution de base réalisable initiale :
x1=0,x =0, e, =81, e =55, e3 =20 avec F =0.

Dictionnaire: On exprime les variables de base e;, e, e3 en fonction
des variables hors-base xi, xo.

61:81—3X1—9X2
62:55—4X1—5X2
63220—2X1—X2
F=06x; 4+ 4x

Variable entrante x.: maxso{6, 4} =6 = .
Variable sortante xs: on maintient e >0, & >0, e3> 0
81 55 20

= =min(3. 7 G =10= =]

Nouvelle Solution de base réalisable :
x1 =10, x =0, e =51, & = 15, e3 = 0 avec F = 60.
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* Etape 2.
Dictionnaire: On exprime la nouvelle variable de base x; en fonction

de x et e3 (nouvelle variable hors-base). On utilise la 3éme équation
du dictionnaire de I'étape 1 et on substitue x; dans les autres
relations.
X1 = 10 — %XQ — %63
er =81 —3(10 — 2x — Je3) — 9%
1
2

e =55—4(10 — 3x, — te3) —5x

F=6(10 — 3x> — 5e3) + 4x
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On obtient ainsi le dictionnaire (étape 2)

X1 = 10—%)@—%%

e1:51—175X2+%e3
e =15 —3x> + 2e3
F =60+ x; —3e3

Variable entrante x.: n;%x{l, 3}l=1= ,

Variable sortante xs: on maintient x; >0, e1 >0, & >0

10 51 15

=x=min{-— ——, ~}=5=[x=e|
e =mii75 1523

Nouvelle Solution de base réalisable (étape 2) :

X1 =

15
2)

xo =05, e = e =0, e3 =0 avec F = 65.

77
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* Etape 3.
Dictionnaire: On exprime la nouvelle variable de base x> en fonction
des variables hors-base e, et e3. On utilise la 3¢éme équation du
dictionnaire de I'étape 2 et on substitue x> dans les autres relations.

1 2

27, 5 7
e =5 t+t580—356

F = 65*%62*%63

Tous les coflits réduits sont < 0 donc on ne peut plus augmenter F :

['optimum est atteint et la solution optimale est

15 27

xl:7,x§":5,ei":?,egk:O,e}f:Oavec max F = 65.
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V. Finitude du simplexe

A chaque étape de I'algorithme du simplexe (en phase 2), il y a des cas
remarquables qui conduisent tous a I'arrét de I'algorithme.

@ Si les colits réduits Ly < 0, alors la solution de base réalisable
courante est I'unique optimum.

optimum unique

F(x) = Eyyay

/

L

7
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@ Si les colits réduits Ly < 0, alors il y a deux cas remarquables :

i) si (Ly), =0 et xc > 0, alors I'optimum n’est pas unique.

optimums

7, - // ’
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ii) si (Ly), =0 et xe = 0, alors I'optimum est unique (a priori). Dans ce

cas, la base est dite dégénérée c'est-a-dire qu'il existe une variable
de base nulle.

optimum unique dégénéré

© Si (Ly), > 0 et x. est non borné alors la fonction objectif
F n'est pas majorée.
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Finitude du simplexe

Une solution de base réalisable est dite dégénérée si au moins une des
variables de base est nulle.

Théoreme

Si au cours de I'algorithme du simplexe, aucune base rencontrée n'est
dégénérée, alors I'algorithme se termine en un nombre fini d'itérations.

Démonstration. A une itération donnée de I'algorithme :
@ soit on détecte une fonction objectif non majorée (— arrét de I'algo.),
@ soit elle est strictement croissante car Fopr — Fopt = (Ly)Xe > 0
puisque (Ly), > 0 et x, > 0 (par hypothése, aucune base rencontrée
n'est dégénérée).
Par conséquent, on ne rencontre jamais une base déja rencontrée a une
itération précédente. Le nombre de solution de base réalisable étant fini
(< €M), l'algorithme s’arréte nécessairement en un nombre fini
d'itérations. O
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Remarque: S'il existe une base dégénérée, alors on peut rencontrer un
éventuel cyclage de I'algorithme : on retrouve une base déja rencontrée et
on boucle indéfiniment. Pour traiter les cas de dégénérescence, on peut
appliquer la régle de Bland (1977) qui assure I'arrét de I'algorithme en un
nombre fini d'itérations.

Reégle de Bland

Lorsque plusieurs variables sont susceptibles d’entrer ou de sortir de la
base, on choisit toujours celle qui a I'indice le plus petit.
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V. Initialisation du simplexe (phase 1)

1) Introduction
Pour un PL sous forme canonique pure avec les contraintes

Ax < b, x >0,

on peut déterminer facilement une solution de base réalisable dans le cas
ou b > 0. En effet, sous forme standard les contraintes deviennent
Ax +e = b, avec x,e > 0 ou e sont les variables d’'écarts.

Une solution de base réalisable évidente dans ce cas, est
x=0, e=b>0.
Mais pour un PL sous forme standard, il n'y a pas toujours de solution de

base réalisable évidente.

Construction des solutions de base réalisable = phase d'initialisation du
simplexe (phase 1).
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2) Variables auxiliaires

PL sous forme standard

On ne suppose pas que la matrice A € M« est de rang plein, ni qu’il
existe bien des solutions réalisables.

Pour obtenir une solution de base réalisable ou bien pour détecter
I'impossibilité, on introduit un probleme de programmation linéaire
auxiliaire pour des variables supplémentaires appelées variables
artificielles.

24



Programme auxiliaire

Le programme auxiliaire associé a (PL) s'écrit

ou a=(as, - ,am) sont appelées variables artificielles.
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On a la propriété (évidente) suivante.

Proposition

Un (PL) admet une solution réalisable si et seulement si le probleme
auxiliaire (PLA) admet une solution de base optimale avec a = 0.

Détermination d’une solution de base réalisable via le probleme
auxiliaire : On applique I'algorithme du simplexe au probleme auxiliaire
(PLA). A la fin du simplexe, le colit minimal est nul sinon on a détecté
I'impossibilité pour (PL) (i.e. Dg = (). Si tout s'est déroulé normalement
(colit nul), on cherche a éliminer de la base toutes les variables artificielles.

Deux cas possibles :

© On a réussi a faire sortir toutes les variables artificielles. On passe a la
phase 2 du simplexe.

@ S'il reste des variables artificielles dans la base (base dégénérée) alors
les lignes associées a ces variables sont des contraintes redondantes
qu’'on élimine.
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Résumé de la phase d'initialisation du simplexe (phase 1)

On note F,,x la valeur de la fonction objectif du probleme auxiliaire (PLA)
m
a la fin du simplexe, c'est-a-dire F,,x = mir} E aj.
X,a
=1
Q Si Foux =0 et iﬂaj € Xg ol Xg désigne I'ensemble des variables de

base pour (PLA), alors fin normale de la phase 1. On passe a la phase
2 du simplexe.

@ Si Foux = 0 et Ja; € Xp avec aj = 0, alors on supprime les lignes et
colonnes associées aux a; et on passe a la phase 2.

@ Si F,ux > 0 alors pas de solution réalisable (Dg = ().
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Complexité du simplexe.
Complexité = nombre d'itération dans le simplexe (phase2).
@ On peut construire des exemples avec une complexité exponentielle
en O(2") itérations (Klee-Minty, 1972).
@ Mais dans la pratique la complexité du simplexe croit peu avec le

nombre n de variables. En pratique, le nombre d'itérations est
proportionnel au nombre m de contraintes (de m a 3m itérations).

@ Si on tient compte de la résolution des systemes linéaires avec une
formule de mise 3 jour de I'inverse (Shermann-Morrison), on a O(m?)
opérations pour l'inverse.

28



