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I. Introduction

On a vu que pour résoudre un PL, il suffit de se restreindre aux solutions
de bases réalisables.

Méthode du simplexe due à Dantzig (1947).

Deux phases :

1 Phase 1 – Initialisation : Trouver une solution de base réalisable
(ou bien détecter l’impossibilité).

2 Phase 2 – Progression : On passe d’un sommet à un sommet voisin
pour augmenter la fonction objectif

Remarque : On appelle n-simplexe ou simplement simplexe, l’enveloppe
convexe d’un ensemble de n + 1 points (n = 1 : un segment, n = 2 : un
triangle, n = 3 : un tétraèdre)
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II. L’algorithme du simplexe proprement dit : Phase 2

PL sous forme standard

max
x∈Rn

[
F (x) = c>x

]
{

Ax = b
x ≥ 0

On dispose d’une base B et d’une solution de base réalisable x avec (à une
permutation près des colonnes de A)

A = (AB | AH) et x =

(
xB
xH

)
où AB matrice m ×m, inversible (variables de base)

AH matrice m × (n −m) (variables hors-base)

But : on veut trouver une autre base B∗ et une solution de base réalisable
x∗ telles que x∗ est meilleur que x c-à-d

F (x∗) > F (x)
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Principe de la méthode du simplexe : faire rentrer une variable
hors-base dans la nouvelle base (variable entrante) et faire sortir à la place
une variable de base (variable sortante).

1) Variable entrante - calcul des coûts réduits

Fonction objectif F exprimée en fonction des variables hors-base.

Ensemble des solutions réalisables DR = {x ∈ Rn|Ax = b, x ≥ 0}.

Proposition (Coûts réduits)

Pour tout x ∈ DR , on a

F (x) = F (x) + L>HxH

où
L>H = c>H − c>BA

−1
B AH

est le vecteur des coûts réduits.
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Démonstration.

On a b = Ax = ABxB + AHxH avec AB inversible donc
xB = A−1B (b− AHxH). On obtient donc

F (x) = c>x = c>BxB + c>HxH avec c =

(
cB
cH

)
= c>BA

−1
B (b− AHxH) + c>HxH

= c>BA
−1
B b + (c>H − c>BA

−1
B AH)xH

Or xB = A−1B b (car xH = 0) et c>BA
−1
B b = c>x = F (x) donc

F (x) = F (x) + (c>H − c>BA
−1
B AH)xH .

�
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Variable entrante

Si les coûts réduits sont tous négatifs i.e. L>H ≤ 0, il n’est alors pas
possible d’augmenter la fonction objectif F : l’algorithme se termine
normalement c’est-à-dire qu’on a trouvé une solution de base
réalisable x optimale.

Dans le cas contraire (i.e. ∃(LH)i > 0), on a intérêt à faire entrer
dans la base, la variable hors-base qui a le coût réduit
positif le plus grand possible.

On note e /∈ B l’indice de la variable entrante. On choisit e tel que

(LH)e = max
j

{
(LH)j , (LH)j > 0

}
ce qu’on note par

e = argmax
j

{
(LH)j , (LH)j > 0

}
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Remarque. Si on traite d’un problème de minimisation c’est-à-dire avec

minF (x),

alors la variable entrante xe est déterminée par l’indice

e = argmin
j

{
(LH)j , (LH)j < 0

}
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2) Variable sortante

Une fois l’indice e choisi, il faut déterminer la variable qui doit quitter la
base. En maintenant la relation Ax = b avec x ≥ 0, on augmente la
variable entrante xe jusqu’à annuler une des variables de base. Cette
variable sera alors la variable sortante.

Ax = b ⇔ ABxB + Aexe = b où Ae désigne la e-ième colonne de A

⇔ xB = A−1B (b− Aexe)

⇔ xB = xB − A−1B Aexe

⇔ xB = xB − zxe

avec
z = A−1B Ae ∈ Rm.
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On doit avoir : xB = xB − zxe ≥ 0

Si z ≤ 0, on peut augmenter xe autant qu’on veut, on aura toujours
la positivité de la variable de base xB . La fonction objectif n’est pas
majorée sur DR (maxF = +∞) ⇒ arrêt de l’algorithme.

Sinon (i.e. il existe zi > 0), pour avoir la positivité (xB)i − zixe ≥ 0
pour tout i , on choisit la variable sortante xs pour laquelle le rapport
(xB)i/zi pour i = 1, · · · ,m avec zi > 0, est le plus petit possible :

Variable sortante (indice) :

s = argmin
i

{(xB)i
zi

, zi > 0
}

On a, dans ce cas, xs = 0 et xB ≥ 0.

10



Remarque. La valeur de la variable entrante est donnée par

xe = min
i

{(xB)i
zi

, zi > 0
}
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Méthode du simplexe en phase 2 (progression)

1 Calcul des variables de base réalisables :
Etant donné A = (AB | AH), on calcule xB = A−1B b ≥ 0.

Calcul des coûts réduits :
L>H = c>H − c>BA

−1
B AH

(
F (x) = F (x) + L>H xH

)
Si LH ≤ 0 alors xB est une solution optimale (→ arrêt de l’algo.).

2 variable entrante : e = argmaxj

{
(LH)j , (LH)j > 0

}
3 variable sortante : • Calcul de z = A−1B Ae puis

• s = argmini

{(xB)i
zi

, zi > 0
}

.

4 On obtient une nouvelle base B̃ et une nouvelle matrice A
B̃

dans

laquelle la colonne Ae remplace la colonne As . Calcul de A−1
B̃

et
retour en 1.
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III. Méthode des dictionnaires

PL sous forme standard maxx F (x) = c>x{
Ax = b
x ≥ 0

Principe: on exprime les variables de base xB ainsi que F en fonction des
variables hors-base xH . On obtient un système linéaire qu’on appelle
dictionnaire.

Exemple du problème de production.
Forme standard (variables d’écart e1, e2, e3)

maxF (x1, x2) = 6x1 + 4x2
3x1 + 9x2 + e1 = 81
4x1 + 5x2 + e2 = 55
2x1 + x2 + e3 = 20
x1, x2 ≥ 0, e1, e2, e3 ≥ 0
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? Etape 1.
Solution de base réalisable initiale :

x1 = 0, x2 = 0, e1 = 81, e2 = 55, e3 = 20 avec F = 0.

Dictionnaire: On exprime les variables de base e1, e2, e3 en fonction
des variables hors-base x1, x2.

e1 = 81− 3x1 − 9x2
e2 = 55− 4x1 − 5x2
e3 = 20− 2x1 − x2
F = 6x1 + 4x2

Variable entrante xe : max>0{6, 4} = 6⇒ xe = x1 .

Variable sortante xs : on maintient e1 ≥ 0, e2 ≥ 0, e3 ≥ 0

⇒ x1 = min
>0
{81

3
,

55

4
,

20

2
} = 10⇒ xs = e3 .

Nouvelle Solution de base réalisable :
x1 = 10, x2 = 0, e1 = 51, e2 = 15, e3 = 0 avec F = 60.
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? Etape 2.
Dictionnaire: On exprime la nouvelle variable de base x1 en fonction
de x2 et e3 (nouvelle variable hors-base). On utilise la 3ème équation
du dictionnaire de l’étape 1 et on substitue x1 dans les autres
relations.

x1 = 10− 1
2x2 −

1
2e3

e1 = 81− 3(10− 1
2x2 −

1
2e3)− 9x2

e2 = 55− 4(10− 1
2x2 −

1
2e3)− 5x2

F = 6(10− 1
2x2 −

1
2e3) + 4x2
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On obtient ainsi le dictionnaire (étape 2)

x1 = 10− 1
2x2 −

1
2e3

e1 = 51− 15
2 x2 + 3

2e3

e2 = 15− 3x2 + 2e3

F = 60 + x2 − 3e3

Variable entrante xe : max
>0
{1, −3} = 1⇒ xe = x2 .

Variable sortante xs : on maintient x1 ≥ 0, e1 ≥ 0, e2 ≥ 0

⇒ x2 = min
>0
{ 10

1/2
,

51

15/2
,

15

3
} = 5⇒ xs = e2 .

Nouvelle Solution de base réalisable (étape 2) :

x1 =
15

2
, x2 = 5, e1 =

27

2
, e2 = 0, e3 = 0 avec F = 65.
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? Etape 3.
Dictionnaire: On exprime la nouvelle variable de base x2 en fonction
des variables hors-base e2 et e3. On utilise la 3ème équation du
dictionnaire de l’étape 2 et on substitue x2 dans les autres relations.

x2 = 5− 1
3e2 + 2

3e3

x1 = 15
2 + 1

6e2 −
5
6e3

e1 = 27
2 + 5

2e2 −
7
2e3

F = 65−1
3e2−

7
3e3

Tous les coûts réduits sont ≤ 0 donc on ne peut plus augmenter F :
l’optimum est atteint et la solution optimale est

x∗1 =
15

2
, x∗2 = 5, e∗1 =

27

2
, e∗2 = 0, e∗3 = 0 avec maxF = 65.

17



IV. Finitude du simplexe

A chaque étape de l’algorithme du simplexe (en phase 2), il y a des cas
remarquables qui conduisent tous à l’arrêt de l’algorithme.

1 Si les coûts réduits LH < 0, alors la solution de base réalisable
courante est l’unique optimum.
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D
R

F(x) = Fmax

optimum unique
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2 Si les coûts réduits LH ≤ 0, alors il y a deux cas remarquables :

i) si (LH)e = 0 et xe > 0, alors l’optimum n’est pas unique.
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R

maxF(x) = F

optimums
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ii) si (LH)e = 0 et xe = 0, alors l’optimum est unique (a priori). Dans ce
cas, la base est dite dégénérée c’est-à-dire qu’il existe une variable
de base nulle.
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F(x) = F
max

optimum unique dégénéré

3 Si (LH)e > 0 et xe est non borné alors la fonction objectif
F n’est pas majorée.

20



Finitude du simplexe

Une solution de base réalisable est dite dégénérée si au moins une des
variables de base est nulle.

Théorème

Si au cours de l’algorithme du simplexe, aucune base rencontrée n’est
dégénérée, alors l’algorithme se termine en un nombre fini d’itérations.

Démonstration. A une itération donnée de l’algorithme :

soit on détecte une fonction objectif non majorée (→ arrêt de l’algo.),

soit elle est strictement croissante car F̃opt − Fopt = (LH)exe > 0
puisque (LH)e > 0 et xe > 0 (par hypothèse, aucune base rencontrée
n’est dégénérée).

Par conséquent, on ne rencontre jamais une base déjà rencontrée à une
itération précédente. Le nombre de solution de base réalisable étant fini
(≤ Cm

n ), l’algorithme s’arrête nécessairement en un nombre fini
d’itérations. �
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Remarque: S’il existe une base dégénérée, alors on peut rencontrer un
éventuel cyclage de l’algorithme : on retrouve une base déjà rencontrée et
on boucle indéfiniment. Pour traiter les cas de dégénérescence, on peut
appliquer la règle de Bland (1977) qui assure l’arrêt de l’algorithme en un
nombre fini d’itérations.

Règle de Bland

Lorsque plusieurs variables sont susceptibles d’entrer ou de sortir de la
base, on choisit toujours celle qui a l’indice le plus petit.
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V. Initialisation du simplexe (phase 1)

1) Introduction
Pour un PL sous forme canonique pure avec les contraintes

Ax ≤ b, x ≥ 0,

on peut déterminer facilement une solution de base réalisable dans le cas
où b ≥ 0. En effet, sous forme standard les contraintes deviennent
Ax + e = b, avec x, e ≥ 0 où e sont les variables d’écarts.

Une solution de base réalisable évidente dans ce cas, est

x = 0, e = b ≥ 0.

Mais pour un PL sous forme standard, il n’y a pas toujours de solution de
base réalisable évidente.

Construction des solutions de base réalisable = phase d’initialisation du
simplexe (phase 1).

23



2) Variables auxiliaires

PL sous forme standard

(PL)


max

x

[
F (x) = c>x

]
Ax = b
x ≥ 0

On ne suppose pas que la matrice A ∈Mm×n est de rang plein, ni qu’il
existe bien des solutions réalisables.

Pour obtenir une solution de base réalisable ou bien pour détecter
l’impossibilité, on introduit un problème de programmation linéaire
auxiliaire pour des variables supplémentaires appelées variables
artificielles.
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Programme auxiliaire

Le programme auxiliaire associé à (PL) s’écrit

(PLA)


min
(x,a)

m∑
i=1

ai

Ax + a = b
x ≥ 0
a ≥ 0

où a = (a1, · · · , am) sont appelées variables artificielles.
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On a la propriété (évidente) suivante.

Proposition

Un (PL) admet une solution réalisable si et seulement si le problème
auxiliaire (PLA) admet une solution de base optimale avec a = 0.

Détermination d’une solution de base réalisable via le problème
auxiliaire : On applique l’algorithme du simplexe au problème auxiliaire
(PLA). A la fin du simplexe, le coût minimal est nul sinon on a détecté
l’impossibilité pour (PL) (i.e. DR = ∅). Si tout s’est déroulé normalement
(coût nul), on cherche à éliminer de la base toutes les variables artificielles.

Deux cas possibles :

1 On a réussi à faire sortir toutes les variables artificielles. On passe à la
phase 2 du simplexe.

2 S’il reste des variables artificielles dans la base (base dégénérée) alors
les lignes associées à ces variables sont des contraintes redondantes
qu’on élimine.
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Résumé de la phase d’initialisation du simplexe (phase 1)

On note Faux la valeur de la fonction objectif du problème auxiliaire (PLA)

à la fin du simplexe, c’est-à-dire Faux = min
(x,a)

m∑
i=1

ai .

1 Si Faux = 0 et @aj ∈ XB où XB désigne l’ensemble des variables de
base pour (PLA), alors fin normale de la phase 1. On passe à la phase
2 du simplexe.

2 Si Faux = 0 et ∃aj ∈ XB avec aj = 0, alors on supprime les lignes et
colonnes associées aux aj et on passe à la phase 2.

3 Si Faux > 0 alors pas de solution réalisable (DR = ∅).
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Complexité du simplexe.

Complexité = nombre d’itération dans le simplexe (phase2).

On peut construire des exemples avec une complexité exponentielle
en O(2n) itérations (Klee-Minty, 1972).

Mais dans la pratique la complexité du simplexe crôıt peu avec le
nombre n de variables. En pratique, le nombre d’itérations est
proportionnel au nombre m de contraintes (de m à 3m itérations).

Si on tient compte de la résolution des systèmes linéaires avec une
formule de mise à jour de l’inverse (Shermann-Morrison), on a O(m2)
opérations pour l’inverse.
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