
Summary of Lecture I

Rules for calculating the weakest precondition:

Assignment Rule: wp(x:=e, Q(x)) ≡ Q(e)

Sequence Rule: wp(S1;S2, Q) ≡ wp(S1, wp(S2, Q))

Conditional Rule:

wp(if b then S1 else S2,Q) ≡ (b⇒wp(S1,Q)) ∧ (¬b⇒wp(S2,Q))

Equivalent Conditional Rule:

wp(if b then S1 else S2,Q) ≡ (b∧wp(S1,Q)) ∨ (¬b∧wp(S2,Q))

Conditionals Without Else Rule:

wp(if b then S,Q)≡ (b⇒wp(S1,Q)) ∧ (¬b⇒Q)≡ (b∧wp(S1,Q)) ∨ (¬b∧Q)

COMP 2600 — Weakest Preconditions 26

Loops

(The thing to do now is hang on tightly . . .)

Suppose we have a while loop and some postcondition Q.

The precondition P we seek is the weakest that:

• establishes Q

• guarantees termination

We can take hints for the first requirement from the corresponding rule for

Hoare Logic. That is, think in terms of loop invariants.

But termination is a bigger problem...

COMP 2600 — Weakest Preconditions 27

An Undecidable Problem

You already know from the lectures on Turing machines that some problems

are undecidable.

This doesn’t mean just that we haven’t yet found a suitable algorithm;

• It means that we can prove with maths that there cannot be such an

algorithm!

Determining if a program terminates or not on a given input is just such an

undecidable problem.

So there’s no algorithm to compute wp(while b do S,Q) in all cases.

But that doesn’t mean there are no techniques to tackle this problem that at

least work some of the time!

COMP 2600 — Weakest Preconditions 28

Guaranteeing Termination: {P} while b do S {Q}

The precondition P we seek is the weakest that establishes Q and guarantees
termination. Our rules for wp(S,Q) give us the first part, but termination is a
bigger problem ... so let us look at how a loop can terminate ...

If a loop is never entered, then the postcondition Q must already be true and
the boolean control expression b false. We’ll call this precondition P0.

P0 ≡ ¬b∧Q i.e. {¬b∧Q} do nothing {Q}

Now suppose the loop executes exactly once. In that case:

• b must be true initially;

• after the first time through the loop, P0 must become true (so that the loop
terminates next time through):

P1 ≡ b∧wp(S,P0) i.e. {b∧wp(S,P0)} S {P0}

COMP 2600 — Weakest Preconditions 29

Guaranteeing Termination ctd: {P} while b do S {Q}

P0 ≡ ¬b∧Q i.e. {¬b∧Q} do nothing {Q}
P1 ≡ b∧wp(S,P0) i.e. {b∧wp(S,P0)} S {P0}

Similarly,

P2 ≡ b∧wp(S,P1) i.e. {b∧wp(S,P1)} S {P1}
P3 ≡ b∧wp(S,P2) i.e. {b∧wp(S,P2)} S {P2}
. . .

Read Pk as the weakest precondition under which the loop terminates with
postcondition Q after exactly k iterations.

But each of these Pk looks quite similar to the next, so we can capture this
sequence with an inductive definition.

COMP 2600 — Weakest Preconditions 30

An Inductive Definition

P0 ≡ ¬b∧Q {¬b∧Q} loop does nothing {¬b∧Q}
P1 ≡ b∧wp(S,P0) {b∧wp(S,P0)} S {P0}
P2 ≡ b∧wp(S,P1) {b∧wp(S,P1)} S {P1}
. . .

leads to the inductive definition

P0 ≡ ¬b∧Q

Pk+1 ≡ b∧wp(S,Pk)

If any of the Pk is true in the initial state, then we are guaranteed that the
loop will terminate and establish the postcondition Q.
i.e. {P0∨P1∨·· ·} while b do S {Q} is true

COMP 2600 — Weakest Preconditions 31

Weakest Preconditions for While Loops (Rule 4/4)

wp(while b do S,Q) ≡ ∃k. (k ≥ 0 ∧ Pk)

where Pk is defined inductively:

P0 ≡ ¬b∧Q

Pk+1 ≡ b∧wp(S,Pk)

Interpretation:

Pk is the weakest precondition that ensures that the body S executes exactly
k times and terminates in a state in which postcondition Q holds.

If our loop is to terminate with postcondition Q , some Pk must hold before
we enter the loop.
i.e. {P0∨P1∨·· ·} while b do S {Q} is true

COMP 2600 — Weakest Preconditions 32

The problem with Pk

Applying the wp function to a while loop and postcondition will produce an

assertion of the form

∃k. (k ≥ 0 ∧ Pk)

But Pk is defined only via an inductive definition ‘on the side’.

Indeed, Pk may be different for each k, so our wp function has dropped an

infinitely long assertion on us!

Such an assertion is unsuitable for further manipulations, e.g. if before the

loop there are some assignments we want to apply the assignment rule to.

COMP 2600 — Weakest Preconditions 33

The problem with Pk ctd.

We can simplify matters by expressing Pk as a single, finite formula that is

parameterised by k.

e.g. if

P0 ≡ (n = 0)

P1 ≡ (n = 1)

P2 ≡ (n = 2) etc...

then

Pk ≡ (n = k)

This looks like a likely choice, but the correctness of our Pk must be proved
by induction.

COMP 2600 — Weakest Preconditions 34

Example 1

Suppose we want to find:

wp(while n>0 do n:=n-1, n= 0) i.e. wp(while b do S, Q)

We can start by generating some of our Pk sequence:

P0 ≡ ¬(n > 0)∧ (n = 0) ≡ (n = 0) i.e. ¬b∧Q

P1 ≡ (n > 0)∧wp(n:=n-1,n = 0) ≡ (n = 1) i.e. b∧wp(S,P0)

P2 ≡ (n > 0)∧wp(n:=n-1,n = 1) ≡ (n = 2)

... so it looks pretty likely that

Pk ≡ (n = k)

But we need induction to be sure - http://spikedmath.com/449.html a.
aSee http://mathworld.wolfram.com/CircleDivisionbyChords.html if you’re curious.

COMP 2600 — Weakest Preconditions 35

http://spikedmath.com/449.html
http://mathworld.wolfram.com/CircleDivisionbyChords.html

Example 1 – Using Induction to prove Pk ≡ (n = k)

wp(while n>0 do n:=n-1, n= 0) i.e. wp(while b do S, Q)

We’ve already done our base case:

P0 ≡ ¬b∧Q≡ ¬(n > 0)∧ (n = 0) ≡ (n = 0)

Now for our induction step:

• we’ll assume that Pi ≡ (n = i) for some i≥ 0

• and investigate Pi+1: recall that Pi+1 ≡ b∧wp(S,Pi)

Pi+1 ≡ n > 0∧wp(n:=n-1,n = i)

≡ (n > 0)∧ (n−1 = i)

≡ (n > 0)∧ (n = i+1)

≡ n = i+1 ((n = i+1)∧ (i≥ 0))⇒ (n > 0)
By the principle of induction: ∀k ≥ 0.(Pk ≡ (n = k))

COMP 2600 — Weakest Preconditions 36

Example 1 ctd

Induction proof under our belt, we now have

wp(while n>0 do n:=n-1, n = 0) ≡ ∃k. (k ≥ 0 ∧ n = k)

This is finite, which is certainly an improvement, but we can simplify it further.

Useful trick: Use the general fact that

∃k. ((k ≥ 0)∧Pk) ≡ P0∨P1∨P2∨P3∨·· ·

So in this example we have

(n = 0)∨ (n = 1)∨ (n = 2)∨ (n = 3)∨·· ·

We can compress this infinite disjunction into a finite final result:

wp(while n>0 do n:=n-1, n = 0) ≡ (n≥ 0)

COMP 2600 — Weakest Preconditions 37

Example 2 (Total Correctness)

We want to find

wp(while n 6= 0 do n:=n-1, n = 0)

Step 1 – finding Pk:

P0 ≡ ¬(n 6= 0)∧ (n = 0) ≡ (n = 0) i.e. ¬b∧Q

P1 ≡ (n 6= 0)∧wp(n:=n-1,n = 0) ≡ (n = 1) i.e. b∧wp(S,P0)

. . .

Pk ≡ (n = k)

(Induction omitted)

COMP 2600 — Weakest Preconditions 38

Example 2 ctd

Step 2 — finding the weakest precondition:

∃k. ((k ≥ 0) ∧ Pk) ≡ ∃k. ((k ≥ 0) ∧ (n = k))

≡ (n≥ 0)

Thus,

wp(while n 6= 0 do n:=n-1, n = 0) ≡ (n≥ 0)

This is not really any different from Example 1, of course.

But look more closely ... what is the trap in this while-loop?

COMP 2600 — Weakest Preconditions 39

Example 2 ctd

Step 2 — finding the weakest precondition:

∃k. ((k ≥ 0) ∧ Pk) ≡ ∃k. ((k ≥ 0) ∧ (n = k))

≡ (n≥ 0)

Thus,

wp(while n 6= 0 do n:=n-1, n = 0) ≡ (n≥ 0)

This is not really any different from Example 1, of course.

But look ... we have automatically found the fact that the while-loop will not

terminate for initial values of n less than 0.

COMP 2600 — Weakest Preconditions 40

The Postcondition ‘True’

Suppose we wanted to calculate

wp(while (n>0) do n:=n-1, True)

True may seem a ludicrous postcondition to prove something about.

After all, True is an assertion so weak it holds of any memory state!

Indeed, {P}S{True} is a true statement of Hoare Logic for any precondition

P and code fragment S whatsoever.

But remember the WP calculus cares about total correctness, so wp(S,True)
is the weakest precondition on which S terminates.

(To be precise, on which S terminates into a state satisfying True , but this

addition is vacuous.)

COMP 2600 — Weakest Preconditions 41

Example 1, Revisited . . .

wp(while (n>0) do n:=n-1, True)

Step 1 – finding Pk:

P0 ≡ ¬(n > 0)∧True ≡ (n≤ 0)

P1 ≡ (n > 0)∧wp(n:=n-1,n≤ 0) ≡ (n > 0)∧ (n−1≤ 0) ≡ (n = 1)

P2 ≡ (n > 0)∧wp(n:=n-1,n = 1) ≡ (n = 2)

. . .

Pk ≡ (n = k)

(Induction omitted)

COMP 2600 — Weakest Preconditions 42

Example 1 Revisited ctd.

Step 2 — finding the weakest precondition:

∃k. (k ≥ 0 ∧ Pk) ≡ (n≤ 0)∨ (n = 1)∨ (n = 2)∨ . . .)

≡ True

So the program

while (n>0) do n:=n-1

always terminates.

COMP 2600 — Weakest Preconditions 43

Example 2, Termination . . .

wp(while n 6= 0 do n:=n-1, True)

P0 ≡ ¬(n 6= 0)∧True ≡ (n = 0)

P1 ≡ (n 6= 0)∧wp(n:=n-1,n = 0) ≡ (n 6= 0)∧ (n−1 = 0) ≡ (n = 1)

P2 ≡ (n 6= 0)∧wp(n:=n-1,n = 1) ≡ (n = 2)

. . .

Pk ≡ (n = k)

(Induction omitted)

∃k. (k ≥ 0 ∧ Pk) ≡ (n = 0)∨ (n = 1)∨ (n = 2)∨ . . .)≡ (n≥ 0)

Therefore the program terminates provided n is non-negative.

COMP 2600 — Weakest Preconditions 44

Example 1, Again . . .

Suppose we want to calculate

wp(while (n>0) do n:=n-1, n =−5)

Intuitively, if n ≤ 0, the loop terminates immediately with the value of n un-

changed, so we expect the weakest precondition above to be n =−5.

Step 1 – finding Pk:

P0 ≡ ¬(n > 0)∧ (n =−5) ≡ (n =−5)

P1 ≡ (n > 0)∧wp(n:=n-1, n =−5) ≡ (n > 0)∧ (n =−4) ≡ False

P2 ≡ (n > 0)∧wp(n:=n-1, False) ≡ (n > 0)∧False ≡ False

. . .

Will it be False all the way down?

COMP 2600 — Weakest Preconditions 45

When Pk ≡ False

Here’s another useful trick :

Suppose Pk ≡ False for some k. Then

Pk+1 ≡ b∧wp(S,Pk) ≡ b∧wp(S,False)

On what inputs will S terminate with an output satisfying False?

No memory state satisfies False, so wp(S,False) ≡ False always, and

Pk+1 ≡ b∧False ≡ False

Intuition: if a loop cannot terminate after k steps then it cannot terminate

after any larger number of steps.

COMP 2600 — Weakest Preconditions 46

