Summary of Lecture I

Rules for calculating the weakest precondition:
Assignment Rule: $w p(\mathrm{x}:=\mathrm{e}, Q(x)) \equiv Q(e)$
Sequence Rule: $w p\left(S_{1} ; S_{2}, Q\right) \equiv w p\left(S_{1}, w p\left(S_{2}, Q\right)\right)$
Conditional Rule:

$$
w p\left(\text { if } b \text { then } S_{1} \text { else } S_{2}, Q\right) \equiv\left(b \Rightarrow w p\left(S_{1}, Q\right)\right) \wedge\left(\neg b \Rightarrow w p\left(S_{2}, Q\right)\right)
$$

Equivalent Conditional Rule:

$$
w p\left(\text { if } b \text { then } S_{1} \text { else } S_{2}, Q\right) \equiv\left(b \wedge w p\left(S_{1}, Q\right)\right) \vee\left(\neg b \wedge w p\left(S_{2}, Q\right)\right)
$$

Conditionals Without Else Rule:
$w p($ if b then $S, Q) \equiv\left(b \Rightarrow w p\left(S_{1}, Q\right)\right) \wedge(\neg b \Rightarrow Q) \equiv\left(b \wedge w p\left(S_{1}, Q\right)\right) \vee(\neg b \wedge Q)$

Loops

(The thing to do now is hang on tightly ...)
Suppose we have a while loop and some postcondition Q.
The precondition P we seek is the weakest that:

- establishes Q
- guarantees termination

We can take hints for the first requirement from the corresponding rule for Hoare Logic. That is, think in terms of loop invariants.

But termination is a bigger problem...

An Undecidable Problem

You already know from the lectures on Turing machines that some problems are undecidable.

This doesn't mean just that we haven't yet found a suitable algorithm;

- It means that we can prove with maths that there cannot be such an algorithm!

Determining if a program terminates or not on a given input is just such an undecidable problem.

So there's no algorithm to compute $w p($ while b do $S, Q)$ in all cases.
But that doesn't mean there are no techniques to tackle this problem that at least work some of the time!

Guaranteeing Termination: $\{P\}$ while b do $S\{Q\}$

The precondition P we seek is the weakest that establishes Q and guarantees termination. Our rules for $w p(S, Q)$ give us the first part, but termination is a bigger problem ... so let us look at how a loop can terminate ...

If a loop is never entered, then the postcondition Q must already be true and the boolean control expression b false. We'll call this precondition P_{0}.

$$
P_{0} \equiv \neg b \wedge Q \quad \text { i.e. }\{\neg b \wedge Q\} \text { do nothing }\{Q\}
$$

Now suppose the loop executes exactly once. In that case:

- b must be true initially;
- after the first time through the loop, P_{0} must become true (so that the loop terminates next time through):

$$
P_{1} \equiv b \wedge w p\left(S, P_{0}\right) \quad \text { i.e. }\left\{b \wedge w p\left(S, P_{0}\right)\right\} S\left\{P_{0}\right\}
$$

Guaranteeing Termination ctd: $\{P\}$ while b do $S\{Q\}$

$$
\begin{array}{rr}
P_{0} \equiv \neg b \wedge Q & \text { i.e. }\{\neg b \wedge Q\} \text { do nothing }\{Q\} \\
P_{1} \equiv b \wedge w p\left(S, P_{0}\right) & \text { i.e. }\left\{b \wedge w p\left(S, P_{0}\right)\right\} \mathrm{S}\left\{P_{0}\right\}
\end{array}
$$

Similarly,

$$
\begin{array}{ll}
P_{2} \equiv b \wedge w p\left(S, P_{1}\right) & \text { i.e. }\left\{b \wedge w p\left(S, P_{1}\right)\right\} \mathrm{S}\left\{P_{1}\right\} \\
P_{3} \equiv b \wedge w p\left(S, P_{2}\right) & \text { i.e. }\left\{b \wedge w p\left(S, P_{2}\right)\right\} \mathrm{S}\left\{P_{2}\right\}
\end{array}
$$

Read P_{k} as the weakest precondition under which the loop terminates with postcondition Q after exactly k iterations.

But each of these P_{k} looks quite similar to the next, so we can capture this sequence with an inductive definition.

An Inductive Definition

$$
\begin{aligned}
P_{0} & \equiv \neg b \wedge Q \\
P_{1} & \equiv b \wedge w p\left(S, P_{0}\right) \\
P_{2} & \equiv b \wedge w p\left(S, P_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \{\neg b \wedge Q\} \text { loop does nothing }\{\neg b \wedge Q\} \\
& \left\{b \wedge w p\left(S, P_{0}\right)\right\} S\left\{P_{0}\right\} \\
& \left\{b \wedge w p\left(S, P_{1}\right)\right\} S\left\{P_{1}\right\}
\end{aligned}
$$

leads to the inductive definition

$$
\begin{aligned}
P_{0} & \equiv \neg b \wedge Q \\
P_{k+1} & \equiv b \wedge w p\left(S, P_{k}\right)
\end{aligned}
$$

If any of the P_{k} is true in the initial state, then we are guaranteed that the loop will terminate and establish the postcondition Q.
i.e. $\left\{P_{0} \vee P_{1} \vee \cdots\right\}$ while b do $S\{Q\}$ is true

Weakest Preconditions for While Loops (Rule 4/4)

$$
w p(\text { while } b \text { do } S, Q) \equiv \exists k .\left(k \geq 0 \wedge P_{k}\right)
$$

where P_{k} is defined inductively:

$$
\begin{aligned}
P_{0} & \equiv \neg b \wedge Q \\
P_{k+1} & \equiv b \wedge w p\left(S, P_{k}\right)
\end{aligned}
$$

Interpretation:

P_{k} is the weakest precondition that ensures that the body S executes exactly k times and terminates in a state in which postcondition Q holds.

If our loop is to terminate with postcondition Q, some P_{k} must hold before we enter the loop.
i.e. $\left\{P_{0} \vee P_{1} \vee \cdots\right\}$ while b do $S\{Q\}$ is true

The problem with P_{k}

Applying the $w p$ function to a while loop and postcondition will produce an assertion of the form

$$
\exists k .\left(k \geq 0 \wedge P_{k}\right)
$$

But P_{k} is defined only via an inductive definition 'on the side'.
Indeed, P_{k} may be different for each k, so our $w p$ function has dropped an infinitely long assertion on us!

Such an assertion is unsuitable for further manipulations, e.g. if before the loop there are some assignments we want to apply the assignment rule to.

The problem with P_{k} ctd.

We can simplify matters by expressing P_{k} as a single, finite formula that is parameterised by k.
e.g. if

$$
\begin{aligned}
& P_{0} \equiv(n=0) \\
& P_{1} \equiv(n=1) \\
& P_{2} \equiv(n=2) \quad \text { etc... }
\end{aligned}
$$

then

$$
P_{k} \equiv(n=k)
$$

This looks like a likely choice, but the correctness of our P_{k} must be proved by induction.

Example 1

Suppose we want to find:

$$
w p(\text { while } \mathrm{n}>0 \text { do } \mathrm{n}:=\mathrm{n}-1, n=0) \quad \text { i.e. } w p(\text { while } \mathrm{b} \text { do } \mathrm{S}, Q)
$$

We can start by generating some of our P_{k} sequence:

$$
\begin{array}{lr}
P_{0} \equiv \neg(n>0) \wedge(n=0) \equiv(n=0) & \text { i.e. } \neg b \wedge Q \\
P_{1} \equiv(n>0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, n=0) \equiv(n=1) & \text { i.e. } b \wedge w p\left(S, P_{0}\right) \\
P_{2} \equiv(n>0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, n=1) \equiv(n=2) &
\end{array}
$$

... so it looks pretty likely that

$$
P_{k} \equiv(n=k)
$$

But we need induction to be sure - http://spikedmath.com/449.html .

[^0]
Example 1 - Using Induction to prove $P_{k} \equiv(n=k)$

$w p($ while $\mathrm{n}>0$ do $\mathrm{n}:=\mathrm{n}-1, n=0) \quad$ i.e. $w p($ while b do $\mathrm{S}, Q)$
We've already done our base case:

$$
P_{0} \equiv \neg b \wedge Q \equiv \neg(n>0) \wedge(n=0) \equiv(n=0)
$$

Now for our induction step:

- we'll assume that $P_{i} \equiv(n=i)$ for some $i \geq 0$
- and investigate P_{i+1} : recall that $P_{i+1} \equiv b \wedge w p\left(S, P_{i}\right)$

$$
\begin{aligned}
P_{i+1} & \equiv n>0 \wedge w p(\mathrm{n}:=\mathrm{n}-1, n=i) \\
& \equiv(n>0) \wedge(n-1=i) \\
& \equiv(n>0) \wedge(n=i+1) \\
& \equiv n=i+1 \quad((n=i+1) \wedge(i \geq 0)) \Rightarrow(n>0)
\end{aligned}
$$

By the principle of induction: $\forall k \geq 0 .\left(P_{k} \equiv(n=k)\right)$

Example 1 ctd

Induction proof under our belt, we now have

$$
w p(\text { while } \mathrm{n}>0 \text { do } \mathrm{n}:=\mathrm{n}-1, n=0) \equiv \exists k .(k \geq 0 \wedge n=k)
$$

This is finite, which is certainly an improvement, but we can simplify it further.
Useful trick: Use the general fact that

$$
\exists k .\left((k \geq 0) \wedge P_{k}\right) \equiv P_{0} \vee P_{1} \vee P_{2} \vee P_{3} \vee \cdots
$$

So in this example we have

$$
(n=0) \vee(n=1) \vee(n=2) \vee(n=3) \vee \cdots
$$

We can compress this infinite disjunction into a finite final result:

$$
w p(\text { while } \mathrm{n}>0 \text { do } \mathrm{n}:=\mathrm{n}-1, n=0) \equiv(n \geq 0)
$$

Example 2 (Total Correctness)

We want to find

$$
w p(\text { while } \mathrm{n} \neq 0 \text { do } \mathrm{n}:=\mathrm{n}-1, n=0)
$$

Step 1 - finding P_{k} :

$$
\begin{aligned}
P_{0} & \equiv \neg(n \neq 0) \wedge(n=0) \equiv(n=0) \\
P_{1} & \equiv(n \neq 0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, n=0) \equiv(n=1) \\
& \ldots \\
P_{k} & \equiv(n=k)
\end{aligned}
$$

$$
\text { i.e. } \neg b \wedge Q
$$

$$
\text { i.e. } b \wedge w p\left(S, P_{0}\right)
$$

(Induction omitted)

Example 2 ctd

Step 2 - finding the weakest precondition:

$$
\begin{aligned}
\exists k \cdot\left((k \geq 0) \wedge P_{k}\right) & \equiv \exists k \cdot((k \geq 0) \wedge(n=k)) \\
& \equiv(n \geq 0)
\end{aligned}
$$

Thus,

$$
w p(\text { while } \mathrm{n} \neq 0 \text { do } \mathrm{n}:=\mathrm{n}-1, n=0) \equiv(n \geq 0)
$$

This is not really any different from Example 1, of course.
But look more closely ... what is the trap in this while-loop?

Example 2 ctd

Step 2 - finding the weakest precondition:

$$
\begin{aligned}
\exists k \cdot\left((k \geq 0) \wedge P_{k}\right) & \equiv \exists k \cdot((k \geq 0) \wedge(n=k)) \\
& \equiv(n \geq 0)
\end{aligned}
$$

Thus,

$$
w p(\text { while } \mathrm{n} \neq 0 \text { do } \mathrm{n}:=\mathrm{n}-1, n=0) \equiv(n \geq 0)
$$

This is not really any different from Example 1, of course.
But look ... we have automatically found the fact that the while-loop will not terminate for initial values of n less than 0 .

The Postcondition ‘True’

Suppose we wanted to calculate

$$
w p(\text { while }(\mathrm{n}>0) \text { do } \mathrm{n}:=\mathrm{n}-1 \text {, True })
$$

True may seem a ludicrous postcondition to prove something about.
After all, True is an assertion so weak it holds of any memory state!
Indeed, $\{P\} S\{$ True $\}$ is a true statement of Hoare Logic for any precondition P and code fragment S whatsoever.

But remember the WP calculus cares about total correctness, so wp(S,True) is the weakest precondition on which S terminates.
(To be precise, on which S terminates into a state satisfying True , but this addition is vacuous.)

Example 1, Revisited...

$$
w p(\text { while }(\mathrm{n}>0) \text { do } \mathrm{n}:=\mathrm{n}-1 \text {, True })
$$

Step 1 - finding P_{k} :

$$
\begin{aligned}
P_{0} & \equiv \neg(n>0) \wedge \text { True } \equiv(n \leq 0) \\
P_{1} & \equiv(n>0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, n \leq 0) \equiv(n>0) \wedge(n-1 \leq 0) \equiv(n=1) \\
P_{2} & \equiv(n>0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, n=1) \equiv(n=2) \\
& \cdots \\
P_{k} & \equiv(n=k)
\end{aligned}
$$

(Induction omitted)

Example 1 Revisited ctd.

Step 2 - finding the weakest precondition:

$$
\begin{aligned}
\exists k .\left(k \geq 0 \wedge P_{k}\right) & \equiv(n \leq 0) \vee(n=1) \vee(n=2) \vee \ldots) \\
& \equiv \text { True }
\end{aligned}
$$

So the program
while ($\mathrm{n}>0$) do $\mathrm{n}:=\mathrm{n}-1$
always terminates.

Example 2, Termination ...

$$
\begin{aligned}
& w p(\text { while } \mathrm{n} \neq 0 \text { do } \mathrm{n}:=\mathrm{n}-1, \text { True }) \\
& P_{0}
\end{aligned} \begin{aligned}
& \equiv \neg(n \neq 0) \wedge \text { True } \equiv(n=0) \\
P_{1} & \equiv(n \neq 0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, n=0) \equiv(n \neq 0) \wedge(n-1=0) \equiv(n=1) \\
P_{2} & \equiv(n \neq 0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, n=1) \equiv(n=2) \\
& \ldots \\
P_{k} & \equiv(n=k)
\end{aligned}
$$

(Induction omitted)

$$
\left.\exists k .\left(k \geq 0 \wedge P_{k}\right) \equiv(n=0) \vee(n=1) \vee(n=2) \vee \ldots\right) \equiv(n \geq 0)
$$

Therefore the program terminates provided n is non-negative.

Example 1, Again ...

Suppose we want to calculate

$$
w p(\text { while }(\mathrm{n}>0) \text { do } \mathrm{n}:=\mathrm{n}-1, n=-5)
$$

Intuitively, if $n \leq 0$, the loop terminates immediately with the value of n unchanged, so we expect the weakest precondition above to be $n=-5$.

Step 1 - finding P_{k} :

$$
\begin{aligned}
& P_{0} \equiv \neg(n>0) \wedge(n=-5) \equiv(n=-5) \\
& P_{1} \equiv(n>0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, n=-5) \equiv(n>0) \wedge(n=-4) \equiv \text { False } \\
& P_{2} \equiv(n>0) \wedge w p(\mathrm{n}:=\mathrm{n}-1, \text { False }) \equiv(n>0) \wedge \text { False } \equiv \text { False }
\end{aligned}
$$

Will it be False all the way down?

When $P_{k} \equiv$ False

Here's another useful trick:
Suppose $P_{k} \equiv$ False for some k. Then

$$
P_{k+1} \equiv b \wedge w p\left(S, P_{k}\right) \equiv b \wedge w p(S, \text { False })
$$

On what inputs will S terminate with an output satisfying False?
No memory state satisfies False, so $w p(S$, False $) \equiv$ False always, and

$$
P_{k+1} \equiv b \wedge \text { False } \equiv \text { False }
$$

Intuition: if a loop cannot terminate after k steps then it cannot terminate after any larger number of steps.

[^0]: ${ }^{\text {a }}$ See http://mathworld.wolfram.com/CircleDivisionbyChords.html if you're curious.

