Proving Loops Testing debugging and verification

Srinivas Pinisetty

Weakest precondition rules

wp is a computable function!

$$
\begin{aligned}
& \operatorname{wp}(\} \quad, R)=R \\
& \operatorname{wp}(x:=e, R)=R[x \rightarrow e] \\
& \operatorname{wp}(S 1 ; S 2, R)=\operatorname{wp}(S 1, \operatorname{wp}(S 2, R)) \\
& \operatorname{wp}(\text { assert } B, R)=B \& \& R \\
& \operatorname{wp}(\text { if } B\{S 1\} \text { else }\{S 2\}, R)= \\
& (B==>\operatorname{wp}(S 1, R)) \& \&(!B==>\operatorname{wp}(S 2, R)) \\
& \operatorname{wp}(i f B\{S 1\} \operatorname{else}\{S 2\}, R)= \\
& (B \& \& \operatorname{wp}(S 1, R))|\mid(B \& \& \operatorname{wp}(S 2, R))
\end{aligned}
$$

While loops

But what about while loops?

the

```
wp(while B { S }, R) = ?
```


Is not computable!

No algorithm can exist that always computes wp(while B \{ S \}, R) correctly!

Now what?

while B
$\{S$ \}

while B
invariant I
decreases D

Verifying programs with loops

- How do we use the invariant and variant to compute the wp of a while-loop?
- Partial correctness: prove programs containing loop if we assume that the loop terminates
- Total correctness: prove programs containing loop without assumption

Recall: What is a loop invariant?

```
method simpleInvariant(n : int) returns (m : int)
requires n >= 0
ensures n == m {
    m := 0;
    while m < n
    invariant m <= n
    {m:= m + 1; }
}
```

A loop invariant is true after any number of iterations of the loop (including 0)

- Before entering the loop.
- After each iteration of the loop.
- After exiting the loop.

Another loop invariant

```
method simpleInvariant(n : int) returns (m : int)
requires n >= 0
ensures n == m
{
    m := 0;
    while m < n
    invariant 0 < 1
    { m := m + 1; }
}
```

To be useful, a loop invariant must allow us to prove the program

What is a loop invariant?

Invariant $\mathrm{m}<=\mathrm{n}$ seems more useful! (allows us to prove post condition!)
After the loop ($\mathbf{m}<\boldsymbol{n}$) must be false

```
method simpleInvariant(n : int) returns (m :
int)
requires n >= 0
ensures n == m
{
    m := 0;
    while m < n
    invariant m <= n
    {m:=m + 1; }
}
```

$!(\mathrm{m}<\mathrm{n}) \& \& \mathrm{~m}<=\mathrm{n}==>\mathrm{n}==\mathrm{m}$
$=m>=n \quad \& \& m<=n==>n==m$
$=$ true!

Partial correctness wp for while

The failure of the loop guard (! B) and the invariant imply the postcondition R

wp for While - example

wp (while $m<n$
invariant $m<=n$
$\mathrm{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \rightarrow \mathrm{e}]$
$\operatorname{wp}\left(S 1 ; S_{2}, R\right)=\operatorname{wp}(S 1$, wp (S2,R))
$\mathrm{wp}($ assert $\mathrm{B}, \mathrm{R})=\mathrm{B} \& \& \mathrm{R}$
$\{\mathrm{m}:=\mathrm{m}+1 ;\}, \mathrm{n}==\mathrm{m}$)
wp(if $B\{S 1\}$ else $\{S 2\}, R)=$
($\mathrm{B}==>\operatorname{wp}(\mathrm{S} 1, \mathrm{R}))$ \&\&
(! $B==>\operatorname{wp}(S 2, R))$

```
\(=\mathrm{m}<=\mathrm{n}\)
\(\& \&(\mathrm{~m}<\mathrm{n} \& \& \mathrm{~m}<=\mathrm{n}==>\operatorname{wp}(\mathrm{m}:=\mathrm{m}+1, \mathrm{~m}<=\mathrm{n}))\)
    \(\& \&(!(m<n) \& \& m<=n==>n=m)\)
```

wp(while B I S, R) = I
\&\& (B \&\& I ==> wp (S,I))
$\& \&(!B \quad \& \& I==>R)$

$$
(m<n \& \&<n<m==>p(m:=m+1, m<=n))
$$

$=(\mathrm{m}<\mathrm{n} \& \& \mathrm{~m}<=\mathrm{n}=\Rightarrow \mathrm{m}+1<=\mathrm{n})$ (by assignment rule)
$=(m<n=\Rightarrow m+1<=n)$ (simplify using $m<n==>m<=n)$
$=(m+1<=n \Rightarrow m+1<=n)$ (simplify using $m<n==m+1<=n$)
$=$ true (simplify using $p==>p==$ true)

wp for While - example

wp (while $m<n$
invariant $m<=n$
$\{\mathrm{m}:=\mathrm{m}+1 ;\}, \mathrm{n}==\mathrm{m})$

$$
\begin{aligned}
& \operatorname{wp}(x:=e, R)=R[x \rightarrow e] \\
& \operatorname{wp}(S 1 ; S 2, R)=\operatorname{wp}(S 1, \\
& \operatorname{wp}(S 2, R)) \\
& \operatorname{wp}(\text { assert } B, R)=B \& \& R \\
& \operatorname{wp}(i f B\{S 1\} \operatorname{else}\{S 2\}, R)= \\
& (B=>\operatorname{wp}(S 1, R)) \& \& \\
& (!B==>\operatorname{wp}(S 2, R))
\end{aligned}
$$

```
=m}<=\textrm{n
    && (m<n<&.& m<= n ==> min(m e= m + 1,m<= n))
    && (!(m<n) && m <= n ==> n == m)
```

wp (while B I S, R) =
I
$\& \& \quad(\mathrm{~B} \& \& \quad \mathrm{I}==>\operatorname{wp}(\mathrm{S}, \mathrm{I}))$
$\& \&(!B \quad \& \& I==>R)$

```
(!(m<n) &&m<= n ==> n == m)
```

$=(\mathrm{m}>=\mathrm{n} \& \& \mathrm{~m}<=\mathrm{n}==>\mathrm{n}==\mathrm{m}))(\mathrm{by}!(\mathrm{m}<\mathrm{n})==\mathrm{m}>=\mathrm{n})$
$=$ true

wp for While - example

```
wp( while m < n
    invariant m <= n
    {m:=m+1; }, n == m)
```

```
=m}<= 
    && true
    && true
```

$=m<=n$ (by a \&\& true == a)

```
wp(x := e , R) = R[x me]
wp(S1 ; S2 , R) = wp(S1,
wp(S2,R))
wp(assert B, R) = B && R
wp(if B {S1} else {S2}, R) =
    ( B ==> wp(S1,R)) &&
    (!B ==> wp(S2,R))
```

```
wp(while B I S, R) =
    I
    && (B && I ==> wp(S,I))
    && (!B && I ==> R)
```


Proving a program with a while loop: partial correctness

```
method simpleInvariant(n : int) returns (m : int)
requires n >= 0
ensures n == m {
    m := 0;
    while m < n
    invariant m <= n
    {m:=m+1; }
}
```

 Compute the weakest precondition: wp(S,R)
 Check if \(Q \Rightarrow w p(S, R)\)
    ```
wp(m := 0;
    while m < n
    invariant m <= n
    {m:=m + 1; }, n == m)
```

```
= wp(m := 0,
    wp(while m < n
        invariant m <= n
        {m:=m + 1; }, n == m)
    ) (by sequential rule)
```

$=\operatorname{wp}(m:=0, \quad m<=n)$ (from previous slide)
$=n>=0$ (by assigment rule)

Proving a program with a while loop: partial correctness

```
method simpleInvariant(n : int) returns (m : int)
requires n >= 0
ensures n == m {
    m := 0;
    while m < n
    invariant m <= n
    {m:=m+1; }
}
```

 Compute the weakest precondition: wp(S,R)
 \(=\mathrm{n}>=0\)
 Check if \(Q \Rightarrow w p(S, R)\)
 $=\mathrm{n}>=0 \Rightarrow \mathrm{n}>=0$
$=$ true

Another proof!

```
wp(while B I S, R) =
I
&& (B && I ==> wp (S,I))
    && (!B && I ==> R)
```

WITASEGOUD.

```
method magic returns ()
requires true
ensures 1 == 0 {
    while 1 != 0
    invariant true
    { ; }
}
```

```
wp( while 1 != 0 true {},1 == 0)
```

$=$ true $\& \&$
(true \&\& (1 != 0) ==> wp(\{\}, true)) \&\&
(! (1 ! = 0) \&\& true ==> $1=0$

Check if $Q \Rightarrow w p(S, R)$

$$
=(!(1 \quad!=0) \& \& \text { true }==>1 \text { == } 0 \text { (simplify) }
$$

- We proved partial correctness: correct assuming that the loop terminates
- magic breaks that assumption!
- Next up: total correctness!

How do we prove termination? (Loop Variant)

Proving termination is also undecidable (need to provide loop variants).

```
method simpleTermination(n : int) returns (m : int)
requires n >= 0
ensures n == m {
    m := 0;
    while m < n
    decreases (n - m)
    invariant m <= n
    { m := m + 1; }
}
```

Recall: variants, Expression which decrease at each loop iteration
(Bounded from below by 0).

- Provide decreases expression D (Often derived automatically in Dafny).
- The value of D is always $>=0$
- Show that after each iteration of the loop, the value D is less than before the loop iteration
"Each iteration brings us closer to the last iteration"

How do we prove termination?

```
method x(...) returns (...)
... {
    ...;
    while B
    decreases D
    invariant I
    { S }
}
```

- The value of D is always $>=0$

```
B && I ==> D >= 0
```

- Show that after each iteration of the loop, the value D is less than before the loop

$$
B \& \& I==>\operatorname{wp}(t m p:=D ; S, t m p>D)
$$

Termination example

```
method simpleInvariant(n : int) returns (m : int)
requires n >= 0
ensures n == m {
    m := 0;
    while m < n
    decreases (n - m)
    invariant m <= n
    { m := m + 1; }
}
```

- (a) The value of D is always $>=0$

```
B && I ==> D >= 0
```

- (b) Show that after each iteration of the loop, the value D is less than before the loop

```
B && I ==> wp(tmp := D ; S, tmp > D)
```

Proof of (a)

$$
\mathrm{m}<=\mathrm{n}==>\mathrm{n}-\mathrm{m}>=0
$$

Simplify

Simplify

Proof of (b)

$\mathrm{m}<\mathrm{n} \& \& \mathrm{~m}<=\mathrm{n}==>\operatorname{wp}(\ldots)$

Simplify

```
\(=\mathrm{m}<\mathrm{n}==>\)
wp (tmp := \(n-m ; m:=m+1, t m p>n-m)\)
```

wp (tmp $:=n-m ; m:=m+1, t m p>n-m$)
seq rule

$$
\begin{aligned}
= & \text { wp (tmp }:=\mathrm{n}-\mathrm{m}, \mathrm{wp}(\mathrm{~m}:=\mathrm{m}+1, \text { tmp }>\mathrm{n}-\mathrm{m})) \\
& \text { assign }
\end{aligned}
$$

```
= wp(tmp:= n - m , tmp > n - (m + 1))
    assign
```

```
=n-m}>n-(m+1
```

 simplify \(=n-m>n-m-1\)
 simplify
    ```
= true
```

$=\mathrm{m}<\mathrm{n}==>$ true
$p==>$ true $==$ true
= true

Total correctness - summary

Prove m1 correct!

```
wp(x := e , R) = R[x te ]
wp(S1 ; S2 , R) = wp(S1,
wp(S2,R))
wp(assert B, R) = B && R
wp(if B {S1} else {S2}, R) =
    ( B ==> wp(S1,R)) &&
    (!B ==> wp(S2,R))
```

```
method m1(n : nat) returns (i : nat)
requires n >= 0
ensures i == 2*n
{
i := 0;
while (i < n)
    invariant i <= n
    variant n-i
    {i:= i + 1; }
    i := 2*i;
}
```

```
wp(while B I D S, R) =
    I
    && (B && I ==> wp(S,I))
    && (!B && I ==> R)
    && (B && I ==> D >= 0)
    && (B && I ==>
        wp({tmp := D ; S},{tmp > D}))
```


Prove fibFast correct!

```
wp(x := e , R) = R[x tee]
wp(S1 ; S2 , R) = wp(S1,
wp(S2,R))
wp(assert B, R) = B && R
wp(if B {S1} else {S2}, R) =
    ( B ==> wp(S1,R)) &&
    (!B ==> wp(S2,R))
```

```
wp(while B I D S, R) =
    I
    && (B && I ==> wp(S,I))
    && (!B && I ==> R)
    && (B && I ==> D >= 0)
    && (B && I ==>
        wp({tmp := D ; S},{tmp > D}))
```

```
function fib(n : nat) : nat
{ if n <= 1 then n else fib(n-1) + fib(n - 2)
method fibFast(n : nat) returns (c : nat)
requires n >= 1
ensures c == fib(n)
{
    var p := 0;
    C := 1;
    var i := 1;
    while i < n
    invariant 1 <= i <= n
    invariant p == fib(i - 1) && c == fib(i)
    decreases (n - i)
    { var new := p + c;
        p := c;
        c := new;
        i := i + 1;
    }
}
```


Solution

The correctness of the method fibFast is expressed by the formula
$n>=1==>w p(p:=0 ; \ldots, c==\operatorname{fib}(n))$
$<=>$ \{ sequential composition X4 \}
$n>=1==>w p(p:=0, w p(c:=1, w p(i:=1, w p(w h i l e(i<1)$ invariant I do $\{\ldots\}, w p(\{ \}, c==$ fib(n))))))
<=> \{ empty program \}
$n>=1==>w p(p:=0, w p(c:=1, w p(i:=1, w p(w h i l e(i<1)$ invariant I do $\{\ldots\}, c==$ fib(n) $))))$
The step is to compute the weakest-precondition of the loop. Since the formula is quite big, let's first take care of some "sub-goals":

Let us prove that the invariant is preserved "B \&\& I ==> wp(S,I)":
B \&\& I ==> wp(new := p + c; ..., I)
<=> \{ sequential composition X5 \}
$B \& \& I==>w p(n e w:=p+c, w p(p:=c, w p(c:=n e w, w p(i:=i+1, w p(\{ \}, I)))))$
<=> \{ empty program \}
B \&\& $I==>$ wp(new :=p+c,wp(p:=c, wp(c := new, wp(i := i + $1, I)))$)
$<=>\{$ assignment (and unfolding the definition of I) \}
B \&\& I ==> wp(new := p+c, wp(p := c, wp(c := new, $1<=\mathrm{i}+1<=n \& \& p==$ fib(i) \&\& c == fib(i +1$)))$)
<=> \{ assignment \}
$B \& \& I==>w p(n e w:=p+c, w p(p:=c, 1<=i+1<=n \& \& p==f i b(i) \& \& n e w==f i b(i+1)))$

B \&\& I ==> wp(new := p + c, wp(p := c, $1<=i+1<=n \& \& p==$ fib(i) \&\& new == fib(i + 1)))
<=> \{ assignment \}
B \&\& I ==> wp(new := p + c, $1<=\mathrm{i}+1<=\mathrm{n} \& \& \mathrm{c}==$ fib(i) \&\& new == fib(i + 1))
$<=>\{$ assignment (and unfolding the definition of B and $I\}$
$\mathrm{i}<\mathrm{n} \& \& 1<=\mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==\mathrm{fib}(\mathrm{i}-1) \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i})==>1<=\mathrm{i}+1<=\mathrm{n} \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i}) \& \& \mathrm{p}+\mathrm{c}==\mathrm{fib}(\mathrm{i}+1)$
$<=>$ \{definition of fib \}
$\mathrm{i}<\mathrm{n} \& \& 1<=\mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==\mathrm{fib}(\mathrm{i}-1) \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i})==>1<=\mathrm{i}+1<=\mathrm{n} \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i}) \& \& \mathrm{p}+\mathrm{c}==\mathrm{if}(\mathrm{i}+1<=1)$ then $\mathrm{i}+1$ else fib(i) + fib(i-1)
<=> \{ rewriting the RHS of the implication with equalities on the LHS \}
$\mathrm{i}<\mathrm{n} \& \& 1<=\mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==\mathrm{fib}(\mathrm{i}-1) \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i})==>1<=\mathrm{i}+1<=\mathrm{n} \& \& \mathrm{c}==\mathrm{c} \& \& \mathrm{p}+\mathrm{c}==\mathrm{if}(\mathrm{i}<=0)$ then $\mathrm{i}+1$ else $\mathrm{c}+\mathrm{p}$
$<=>$ \{ we have $\mathrm{i}<=\mathrm{i}$ on the LHS, so we can simplify the if/then/else expression on the RHS \}
$\mathrm{i}<\mathrm{n} \& \& 1<=\mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==\mathrm{fib}(\mathrm{i}-1) \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i})==>1<=\mathrm{i}+1<=\mathrm{n} \& \& \mathrm{c}==\mathrm{c} \& \& \mathrm{p}+\mathrm{c}==\mathrm{c}+\mathrm{p}$
<=> \{ removing trivial equalities \}
$\mathrm{i}<\mathrm{n} \& \& 1<=\mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==$ fib(i-1) \&\& c == fib(i) $==>1<=\mathrm{i}+1<=\mathrm{n}$
$<=>\{1<=\mathrm{i}$ on the LHS implies $1<=\mathrm{i}+1$, and $\mathrm{i}<\mathrm{n}$ implies $\mathrm{i}+1<=\mathrm{n}\}$
$\mathrm{i}<\mathrm{n} \& \& 1<=\mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==\mathrm{fib}(\mathrm{i}-1) \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i})==>$ true
$<=>\{$ the RHS of the implication is true $\}$
true

We will also prove that the failure of loop guard, and invariant implies the post-condition (this is post-condition of the loop, but since the loop is followed by the empty program it is similar to the post-condition of the method):
!B \&\& I ==> c == fib(n)
<=> \{ definition of B and I \}
! (i <n) \&\& $1<=\mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==$ fib($\mathrm{i}-1) \& \& \mathrm{c}==$ fib(i) $==>\mathrm{c}==$ fib(n)
<=> \{ arithmetic \}
$\mathrm{i}>=\mathrm{n} \& \& 1<=\mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==\mathrm{fib}(\mathrm{i}-1) \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i})==>\mathrm{c}==$ fib(n)
$<=>\{i>=n$ and $\mathrm{i}<=n$ are equivalent to $\mathrm{i}==\mathrm{n}\}$
$i==n \& \& i<=n \& \& p==$ fib(i-1) \&\& c == fib(i) ==> c == fib(n)
<=> \{ rewriting the RHS of the implication with the equality on the LHS \}
$\mathrm{i}==\mathrm{n} \& \& \mathrm{i}<=\mathrm{n} \& \& \mathrm{p}==\mathrm{fib}(\mathrm{i}-1) \& \& \mathrm{c}==\mathrm{fib}(\mathrm{i})==>\mathrm{c}==$ fib(i$)$
<=> \{ the RHS is implied by the LHS \}
true

Let us also prove that the decrease expression D is bounded below by 0

```
B&&I ==> n-i >= 0
<=> {definition of I (only the relevant bit)}
i <n ==> n-i >= 0
<=> { arithmetic }
i < n ==> n >= i
<=> { trivial arithmetical fact }
true
```


Finally let's prove that the decrease expression actually decreases

B \&\& I ==> wp(tmp := D; new := p + c; ..., tmp > D)
$<=>$ \{ sequential composition X5 \}
B \&\& I ==> wp(tmp := D, wp(new := p + c, wp(p := c, wp(c := new, wp(i := i + 1, wp(\{\}, tmp > D))))))
<=> \{ empty program \}
B \&\& I ==> wp(tmp := D, wp(new := p + c, wp(p := c, wp(c := new, wp(i := i + 1, tmp > D)))))
$<=>$ \{ assignment \}
B \&\& $I==>$ wp(tmp := D, wp(new := p + c, wp(p := c, wp(c:= new, tmp > n - i + 1))))
$<=>$ \{ assignment X4 \}
B \&\&I ==> D > n - $\mathrm{i}+1$
$<=>\{$ definition of D \}
B \&\& I ==> n-i > n-i + 1
$<=>\{$ arithmetic \}
B \&\&I ==> true
$<=>\{$ RHS is true $\}$
true

Now we can go back to our original goal, proving the correctness of the method:

```
n >= 1 ==> wp(p := 0,wp(c := 1,wp(i := 1,wp(while(i < 1) invariant I do {...}, c == fib(n)))))
<=> { while rule + facts proven above }
n >= 1 ==> wp(p := 0, wp(c := 1, wp(i := 1, I && true && true && true && true)))
<=> { assignment }
n >= 1 ==> wp(p := 0, wp(c := 1, 1 <= 1 <= n && p == fib(0) && c == fib(1)))
<=> { assignment }
n >= 1 ==> wp(p := 0, 1 <= 1 <= n && p == fib(0) && 1 == fib(1))
<=> { assignment }
n >= 1 ==> 1 <= 1 <= n && 0 == fib(0) && 1 == fib(1)
<=> { definition of fib (computed directly) }
n >= 1 ==> 1 <= 1 <= n && 0 == 0 && 1 == 1
<=> { trivial equalities }
n >= 1 ==> 1 <= 1 <= n
<=> { arithmetic }
true
```

Therefore, the method satisfies its specification!

```
wp({} , R) = R
wp(x:= e , R) = R[x->e]
wp(S1;S2,R) = wp(S1, wp(S2,R))
wp(assert B, R) = B &&R
wp(if B {S1} else {S2},R)=
    ( B ==> wp(S1,R)) && (!B ==> wp(S2,R))
wp(if B {S1} else {S2},R) =
    ( B &&wp(S1,R)) || (!B && wp(S2,R))
```

```
wp(while B I D S, R) =
    |
    && \forall[B &&I ==> wp(S,I)]
    && }\forall[!B &&I ==> R
    && \forall[B &&I ==> D >= 0]
    && \forall[B &&I ==> wp({tmp := D;S},{tmp > D})]
```

$$
w p(\text { while } b \text { do } S, Q) \equiv \exists k .\left(k \geq 0 \wedge P_{k}\right)
$$

where P_{k} is defined inductively:

$$
\begin{aligned}
P_{0} & \equiv \neg b \wedge Q \\
P_{k+1} & \equiv b \wedge w p\left(S, P_{k}\right)
\end{aligned}
$$

