Testing, Debugging, and Verification

Formal Verification, Part |

Srinivas Pinisetty?

30 November 2017

!Lecture slides based on material from Wolfgang Aherndt,.. CHALMERS/GU

Recap: Loop Invariants and Variants

Loops are difficult to reason about.
» Don’t know how many times we go around.

» But Dafny needs to consider all paths! How?

Solution: Loop Invariants

An invariant is an property which is true before entering loop and
after each execution of loop body.

But what about termination?

Solution: Loop Variants

An variant is an expression which decrease with each iteration of
the loop, and is bounded from below by 0.

Dafny can often guess variants automatically.

CHALMERS/GU

Formal Verification

Todays main topics:
» Dafny behind the scenes: How does it prove programs correct?

» Weakest Precondition Calculus

CHALMERS/GU

Fred Mesnard

Formal Software Verification: Motivation

Limitations of Testing
» Testing ALL inputs is usually impossible.

» Even strongest coverage criteria cannot guarantee
abcence of further defects.

Goal of Formal Verification

Given a formal specification S of the behaviour of a program P:
Give a mathematically rigorous proof that each run of P conforms

to S

P is correct with respect to S

CHALMERS/GU

Formal Software Verification: Limitations

v

No absolute notion of program correctness!
» Correctness always relative to a given specification

v

Hard and expensive to develop provable formal specifications

v

Some properties may be difficult or impossible to specify.

Requires lots of expertise and expenses (so far...)

Even fully specified & verified programs can have runtime
failures

v

v

» Defects in the compiler
» Defects in the runtime environment
» Defects in the hardware

Possible & desirable:
Exclude defects in source code wrt. a given spec

CHALMERS/GU

Dafny: Behind the Scenes

What happens when we ask Dafny to compile our program?
How does it prove that it is correct according to its specification? J

CHALMERS/GU

Dafny: Behind the Scenes

Dafny

Program + Spec

Boogie

Weakest-precondition
calculus

Verification
Conditions

4

Logical Formulas

Z3

Theorem Prover

CHALMERS/GU

Dafny: Behind the Scenes

method m
requires Q
ensures R

{S} How?

Big Logical Formula

5

SMT Solver (Z3)

Yes, that formula is true! Not true or | don’t know, need
more info

» Our focus: How do we extract verification conditions (Big
Logical Formula)?

» This module: Weakest precondition calculus.

» Won't deal with full Dafny/Boogie, but simplified subset
involving assignments, if-statements, while loops. CHALMERS,GU

What do we Need to Prove and How?

method MyMethod(. . .)
requires (J
ensures R
{

S: program statements

}
In literature, often expressed as a Hoare Triple: {Q} S {R}

Hoare Triple: {Q} S {R}

If execution of program S starts in a state satisfying pre-condition
@, the is is guaranteed to terminate in a state satisfying the
post-condition R.

CHALMERS/GU

What do we Need to Prove and How?

method MyMethod(. . .)
requires (/
ensures R
{

S: program statements

}
Weakest Precondition:

» Assuming that R holds after executing S,
» What is the least restricted (set of) state we could possibly
begin from?

» Weakest = Fewest restrictions on input state.

» Formally: wp(S, R)
» Does @ satisfy at least these restrictions?

> i.e. does @ imply the weakest pre-condition?

» To prove: @ — wp(S, R)

» Proving Hoare triple {Q} S {R} amounts to showing that

Q — WP(S7 R) CHALMERS/GU

What do we Need to Prove and How?

method m
requires Q

ensures R

{S }

Big Logical Formula:
Q => wp(S,R) This logical formula is also

called

the Verification condition

[sMT solver z3) |
Not true or | don’t know, need
more info

Yes, that formula is true, and
hence program is correct!

CHALMERS/GU

Weakest Precondition

Weakest Precondition: wp(S, R)

The weakest precondition of a program S and post-condition R
represents the set of all states such that execution of S started in
any of these is guaranteed to terminate in a state satisfying R.

CHALMERS/GU

First-Order Formulas and Program States

First-order formulas define sets of program states
What do we mean by wp(S, R) defining a set of program states?

wp(S, R) is a logical predicate F that is true in some states and
not true in others.

Example
» (i>j & j>=0) is true in exactly those states S
where i® > j° and j® is non-negative.
> exists 1 :: 1 == j
is true in any state S, because the value of i can be chosen to
be j°

CHALMERS/GU

Example

» Program statement S: i := i + 1

» Post-condition R: i <= 1

What is the weakest precondition, wp(S, R)? |

» Reason backwards: wp(i:=i+1,i<=1)=i<=0

» Executing i := i + 1 in any state satisfying i <= 0 will end
in a state satisfying i <= 1.

» Note: Taking @: i < -5 does also satisfy R. But overly
restrictive, excludes initial states where -5 <= i <=0.
Weakest precondition can help us find a suitable contract.

CHALMERS/GU

Mini Quiz: Guess the Weakest Precondition

Write down wp(S, R) for the following S and R:

s R
a) | i := i+l i>o0
b) | i := i+2; j := j-2 | i + j ==
c) | ali]l :=1 ali] == alj]
d) | i = d+1; j := jo1 |1 * j ==
Solution:
a) [i>=0
b) [i + j ==
c) | aljl ==
d[i==-11] j==1

CHALMERS/GU

Weakest Precondition Calculus

Our Verification Algorithm
» Have a program S, with precondition @ and postcondition R
» Compute wp(S, R)
» Prove that Q — wp(S, R)

The rules of the weakest precondition calculus provide semantics, a
logical meaning, for the statements in our programming language.

CHALMERS/GU

Weakest Precondition Calculus

We will prove validity of programs written in a slightly simplified
subset of Dafny/Boogie featuring:

Assignment: x := e
Sequentials: S1; 82
Assertions: assert B
If-statements: if B then S1 else S2
While-loops: while B S

Semantics

We will define the weakest precondition for each of these program
constructs.

CHALMERS/GU

Weakest Precondition Calculus: Assignment

Assignment

wp(x :=e,R) = R[x — €]

Note: R[x — e] means " R with all occurrences of x replaced by
e".

Example

Let S: (= it1i>0)

o . wpll =1+ 1,1 > =
te=di (By Assignment rule)

Let R: i >0 i+1>0

This program satisfies its postcondition if started in any state
where i > 0.

CHALMERS/GU

Weakest Precondition Calculus: Sequential Composition

Sequential Composition

wp(51; 52, R) = wp(S51, wp(52, R))

Example

Let S:
X = 1i;
i=1i+1;

Let R: x < i

wp(x:=ii:=i+1,x<i)=
(By Sequential rule)

wp(x == i,wp(i:==i+1x<
) =

(By Assignment rule)

wp(x =i, x <i+1)=

(By Assignment rule)
I<i+1

(trivially true)

This program satisfies its postcondition in any initial state.

V.

CHALMERS/GU

Weakest Precondition Calculus: Assertion

Assertion
wp(assert B, R) = BA R

Example

Let S:

X 1= y;
assert x > 0;

Let R: x < 20

This program satisfies its postcondition in those initial states where
y is a number between 1 and 19 (inclusive).

wp(x := y; assert x > 0,x < 20) =
(By Sequential rule)

wp(x =y, wp(assert x > 0,x < 20)) 3
(By Assertion rule)

wp(x =y, x >0Ax < 20) =
(By Assignment rule)
y>0Ay <20

4

CHALMERS/GU

Weakest Precondition Calculus: Conditional

Conditional
wp(if B then S1 else S2, R) =
(B — wp(S1,R)) A (=B — wp(S2,R))

Example
Let S: wp(if (i > 0) then S1 else S2,x > 0) =
if (i >= 0) then (By Conditional rule)

x := 1 else x := -i i>0—= wp(x:=ix>0)A
Abbreviate: =(i >0) = wp(x :== —i,x > 0) =
S1: x := i (By Assignment rule)

2 x i= -1 (7> 00> 0)A((i > 0)— —i >

DX 0=
Let R: x>0 true

This program satisfies its postcondition in any initial state.

4

CHALMERS/GU

Weakest Precondition Calculus: Conditional

Conditional, empty else branch
wp(if B then S1, R) = (B — wp(S51,R)) A (B — R) }

If else is empty, need to show that R follows just from negated
guard.

CHALMERS/GU

Mini Quiz: Derive the weakest precondition

The Rules
wp(x :=e,R) = R[x — €]
wp(S1; 52, R) = wp(S1, wp(S2, R))
wp(assert B, R) = BAR
wp(if B then S1 else S2, R) =
(B — wp(S1,R)) A (=B — wp(S2,R))

Derive the weakest precondition, stating which rules you use in

each step.

S | R
a) |1 := i+2; j := j-2 i+ 3 ==
b) | i := i+1; assert i > 0 i<=0

c) | if isEven(x) then y:=x/2 else y:=(x-1)/2 | isEven(y)

CHALMERS/GU

Mini Quiz: Derive the weakest precondition

Solution:

a)i + j ==

(apply seq. rule followed by assignment rule, simplify)

b) i+1 > 0 && i+l <= 0

(apply seq rule, assert rule, assignment)

Simplifies to i => 0 && i <= -1 which is false! No initial state
can satisfy this postcondition.

c)

isEven(x) ==> isEven(x/2) && !isEven(x) ==
isEven((x-1)/2)

(apply cond. rule, followed by assignment.)

CHALMERS/GU

Let's Prove ManyReturns Correct!

Recall
To prove correct a program S with precondition @ and
postcondition R we need to show that @ — wp(S, R).

method ManyReturns(x:int, y:int) returns (more:int, less:
int)

requires 0 < y;

ensures less < x < more;

{ more := x+y;
less := x-y;

}

Show that

0 <y — wp(more :=x+y;less := x — y, less < x < more)

CHALMERS/GU

Let's Prove ManyReturns Correct!

Show that

0 <y — wp(more :=x+y;less := x — y, less < x < more)
Seq. rule

0 <y — wp(more := x+ y,wp(less :== x — y, less < x < more))
Assignment rule

0<y— wp(more:=x+y,x—y < x < more)

Assignment rule

O<y—=(x—y<x<x+y)

which follows from the precondition by simple arithmetic.

Hint
This level of detail is expected for your proofs in the lab and exam.J

CHALMERS/GU

Another Example

method £ (x : int) returns (y : int)
requires x > 8
ensures y > 10

{
y :=x + 1;
if (ymod 2 ==0) { y := 100; }
else { y :=y + 2; }

}

Exercise: Prove f correct

Show that
x>8—= wp(y :=x+1;if---,y > 10).

CHALMERS/GU

Solution

First compute wp:
wp(y :=x+ 1;if y%2==0---,y > 10)

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+ 1;if y%2==0---,y > 10)

Seq. rule

=wp(y :=x+1; wp(if y%2==0---,y > 10))

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+ 1;if y%2==0---,y > 10)

Seq. rule

=wp(y :==x+ 1, wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+ 1;if y%2==0---,y > 10)

Seq. rule

=wp(y :==x+ 1, wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)

If rule

= ((y%2 == 0) — wp(y := 100, y > 10))
AN=(y%2 ==0) = wp(y :=y + 2,y > 10))

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+ 1;if y%2==0---,y > 10)

Seq. rule

=wp(y :=x+1; wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)
If rule
= ((y%2 == 0) — wp(y := 100,y > 10))
N=(y%2 == 0) = wp(y =y +2,y > 10))
Assignment rule (2x)
= ((y%2 == 0) — 100 > 10) A (~(y%2 == 0) — y +2 > 10)

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+ 1;if y%2==0---,y > 10)

Seq. rule

=wp(y :=x+1; wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)
If rule
= ((y%2 == 0) — wp(y := 100,y > 10))
N=(y%2 == 0) = wp(y =y +2,y > 10))
Assignment rule (2x)
= ((y%2 == 0) — 100 > 10) A (~(y%2 == 0) — y +2 > 10)
Simplify
= ((y%2 == 0) — true) A (~(y%2 == 0) — y > 8))

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+ 1;if y%2==0---,y > 10)

Seq. rule

=wp(y :=x+1; wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)
If rule
= ((y%2 == 0) — wp(y := 100,y > 10))
N=(y%2 == 0) = wp(y =y +2,y > 10))
Assignment rule (2x)
= ((y%2 == 0) — 100 > 10) A (~(y%2 == 0) — y +2 > 10)
Simplify
= ((y%2 == 0) — true) A (~(y%2 == 0) — y > 8))
By a — true = true
~ true \ (~(y%2 == 0) — y > 8)

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+ 1;if y%2==0---,y > 10)

Seq. rule

=wp(y :=x+1; wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)
If rule
= ((y%2 == 0) — wp(y := 100,y > 10))
N=(y%2 == 0) = wp(y =y +2,y > 10))
Assignment rule (2x)
= ((y%2 == 0) — 100 > 10) A (~(y%2 == 0) — y +2 > 10)
Simplify
= ((y%2 == 0) — true) A (~(y%2 == 0) — y > 8))
By a — true = true
= true A (~(y%2 == 0) = y > 8)
By truena=a
= (~(y%2==0) =y >8)

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2==0---,y > 10))
By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
=wp(y == x+1;(=(y%2 ==0) =y > 8))

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2==0---,y > 10))

By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
=wp(y :=x+1;(=(y%2==0) = y > 8))

By Assignment Rule

= (~((x + 1)%2 ==0) = x + 1 > 8)

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2==0---,y > 10))

By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
=wp(y :=x+1;(=(y%2==0) = y > 8))

By Assignment Rule

=(-((x+1)%2==0) = x+1>28)

Simplify

=(~((x+1)%2==0) = x>7)

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2==0---,y > 10))

By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
= wp(y == x+1;(=(y%2 ==0) — y > 8))

By Assignment Rule

=(-((x+1)%2==0) > x+1>38)

Simplify

=((x+1)%2==0) > x>7)

To prove: x >8 — wp(y :=x+1;if --- |y > 10)

x>8—= (~((x+1)%2==0) - x>7)

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2==0---,y > 10))

By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
= wp(y == x+1;(=(y%2 ==0) — y > 8))

By Assignment Rule

=(-((x+1)%2==0) > x+1>38)

Simplify

=((x+1)%2==0) > x>7)

To prove: x >8 — wp(y :=x+1;if --- |y > 10)
x>8—= (~((x+1)%2==0) - x>7)

Simplify using x > 8 in RHS

=x>8— (((x+ 1)%2 == 0) — true)

By a — true = true

= x> 8 — true

By a — true = true

= true

CHALMERS/GU

What Next?

While loops! J

Difficulties of While Loops
» Need to “unwind” loop body one by one
» In general, no fixed loop bound known (depends on input)

» How the loop invariants and variants are used in proofs.

CHALMERS/GU

Summary

v

>

Testing cannot replace verification

Formal verification can prove properties for all runs,
... but has inherent limitations, too.

Dafny is compile to intermediate language Boogie.

Verification conditions (VCs) extracted, using weakest
precondition calculus rule.

VCs are logical formulas, which can be passed to a theorem
prover.

Prove that precondition imply wp.

Reading: The Science of Programming by David Gries. Chapters
6-10, bearing in mind that the notation and language differ slightly
from ours. Available as E-book from Chalmers library.

CHALMERS/GU

	Recap: Loop Invariants and Variants
	Formal Verification
	Dafny: Behind the Scenes
	Weakest Precondition Calculus
	Proving Validity
	An Example Verification Proof
	What Next
	Summary

