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Recap: Loop Invariants and Variants

Loops are di�cult to reason about.

I Don’t know how many times we go around.

I But Dafny needs to consider all paths! How?

Solution: Loop Invariants

An invariant is an property which is true before entering loop and
after each execution of loop body.

But what about termination?

Solution: Loop Variants

An variant is an expression which decrease with each iteration of
the loop, and is bounded from below by 0.
Dafny can often guess variants automatically.
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Formal Verification

I Three lectures.

I One assignment to hand in.

Todays main topics:

I Dafny behind the scenes: How does it prove programs correct?

I Weakest Precondition Calculus

Fred Mesnard
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Formal Software Verification: Motivation

Limitations of Testing
I Testing ALL inputs is usually impossible.

I Even strongest coverage criteria cannot guarantee
abcence of further defects.

Goal of Formal Verification
Given a formal specification S of the behaviour of a program P :
Give a mathematically rigorous proof that each run of P conforms
to S

P is correct with respect to S
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Formal Software Verification: Limitations

I No absolute notion of program correctness!
I Correctness always relative to a given specification

I Hard and expensive to develop provable formal specifications

I Some properties may be di�cult or impossible to specify.

I Requires lots of expertise and expenses (so far...)
I Even fully specified & verified programs can have runtime

failures
I Defects in the compiler
I Defects in the runtime environment
I Defects in the hardware

Possible & desirable:
Exclude defects in source code wrt. a given spec
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Dafny: Behind the Scenes

What happens when we ask Dafny to compile our program?
How does it prove that it is correct according to its specification?
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Dafny: Behind the Scenes

Dafny Boogie
Program + Spec

Verification
Conditions

Z3
Theorem Prover

Weakest-precondition
calculus

Logical Formulas
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Dafny: Behind the Scenes

I Our focus: How do we extract verification conditions (Big
Logical Formula)?

I This module: Weakest precondition calculus.

I Won’t deal with full Dafny/Boogie, but simplified subset
involving assignments, if-statements, while loops.
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What do we Need to Prove and How?

method MyMethod(. . .)

Q

R

{

S: program statements

}

In literature, often expressed as a Hoare Triple: {Q} S {R}

Hoare Triple: {Q} S {R}
If execution of program S starts in a state satisfying pre-condition
Q, the is is guaranteed to terminate in a state satisfying the
post-condition R .
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What do we Need to Prove and How?

method MyMethod(. . .)

Q

R

{

S: program statements

}

Weakest Precondition:

I Assuming that R holds after executing S ,
I What is the least restricted (set of) state we could possibly

begin from?
I Weakest = Fewest restrictions on input state.
I Formally: wp(S ,R)

I Does Q satisfy at least these restrictions?
I i.e. does Q imply the weakest pre-condition?
I To prove: Q ! wp(S ,R)
I Proving Hoare triple {Q} S {R} amounts to showing that

Q ! wp(S ,R).



/GU

What do we Need to Prove and How?
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Weakest Precondition

Weakest Precondition: wp(S ,R)

The weakest precondition of a program S and post-condition R
represents the set of all states such that execution of S started in
any of these is guaranteed to terminate in a state satisfying R.
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First-Order Formulas and Program States

First-order formulas define sets of program states

What do we mean by wp(S ,R) defining a set of program states?

wp(S ,R) is a logical predicate F that is true in some states and
not true in others.

Example
I (i>j & j>=0) is true in exactly those states S

where is > js and js is non-negative.

I exists i :: i == j

is true in any state S , because the value of i can be chosen to
be js
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Example

I Program statement S : i := i + 1

I Post-condition R : i <= 1

What is the weakest precondition, wp(S ,R)?

I Reason backwards: wp(i := i + 1, i <= 1) = i <= 0

I Executing i := i + 1 in any state satisfying i <= 0 will end
in a state satisfying i <= 1.

I Note: Taking Q: i < -5 does also satisfy R . But overly
restrictive, excludes initial states where -5 <= i <=0.
Weakest precondition can help us find a suitable contract.
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Mini Quiz: Guess the Weakest Precondition

Write down wp(S ,R) for the following S and R :

S R
a) i := i+1 i > 0

b) i := i+2; j := j-2 i + j == 0

c) a[i] := 1 a[i] == a[j]

d) i := i+1; j := j-1 i * j == 0

Solution:

a) i >= 0

b) i + j == 0

c) a[j] == 1

d) i == -1 || j == 1
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Weakest Precondition Calculus

Our Verification Algorithm
I Have a program S , with precondition Q and postcondition R

I Compute wp(S ,R)

I Prove that Q ! wp(S ,R)

The rules of the weakest precondition calculus provide semantics, a
logical meaning, for the statements in our programming language.
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Weakest Precondition Calculus

We will prove validity of programs written in a slightly simplified
subset of Dafny/Boogie featuring:

Assignment: x := e

Sequentials: S1; S2

Assertions: assert B

If-statements: if B then S1 else S2

While-loops: while B S

Semantics
We will define the weakest precondition for each of these program
constructs.
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Weakest Precondition Calculus: Assignment

Assignment

wp(x := e,R) = R[x 7! e]

Note: R[x 7! e] means ”R with all occurrences of x replaced by
e”.

Example

Let S:

i := i + 1;

Let R : i > 0

wp(i := i + 1, i > 0) =
(By Assignment rule)
i + 1 > 0

This program satisfies its postcondition if started in any state
where i � 0.
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Weakest Precondition Calculus: Sequential Composition

Sequential Composition

wp(S1; S2,R) = wp(S1,wp(S2,R))

Example

Let S:

x := i;

i := i + 1;

Let R : x < i

wp(x := i ; i := i + 1, x < i) =
(By Sequential rule)
wp(x := i ,wp(i := i + 1, x <
i)) =
(By Assignment rule)
wp(x := i , x < i + 1) =
(By Assignment rule)
i < i + 1
(trivially true)

This program satisfies its postcondition in any initial state.
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Weakest Precondition Calculus: Assertion

Assertion

wp(assert B, R) = B ^ R

Example

Let S:

x := y;

assert x > 0;

Let R : x < 20

wp(x := y ; assert x > 0, x < 20) =
(By Sequential rule)
wp(x := y ,wp(assert x > 0, x < 20)) =
(By Assertion rule)
wp(x := y , x > 0 ^ x < 20) =
(By Assignment rule)
y > 0 ^ y < 20

This program satisfies its postcondition in those initial states where
y is a number between 1 and 19 (inclusive).
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Weakest Precondition Calculus: Conditional

Conditional

wp(if B then S1 else S2, R) =
(B ! wp(S1,R)) ^ (¬B ! wp(S2,R))

Example

Let S:

(i >= 0) then

x := i x := -i

Abbreviate:
S1: x := i

S2: x := -i

Let R : x � 0

wp(if (i � 0) then S1 else S2, x � 0) =
(By Conditional rule)
i � 0 ! wp(x := i , x � 0) ^
¬(i � 0) ! wp(x := �i , x � 0) =
(By Assignment rule)
(i � 0 ! i � 0) ^ (¬(i � 0) ! �i �
0) =
true

This program satisfies its postcondition in any initial state.
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Weakest Precondition Calculus: Conditional

Conditional, empty else branch

wp(if B then S1, R) = (B ! wp(S1,R)) ^ (¬B ! R)

If else is empty, need to show that R follows just from negated
guard.
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Mini Quiz: Derive the weakest precondition

The Rules

wp(x := e,R) = R[x 7! e]
wp(S1; S2,R) = wp(S1,wp(S2,R))
wp(assert B, R) = B ^ R
wp(if B then S1 else S2, R) =

(B ! wp(S1,R)) ^ (¬B ! wp(S2,R))

Derive the weakest precondition, stating which rules you use in
each step.

S R
a) i := i+2; j := j-2 i + j == 0

b) i := i+1; assert i > 0 i <= 0

c) if isEven(x) then y:=x/2 else y:=(x-1)/2 isEven(y)
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Mini Quiz: Derive the weakest precondition

Solution:

a) i + j == 0

(apply seq. rule followed by assignment rule, simplify)

b) i+1 > 0 && i+1 <= 0

(apply seq rule, assert rule, assignment)
Simplifies to i => 0 && i <= -1 which is false! No initial state
can satisfy this postcondition.

c)
isEven(x) ==> isEven(x/2) && !isEven(x) ==>

isEven((x-1)/2)

(apply cond. rule, followed by assignment.)
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Let’s Prove ManyReturns Correct!

Recall
To prove correct a program S with precondition Q and
postcondition R we need to show that Q ! wp(S ,R).

method ManyReturns(x: , y: ) (more: , less:
)

0 < y;
less < x < more;

{ more := x+y;
less := x-y;

}

Show that
0 < y ! wp(more := x + y ; less := x � y , less < x < more)
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Let’s Prove ManyReturns Correct!

Show that
0 < y ! wp(more := x + y ; less := x � y , less < x < more)
Seq. rule
0 < y ! wp(more := x + y ,wp(less := x � y , less < x < more))
Assignment rule
0 < y ! wp(more := x + y , x � y < x < more)
Assignment rule
0 < y ! (x � y < x < x + y)
which follows from the precondition by simple arithmetic.

Hint
This level of detail is expected for your proofs in the lab and exam.



/GU

Another Example

method f ( x : ) (y : )
x > 8
y > 10
{

y := x + 1;
(y mod 2 == 0) { y := 100; }
{ y := y + 2; }

}

Exercise: Prove f correct

Show that

x > 8 ! wp(y := x + 1; if · · · , y > 10).
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Solution

First compute wp:
wp(y := x + 1; if y%2 == 0 · · · , y > 10)

Seq. rule

= wp(y := x + 1; wp(if y%2 == 0 · · · , y > 10))

Compute wp(if y%2 == 0 · · · , y > 10)

If rule

= ((y%2 == 0) ! wp(y := 100, y > 10))

^(¬(y%2 == 0) ! wp(y := y + 2, y > 10))

Assignment rule (2x)

= ((y%2 == 0) ! 100 > 10) ^ (¬(y%2 == 0) ! y + 2 > 10)

Simplify

= ((y%2 == 0) ! true) ^ (¬(y%2 == 0) ! y > 8))

By a ! true = true
= true ^ (¬(y%2 == 0) ! y > 8)

By true ^ a = a
= (¬(y%2 == 0) ! y > 8)
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Another Example

wp(y := x + 1; wp(if y%2 == 0 · · · , y > 10))

By wp(if y%2 == 0 · · · , y > 10) = (¬(y%2 == 0) ! y > 8)

= wp(y := x + 1; (¬(y%2 == 0) ! y > 8))

By Assignment Rule

= (¬((x + 1)%2 == 0) ! x + 1 > 8)

Simplify

= (¬((x + 1)%2 == 0) ! x > 7)

To prove: x > 8 ! wp(y := x + 1; if · · · , y > 10)

x > 8 ! (¬((x + 1)%2 == 0) ! x > 7)

Simplify using x > 8 in RHS

= x > 8 ! (¬((x + 1)%2 == 0) ! true)
By a ! true = true
= x > 8 ! true
By a ! true = true
= true
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What Next?

While loops!

Di�culties of While Loops
I Need to “unwind” loop body one by one

I In general, no fixed loop bound known (depends on input)

I How the loop invariants and variants are used in proofs.
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Summary

I Testing cannot replace verification

I Formal verification can prove properties for all runs,
. . . but has inherent limitations, too.

I Dafny is compile to intermediate language Boogie.

I Verification conditions (VCs) extracted, using weakest
precondition calculus rule.

I VCs are logical formulas, which can be passed to a theorem
prover.

I Prove that precondition imply wp.

Reading: The Science of Programming by David Gries. Chapters
6-10, bearing in mind that the notation and language di↵er slightly
from ours. Available as E-book from Chalmers library.
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