Tutorial on SAT Solvers

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

June 30, 2015

SAT Solvers

- SAT solvers take as input a CNF formula F and return:
 - sat(+ model): if F is satisfiable
 - unsat: if F is unsatisfiable

Input Format: DIMACS (I)

- First some optional lines: c <comment>
- Then a line: p cnf <num_vars> <num_clauses>
- Then clauses:
 - Each variable is represented with an integer ≥ 1
 - Negated literals are negative integers
 - Literals in a clause separated by blank spaces
 - 0 marks the end of a clause

Input Format: DIMACS (II)

$(x_1 \lor x_2) \land \neg x_3$

c This is an example of SAT formula p cnf 3 2 1 2 0 -3 0

$(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$

c This is an example of UNSAT formula
p cnf 2 4
1 2 0
1 -2 0
-1 2 0
-1 -2 0

Output Format

- 1st line is one of:
 - s SATISFIABLE
 - s UNSATISFIABLE
- If satisfiable, then comes a list of true literals.
 Each following line is of the form v <list of lits>

Example: output for formula $(x_1 \lor x_2) \land \neg x_3$

```
s SATISFIABLE
v 1 2 -3 0
```

Interpretation I with $I(x_1) = I(x_2) = 1$, $I(x_3) = 0$ is model